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1. Introduction 

Let 9 be a (simple) Lie algebra. The quantum Lie algebra1 - S gq is a deformation of 
the universal envelop ping algebra of 9 which is endowed with a Hopf algebra structure .6 

This mathematical object is currently drawing a lot of attention, in part because of its 
connections with integrable systems and conformal field theories. The quantum algebra 
gq can be characterized by giving its generators together with defining relations based on 
the Cartan matrix of g. 

The Weyl and Clifford algebras also admit quantum deformations 7 with q-analogues 
of the Bose, and respectively, Fermi oscillator operators as generators.7 - 10 These quantized 
algebras have been used to construct oscillator realizations of the quantum algebras that 
correspond to all classical Lie algebras. 7 Here , we provide similar representations of the 
quantum Lie superalgebras associated to the unitary and the orthosymplectic series. Al­
gebra homomorphisms from the quantized envelop ping algebras of type A( m , n) , B( m, n) , 
C( n + 1) and D( m, n) into the quantum Weyl superalgebra will be presented by expressing 
the generators of the quantum superalgebras as linears and bilinears in the creation and 
annihilation operators of q-bosons and q-fermions. 

In Section 2 we review some results on the classification of contragredient Lie superal­
gebras. A general description of the quantum Lie superalgebras is given in Section 3. We 
introduce in Section 4 the q-analogue of the Bose and Fermi oscillators and present the 
quantized Weyl superalgebra. Section 5 comprises our main results, that is the q-oscillator 
realizations of the quantum Lie superalgebras slq( m, n) and OSpq( m, n). Unless stated oth­
erwise, we shall stick to the conventions of Kac regarding superalgebrasj ll-13 this means in 
particular, that we shall use non-symmetric Cartan matrices. We discuss in the Appendix 
the modifications that arise if one adopts instead, symmetric Cartan matrices. 

2. Unitary and orthosymplectic Lie algebras 

The Lie superalgebras sl( m, n) and osp( m , n) that respectively form the unitary and 
orthosymplectic series are in many ways similar to the classical Lie algebras. A superalge­
bra 9 ofrank r belonging to either series can be characterizedll - 13 by a Cartan matrix (a;j ) 
and a subset T C I == {I, ... ,r} that identifies the odd generators. Unless 9 is an ordinary 
Lie algebra, in which case T = 0, the set T can actually be taken to consist of only one 
elementY ·12 Let [ , ] stand for the graded product defined by [x, y] = _( _ ) de g• degy [y, x] 
and [x, [y, zll = [[ x, y], z] + (- )deg • deSY [y, [z, xII, and denote as usual by ad x the adjoint 
operation (adx)y = [x, y]. The algebra 9 can be constructed from the 3r generators e;, j; 
and h;, i E I , which satisfy the relations l3 

and 

[e;,/j] = 6;j h; , 
[ki ,ejl = aij ej , 

[h; ,hj ] = 0 , 

[h;,/j ] = -a;dj 

- l' . (ad f;) -al; Ii = 0 , 
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with 

deg hi = 0; deg ei = deg Ji = 0, i ~ T ; deg ei = deg ii = 1, i E T , 

and (iiij) the matrix which is obtained from the non-symmetric Cartan matrix (aij) by 
substituting -1 for the strictly positive elements in the rows with 0 on the diagonal entry. 
In the case of Lie algebras the matrices (aij) and (iiij) coincide and equation (2.2) reduce 
to the standard Serre relations.14 

Following the established notationll ,12, we put 

A(m,n) = sl(m+1,n + 1), m, n 2': ° , m#n, 

A(m,m) = sl(m-1,m+1)/{>.hn+2}, m > 0 , >. E C , 

B(m,n) = osp(2m+1,2n) , m2':O , n > 0, 

C(n + 1) = osp(2 ,2n) , n > 0 , 

D(m,n) = osp(2m,2n) , m 2':2, n > O . 

