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1. Introduction

Let G be a (simple) Lie algebra. The quantum Lie algebra’~® G, is a deformation of
the universal envelopping algebra of G which is endowed with a Hopf algebra structure.®
This mathematical object is currently drawing a lot of attention, in part because of its
connections with integrable systems and conformal field theories. The quantum algebra
Gq can be characterized by giving its generators together with defining relations based on
the Cartan matrix of G.

The Weyl and Clifford algebras also admit quantum deformations” with g-analogues
of the Bose, and respectively, Fermi oscillator operators as generators.” ~!° These quantized
algebras have been used to construct oscillator realizations of the quantum algebras that
correspond to all classical Lie algebras.” Here, we provide similar representations of the
quantum Lie superalgebras associated to the unitary and the orthosymplectic series. Al-
gebra homomorphisms from the quantized envelopping algebras of type A(m,n), B(m,n),
C(n+1) and D(m,n) into the quantum Weyl superalgebra will be presented by expressing
the generators of the quantum superalgebras as linears and bilinears in the creation and
annihilation operators of g-bosons and g¢-fermions.

In Section 2 we review some results on the classification of contragredient Lie superal-
gebras. A general description of the quantum Lie superalgebras is given in Section 3. We
introduce in Section 4 the g-analogue of the Bose and Fermi oscillators and present the
quantized Weyl superalgebra. Section 5 comprises our main results, that is the g-oscillator
realizations of the quantum Lie superalgebras sl;(m,n) and ospy(m,n). Unless stated oth-
erwise, we shall stick to the conventions of Kac regarding superalgebras;*!~!?® this means in
particular, that we shall use non-symmetric Cartan matrices. We discuss in the Appendix
the modifications that arise if one adopts instead, symmetric Cartan matrices.

2. Unitary and orthosymplectic Lie algebras

The Lie superalgebras sl(m,n) and osp(m,n) that respectively form the unitary and
orthosymplectic series are in many ways similar to the classical Lie algebras. A superalge-
bra G of rank r belonging to either series can be characterized'! ~!? by a Cartan matrix (a;;)
and a subset 7 C I = {1,...,r} that identifies the odd generators. Unless G is an ordinary
Lie algebra, in which case 7 = 0, the set 7 can actually be taken to consist of only one
element.'*1? Let [, ] stand for the graded product defined by [z,y] = —(—)d°8% degv [ 7]
and [z, [y,2]] = [[z,y], 2] + (—)4°6= 4°8¥ [y, [z, z]], and denote as usual by ad z the adjoint
operation (adz)y = [z,y]. The algebra G can be constructed from the 3r generators é;, f;
and h;, i € I, which satisfy the relations!3

éi, fi]l = 6ijhi hi,hj] = 0,
[. ,Jf;] ih [“ a;] ' (2.1)
[hiy€;] = aij €; , hi, fi] = —aij f;
and ) ) —
(adé;)! "™ é; = 0, (ad fi)' 25 f3= 0, i#7 (2.2)
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with
degh; = 0;  degé;=degfi= 0, i¢gr; degé;=degfi=1, ier,
and (a;;) the matrix which is obtained from the non-symmetric Cartan matrix (a;;) by

substituting —1 for the strictly positive elements in the rows with 0 on the diagonal entry.
In the case of Lie algebras the matrices (a;;) and (@;;) coincide and equation (2.2) reduce

to the standard Serre relations.*
Following the established notation'!*?  we put
Am,n) = sllm+1,n+1), mmn>0, m#n,
Am,m) = sllm-1,m+ 1)/{A Llam+2}, m>0, AeC,
B(m,n) = osp(2m + 1,2n) , m>0, n>0,
C(n+1)= osp(2,2n) , n>0,
D(m,n) = osp(2m,2n) , m=22, n>0.