We give below the Cartan matrix (aij), the set T and the rank r , which are associated 
to the superalgebras belonging to these series. 12 ,13 In each case, we also specify a set of 
rational numbers di , i = 1, ... ,r, such that: di aij = dj aji. These numbers di will enter 
in the defining relations of the quantum superalgebras (see next section). In what follows 

2 -1 
-1 2 

An = (2.3) 

2 -1 
-1 2 

stands for the n x n Cartan matrix of the rank n ordinary Lie algebra An . 

• A(m,n) 

-1 
-1 0 1 

-1 

T={m+1} r=m+n+1, 

di = (1, ... ,1, - 1, ... , -1) . 
'-,..-' -----m+l n 
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When m = n, the algebra generated by the elements ei, ii and hi, i = 1, ... , 2m + 1, has a 
one-dimensional center12 which consists of the element c == (hi - h2m+ l ) + 2(h2 - h2m ) + 
... + m(hm - hm+2) + (m + l)hm+l . The identification with A(m, m) is achieved once tills 
center has been factored out. This is the only case where such a situation occurs.u 

• B(m,n) 

• B(O,n) 

• C(n+1) 

-1 
-1 0 1 

-1 

-1 
-2 2 

r = {n} r=m+n, 

1 
di = (1, ... ,1,-1, ... ,-1,--). 

'-,--' '-..-' 2 
n m-l 

-2 

r = {n} r = n, 

1 
di = (1, ... , 1,-). 

'-,--' 2 

o 1 
-1 

n-I 
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-2 
-1 2 

(2 .7) 

(2.8) 

(2.9) 

(2.10) 

(2.11 ) 

(2.12) 

(2.13 ) 



• D(m,n) 

(aij) = 

T = {l} r=n+l, 

di = (1, -1, ... , -1, -2) 
~ 

n -l 

An - 1 

-1 
-1 0 1 

-1 
A m - 1 

- 1 0 

T = {n} r=m+n, 

di = (1, ... , 1,-1, ... ,-1). 
'---.--' '-,,--' 

n m 

(2.14) 

(2.15) 

(2.16) 

-1 
0 
2 

(2.17) 

(2.18) 

3. Quantum Lie superalgebras 

Let 9 be a rank r superalgebra belonging to the unitary or the orthosymplectic series, 
described in the previous section. Let q E C \ {O} be the deformation parameter which we 
shall sometimes write q = e~ / 2. We shall also use qi = qd;, with di the numbers, given in 
the previous section, that symmetrize the Cartan matrix (aij), and shall assume q; '" 1. 
The quantum superalgebras 9q of the universal envelopping algebra of 9 is again generated 
by 3r elements ei, Ji and hi, i E I, which satisfylO 

[hi, h j] = 0 , 
(3.1 ) 

[hi , Jj ] = - aij Jj , 

with 

deg hi = 0; deg ei = deg Ji = 0 , i ~ T ; deg ei = deg Ji = 1, i E T , 
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and further obey certain generalized Serre relations which will be specified. It is convenient 
to introduce the quantities ki = q~; in terms of which the defining relations (3.1 ) become: 

( 3.2) 

The quantum superalgebra Qq is endowed with a Hopf algebra structure. 6 The action of 
the coproduct tl : Qq -+ Qq 181 Qq, antipode 5 : Qq -> Qq and co unit 10 : Qq -+ C on the 
generators is as follows: IO 

tl(h;) = hi 181 1 + 1181 hi 

tl( e;) = ei 181 k i + ki-
I 181 ei 

5(h;) = -hi 

5( e;) = -q~;; ei 

c( h;) = c( ei) = c(f;) = 0 

tl( k;) = k i 181 k i , 

tl(f;) = J; 181 k;+ k;1 181 J; , 

5(k;) = k;1 , 

5(f;) = -qf;; Ii , 

10(1 ) =1. 