We give below the Cartan matrix (a;j), the set 7 and the rank r, which are associated
to the superalgebras belonging to these series.!?!? In each case, we also specify a set of
rational numbers d;, : = 1,...,r, such that: d; a;; = d; aj;. These numbers d; will enter
in the defining relations of the quantum superalgebras (see next section). In what follows

An = "_ 3y (2.3)
2 -1
-1 2

stands for the n x n Cartan matrix of the rank n ordinary Lie algebra A,,.

e A(m,n)
- \
-1
(aij) = -1 0 1 5 (24)
-1
An
r={m+1} r=m+n+1, (2.5)
di = (L, - sondoy =y rsng—1L] (2.6)
m+41 n



When m = n, the algebra generated by the elements é;, f; and hi, i=1,...,2m+1, hasa
one-dimensional center'? which consists of the element ¢ = (h; — hami1) + 2(hs — hop) +
oot m(hm — hmy2)+ (m+1)hm4+1. The identification with A(m,m) is achieved once this

center has been factored out. This is the only case where such a situation occurs.

¢ B(m,n)
An—l
-1
-1 0 1
(aij) = 1
Am—l
\ 2
T+ = {1} r=m+n,
1
di= (1,051 1s0de, =1 =) 5
N— o — 2
n m-—1
e B(0,n)
An—
(aij) = 1 5] @
-2 2
T = {n} s LT
- S it R ey
n-1
e C(n+1)
0 1
-1
(aij) = An—1
-2
-1 2
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sk £ r=nt1, (2.14)

di =(1,-1,...,—-1,-2). (2.15)
L
n—1
¢ D(m,n)
An—l \
-1
-1 0 1
(ai5) = Y , (2.16)
Am-.—]_ _1
2 )
\ -1 0 2
T = {1} r=m+n, (2.17)
iy = (L eanp =1y cany =1} . (2.18)
SRS SR e

3. Quantum Lie superalgebras

Let G be a rank r superalgebra belonging to the unitary or the orthosymplectic series,
described in the previous section. Let ¢ € C\{0} be the deformation parameter which we
shall sometimes write ¢ = €"/2. We shall also use ¢; = ¢%, with d; the numbers, given in
the previous section, that symmetrize the Cartan matrix (a;;), and shall assume ¢} # 1.
The quantum superalgebras G, of the universal envelopping algebra of G is again generated
by 3r elements e;, f; and h;, ¢ € I, which satisfy!®

' sinh(n d; h;)

ei,-=¢5,-——-:—-——, h,‘,h'=0,
[hsves] = aises [hi, fil = = aij fi
with
degh; = 0; dege; =degfi = 0, i¢T; dege; =degfi=1, i€,
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and further obey certain generalized Serre relations which will be specified. It is convenient
to introduce the quantities k; = qf“ in terms of which the defining relations (3.1) become:

kik{d:kt‘-_lk,‘:l, k{kakjk,',

kiejk' = q;" €, kifiki' = ¢ f; (3.2)
ki —k;?

les, fi] = 5ijm'

The quantum superalgebra G, is endowed with a Hopf algebra structure.® The action of
the coproduct A : G, — G, ® G,, antipode S : G, — G, and counit ¢ : G; — C on the

generators is as follows:!?
A(hi)= h;®@1+1®h; A(k;) = ki @ ki
A(e;): e,-®k,-+ki_1®e,' A(fi)zfi®ki+ki_1®fi,
S(h;) = —h; k) = kT | (3.3)
S(ei) = —gqi* e S(fi) = —¢;* fi ,
e(h;) =el(e) =e(fe) =0 g(l)y= 1.

One can define the g-analogue ad, of the adjoint operation by!1?

ad, = (uz ® ur)(id ® S)A (3.4)

with id the identity operator and pup, pr the left and right (graded) multiplications:
g
pr(z)y = zy, pr(z)y = (—)48%98Y yz. The quantum Serre relations are most sim-

ply expressed in terms of the following rescaled generators,’®
Ei= aki! Fo=ifkz (3.5)
They then take a form similar to (2.2) and read
(ed; &Y' TP E =0, (ady F) = Fe= 0, i3, (3.6)

The defining system for the generators of G, is thus completed by adding these generalized
Serre relations to Eq.(3.1) or Eq.(3.2).
Let us record for reference, the explicit forms that conditions (3.6) take for sl (m,n)

and o0spg(m,2n). One has, always with ¢ # j,

a;; = O
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a;; = —1:

for dege; = 0,

el e; — 2cosh(nd;)eieje; +ejef = 0, (3.8a)
for dege; = 1,
e? e; — (cosh(2n d;) — sinh(27 d;)) ej el = 0 ; (3.8b)
fy; = —2
for dege; = 0,
el e; — (1 + 2 cosh(2n d;)) (efeje; —ejejel) —e;el =0, (3.9a)

for dege; = 1,
el e; + (1 — 2cosh(2n d;)) ((—l)dege" eleje; + eiejel) + (—1)d8% ¢; el = 0. (3.95)

In deriving these equations one should recall that ¢;” = q;j ‘. Substituting e, — fx and

n — —n in the above relations, one obtains the corresponding conditions on the generators

fre-

4. gq-Analogues of the Bose and Fermi oscillators

Let s and ¢ be two positive integers. The Weyl superalgebra, here denoted by W (s, 1),
is generated by the annihilation and creation operators of s Bose and ¢ Fermi oscillators.
The ¢-deformation of W(s,t) is obtained by introducing the quantum analogues of these
oscillators.”

The annihilation, creation and number operators b;, b‘T and N;,+=1,...,s, of bosonic
g-oscillators are taken to satisfy,

bib] —g* bl by = 7™ bibl — g2 bl b; = ¢, (4.1)

[Ni,b;] = —6;; b; [N, b%] = 6;;0 , (4.2)
and for 7 # j

[b:, 5] = [6],61] = [bi,b]) = 0 [N, Nj] =0, (4.3)

with degb; = deg b! =degN; = 0.
Similarly, the annihilation, creation and number operators, ¥, gbf and M3 =1 ety
of fermionic g-oscillators are defined through,

bi ] + @l = M i) + g2l = g7 (4.4)
[Mi,9;] = =65 ¥; (M, 91] = 69!, (4.5)
{$i,9i} =0 {$l,9l}=0, (4.6a)
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and for 1 # 7,
{$i, ¥l =0 M, M;] =0, (4.6b)

with deg; = degy! = 1, deg M; = 0, and {z,y} = ¢y + yz. It is further assumed that
bosonic and fermionic operators commute,

[biy 5] = [bi, ] = [6], 951 = [bl,9]] =0, (4.7a)
N3y ;] = [Niy )] = (M3, b5] = [M;,b}] = [N;, M) = 0. (4.7b)

The algebra W,(s,t) generated by the operators b, bi, Niy & = 1y5 008 a0 %y, 1,/)1, iy
j =1,...,t, subjected to equations (4.1)—(4.7), will be referred to as q-ana.logue of the Weyl

superalgebra W(s,t). The second conditions in (4.1) and (4.4) are sometimes omitted,®~1°
-1

their presence amounts to requiring the invariance'® of the defining system under ¢ — ¢
Note that equations (4.1) are equivalent to

2(N;+1) =2(N;+1) 2V; —2N;

toe g ned (o i
bi b} = e g e (4.8)
and (4.4) to
2(1=M;) _ ,—2(1—M;) 2M; _ . —2M;
; q q q q
Y] = pr—— plgi = i o (4.9)

When ¢ = 1, equations (4.1)—(4.7) reduce to the canonical commutation and anticom-
mutation relations of ordma.ry bosonic and fermionic annihilation and crea.tlon operators.
We shall denote by b;, bz, ¥; and 11;1 the classical relatives of b;, bz, 1; and 1,[; ; note that
N; — N; = b b;, and M; — M; = 3 3); as ¢ — 1.

The deﬁmng relations of the ¢-Weyl superalgebra can be realized by expressing the
g-oscillator operators in terms of their classical analogues. For the bosonic operators take®

]. l ~ -~
g b LUV_+) b bl = 4 B Ni= &, (4.10)
N; +1 N;
with i ’
2N; —2N; : \J
wx g =gt ginhi(n Ny)
F(N;) = T (4.11)

(Notice that ¢ has to be real or a pure phase, i.e. 7 has to be real or purely imaginary, for
b; and b] in (4.10) to be hermitian conjugates). For the fermionic operators set

¥i =i P! = 9! M; = M; . (4.12)

It is easy to check that equations (4 1) (4.7) are verified under such identifications. For
instance, since M’2 M,, one has ¢*Mi = (1 — M;) + qzﬂi = 1,55 d):‘ + ¢? 1,[1:[ ;.
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5. g-Oscillator representations of quantum superalgebras

We shall now construct g-oscillator representations of the quantum superalgebras
sly(m,n) and ospy(m,2n). We shall provide explicit expressions for the corresponding gen-
erators as linears and bilinears in g-deformed bosonic and fermionic oscillator operators.
We shall successively consider the quantum superalgebras A,(m,n), By(m,n), Cy(n + 1)
and D,(m,n) associated to the A(m,n), B(m,n), C(n+1) and D(m,n) Lie superalgebra
series described in Section 2.

Let us observe first that the quantum algebra corresponding to the classical Lie algebra

A, admits the following four representations™ !’
‘ﬂ"(Al“):
ek =blbesr  fe=0bl bk he=Ne—Niyr, k=1,...,n. (5.1)
A2,
En—2k+1 = ibi-zkﬂbi—zkm
fr—2k+1 = thn_2k41bn—28+2 k=1,...,[n/2]
hn-2k+1 = Np—zik+1 + Nn-2k+2 +1,
(5.2)
€n—2k = ibnhzkbn—2k+1
fn—2k = ib;—zkbl—2k+1 k :01--'?“”_ 1)/2]] :
hrn-2k = —(Nn—2k + Nn—2k+1+ 1),
TFE:::
€k = ¢L¢’k+1 fk = ¢£+1¢k hk = M, — Mk+1 ’ k= ]-7 T (53)
(4)
'JTA":
e = i) P!
n—2k+1 n—2k+1%n—2k+2
frn—2k+1 = 1 Yn—2k+1¥n—2k+2 k= Lyes s /2] s
hn-2k+1 = Mn—2k4+1 + Mn—2k42 — 1,
(5.4)

en—2k = P Pn—2kVn—2k+1
Fuat = 00 _outhl_oass k=0,...,[(n—1)/2] .
hn—zk — _(Mn—zk -+ wfn-2k+1 - 1) )



The symbol [z] stands for the integer part of z. Equivalent representations are obtained
upon exchanging e; and f;, and letting h; — —h;.

Under the standard inner product on the Hilbert space of oscillator states, 11'541 “J ! 71'5:'“)
and 11-5:: are unitary, while ﬁfj is antiunitary. Upon suitably combining these repre-
sentations, realizations of the quantum superalgebras sl;(m,n) and ospy(m,2n) will be

obtained.

e Ay(m,n)
In this case we can form four algebra homomorphisms of 4,(m,n) into W,(n+1,m+1).
For instance, we can take the first m generators (e;, fi, hi) to be realized as in ﬂf:"{ and the

last n ones given as in rrfqu. Explicitly, this provides the following unitary representation
of Ag(m,n),

ek=¢l'¢’k+1 fk=¢it+1¢k hk=Mk—Mk+1, k=1,...,m,
emt+1 = P) 11 b frmt1 = Yms1 b) hm+1 = Mm41 + N2
em+1 = b} biys frmit = bl by hmit=Ni—=Nigry,  1=2,...,n+1.

(5.5)
This construction has been sketched in Ref.[10].
One can also join the representation 11'543 3‘ with the representation wfz (or its equivalent
under e; < f;, h; — —h;) using for €41, fm+1, and k41 the expressions given in (5.5).

One has then,

ek = P} Vi1 fe =1}, ¥ he = My — Miy, , k

=1,y
Cm+1 = ¢In+1 by frt1 = ¥m41 b{ hm+1 = My + Ny,
em+2 = i b] bl frmt+2 =1b1 b2 hmtz =N1+ Ny +1,
€m+3 = 1 b9 by Toug = b;b; hrmss =_(N2+N3+1) ,
(5.6)

and so until the index n + m + 1 is reached. The representation of 4,(m,n) thus obtained
is not unitary anymore. However, it becomes unitary when the symmetric Cartan matrix
(af;) = (di ai;) is adopted (see Appendix).

The representation TI'E::‘ can similarly be attached to either representation 11'541 “) or

representation 11'542'3 to form two additional representations of A,(m,n). The first one

is unitary, while the second one becomes unitary once the rescalings associated to the
use of the symmetric Cartan matrix have been performed. When m = n, the center
¢ = (h1 — ham+1) + 2(h2 — ham) + ... + M(hm — hmt2) + (m + 1)hpmy; should be factored
out.

From the four representations that we have just described one can obtain four addi-
tional homomorphisms of 4,(m,n)in Wy (m+1,n+1) by exchanging in an obvious fashion
the bosonic and fermionic operators.
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¢ By(myn), m>0

Four algebra homomorphisms of B,(m,n) into W,(n,m) are obtained by combining

rrfql“]_l or 71'542'3_1 with #543'1_1 or "5;3.-1' A unitary representation follows from using "'541“)_1

and :rrf")' .- This is the only one that we shall describe explicitly; the others are similarly

constructed. Set

er = bl bry Fu =bL,; b o Ny = Mgy, K=l =1,
en =11 bl Fo = ] By hn =My + Ny ,
enti = V] Y141 fn+z=1bf+lt,bz horpi=My— My, l=1,....m=-1,
emin = (~)ML  frin = pm(-1)M  Fntm = 2Mm —1.

(5.7)

where M = Y.° M;. It is not difficult to check that the defining relations of By(m,n)
are then satisfied. Note that a Klein operator enters in the expression of e,,4, and foin.

Let us point out that different homomorphisms of By(m,n) into W(n,m) can be
obtained by exchanging the b’s and the v’s. However, one then needs to use a set 7 with

more than one element. For 7 = {n,m + n} in particular, a representation of By(m,n) is

obtained through combining wfj _, and rh{l _, as follows:

ek:¢’£¢k+1 fk=7vblt+11tbk he =My —Miq1., k=1,...,n—1,
En:b1¢,i; fnzbid’n hn=N1+Mny (58)
enti = b] biy1 fn+l=b;+1bl hntt=Ni—Nigy, I=1...,m—-1,

emin = (—1)VL,  fmin = bm(=1)N Pntm =2Nm+1.

where N = Y1 N,.

e B,(0,n)
The representations of B,(0,7) only require ¢g-bosons. Homomorphisms of B,(0,n)
into Wy(n,0) can be constructed from either 11'5413_1 or frffj_l. In the first case one has
ek = bLbet1 fe= bl bk hi= Ne— Ny, fork=1,...,n—1,

5.9
En=bl fann hnzan+1 ( )

This representation is unitary. The other one has (ex, fx,hi), £ = 1,...,n — 1, as in

7"{42..,-1’ with (€n, fn,hn) asin (5.9). These bosonic realizations of ospy(1,2n) were given in

Ref.[17].

e Cy(n+1)

We have two homomorphisms of Cy(n + 1) in Wy(n,1). There is one which is con-

structed out of the representation ‘rrff:_l given in (5.2) when n is odd, or, when n is even,

11



out of the equivalent representation obtained from the substitution e; — f; and h; — —h;.
It is explicitly defined by

e1 = 1 by f1:¢IbI hi= N, —M; +1,
By = ib;‘ b; f2a = b1 by ha = Ny + N3 +1, (5.10)
e3 = 1by by fs = bl b} hs = —(N; + N3 +1) ,

and so on, till:

. 2 ¢ t12 F 1
n == = b h il IV e £
2yl 2 coshn b Frts 2 cosh 7 (br) Bl (Nn 2) , for n even,
cntt = Foo (6L far = g B hnt1 = Nn+ = Looaold
"*1 7 2coshn * " J 2coshn ™ 5

This representation becomes unitary when referred to the symmetric Cartan matrix (a};) =
(di aij) (see Appendix).
The other representation of Cg(n+1)in Wy(n,1), uses wf;: _, and is defined as follows

€1=¢Ib1 f1=¢1bl hy = My + Ny,
ek+1 = blbe41 Je+1 = bLku hesi= Ny=Npgpi, k=1l,e,n—1,
i 1 1
n = bT 2 n = bz = =i,
i 2coshn( n)" frn 2coshnp ™ fnt1 = No+ 2
(5.11)
e Dy(m,n)
Two homomorphisms of Dy(m,n) into Wy(m,n) are obtained upon combining Tt'_(;")__l
or rrffn) _, with ‘"5433‘_1‘ The first produces the following unitary realization:
ex = bl by fu = bl b iy = Ny —Niay E=1,..m=1,
en = ¥ bl Fn = ¥l b, hn = N, + M; ,
entt = ¥ Y41 Fott= Pl hnyi= My — My, , =l =1,
€m+n = ¢In 1/):21..1 .fm+n = ¢m—1 ¢m hm+n = Mm—l + Mm —l &
(5.12)

For D,(m,1), the form of this g-oscillator representation had been conjectured in
Ref.[16]. A second realization is formed by taking the first n — 1 generators (ex, fi, hi) as
in representation 11"(:3 _, keeping the remaining generators as in (5.12). Finally, two new
homomorphisms of Dy(m,n) into Wy(m,n) can be obtained from the representations just
described by letting b; « 5, b:-r — ;bg, N; — M;—1 and M; — N;+1 in all the generators,

except for em,+n and fim4n, which are realized as e qn = ibzn_l bl , frtn = ibm_i bpm.
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Appendix. Conversion to symmetric Cartan matrices
Two Cartan matrices A = (a;;) and A' = (a};) are equivalent!® if there exists a matrix
D such that det D # 0 and A" = D A. Using this freedom, we can symmetrize the Cartan
matrices of the basic Lie superalgebras. In fact, let D;; = d; §;; with d; the components
of the vector given in Section 2; the symmetric Cartan matrices A* = (aj;) of Ref.[18] are
related to those listed in Section 2 by 4° = D A.

We here indicate how various formulas translate when one chooses to describe quantum
superalgebras with (aj;) instead of (a;;). Let E;, F; and H;, 7 =1,...,7r, be the elements

that generate the quantum superalgebra characterized by (aj;) and 7. They satisfy the

defining relations!®
sinh(nh;)
(B, Fj] = &i; “eimhy (Hi,H;] =0, (A1)
[H;, Ej] = af; E; (H;, Fj] = —aj; Fj .

degH; = 0: degE; =degF;= 0, i1¢r1: degE;=degF; =1, i€er,

together with the Serre relations (3.6), still involving the Cartan matrix (a;;) and the
rescaled generators &; = E; e";“H‘, F; = F;e"1H:,

This set of generators is straightforwardly related to the set e;, f; and h;, 1 =1,...,7,
that satisfy (3.1) and (3.6). One has

_ (sinh(ndi) _ [sinh(nd;) . " _
E; = 1/_—sinh17 e F; = oy fi H;=d;h;. (A.2)

When d; is negative, E; and F; will no longer be hermitian conjugate, if e; and f; were.
Conversely, as indicated in Section 5, there might be cases where one needs to use (af;)
and the generators E;, F; and H; for certain representations to be unitary.
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