One can define the q-analogue adq of the adjoint operation by l5.IO 

adq = (iLL 181 iLR)(id 181 5)tl , 

(3.3 ) 

(3.4) 

with id the identity operator and iLL, iLR the left and right (graded) multiplications: 
iLL( x) y = xy, iLR( x) y = (- )deg • deg" yx. The quantum Serre relations are most sim­
ply expressed in terms of the following rescaled generators,15 

(3.5 ) 

They then take a form similar to (2.2) and read 

i=lj, (3.6) 

The defining system for the generators of Qq is thus completed by adding these generalized 
Serre relations to Eq.(3.1) or Eq.(3.2). 

Let us record for reference, the explicit forms that conditions (3.6) take for slq ( m , n) 
and ospq(m, 2n). One has, always with i =I j, 

aij = 0: 
( 3.7) 
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iiij = -1: 

for deg ei = 0, 

for deg ei = 1, 

e; ej - (cosh(21) d;) - sinh(21)d;)) ej e; = 0 ; 

iiij = -2: 

for deg ei = 0, 

et ej - (1 + 2 cosh(21) d;)) (e;ejei - eiejeD - ej et = 0, 

for deg ei = 1, 

et ej + (1- 2 cosh(21) d;)) ((_I)deg e; e;ejei + eieje;) + (_I)deg <; ej et = O. 

(3.8a) 

(3.8b) 

(3.9a) 

(3.9b) 

In deriving these equations one should recall that q~;; = q;;; . Substituting ek --> !k and 
1) --> -1) in the above relations, one obtains the corresponding conditions on the generators 
!k. 

4. q-Analogues of the Bose and Fermi oscillators 

Let sand t be two positive integers. The Weyl superalgebra, here denoted by W(s, t) , 
is generated by the annihilation and creation operators of s Bose and t Fermi oscillators. 
The q-deformation of W(s , t) is obtained by introducing the quantum analogues of these 
oscillators. 7 

The annihilation, creation and number operators bi , bl and Ni, i = 1, ... , s, of bosonic 
q-oscillators are taken to satisfy, 

and for i i- j 

bi bl -l bl bi = q-2N; 

[Ni' bj ] = -Oij bi 

with deg bi = deg bl = deg Ni = O. 

bi bl - q-2 bl bi = IN; , 

[Ni' b} ] = Oij bl , 

(4.1 ) 

( 4.2) 

( 4.3) 

Similarly, the annihilation, creation and number operators, ,pi ,,pi and Mi, i = 1, ... , t, 
of fermionic q-oscillators are defined through, 

,pi,p1 + q2 ,pi ,pi = lM; 
[Mi,,pj] = -Oij,pj 

{1/Ji,,pj} = 0 

.1 •• 1. t + -2.1.1 . 1. -2M; 
'f'io/i q 'f'ilf/i=q , 

[Mi' ,pJ] = Oij ,pJ ' 

{1/Jf, ,pJ} = 0 , 
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( 4.5) 

( 4.6a) 



and for i # j, 
(4.6b) 

with deg,p; = deg,p: = 1, degM; = 0, and {:e ,y} =:ey +y:e. It is further assumed that 
bosonic and fermionic operators commute, 

[b; ,,pi] = [b;, ,p JJ = [b),,pi] = [b), ,p l] = 0 , 

[N;,,pi] = [Ni,,pl] = [Mi, bi ] = [M;,bj] = [Ni,Mi] = O. 

(4.7a) 

(4. 7b) 

The algebra Wq (s, i) generated by the operators bi, b), Ni, i = 1, ... , s, and ,p j, ,p l, Mj, 
j = 1, .. . ,i, subjected to equations (4.1 )-( 4. 7), will be referred to as q-analogue of the Weyl 
superalgebra W( s , i). The second conditions in (4.1) and (4.4) are sometimes omitted,8-lo 
their presence amounts to requiring the invariance l6 of the defining system under q _ q-l. 
Note that equations (4.1) are equivalent to 

and (4.4 ) to 

t q2(1-M; ) _ q - 2(1-M; ) 

,p;,p; = 2-2 
q - q 

q2N; _ q-2N; 
bt b· - • -_=__--"-_=__ 

i l - - 2 -2 ' q - q 

q2M; _ q -2M; 

,p: ,p; = .!.....-2,..---'----2-
q - q 

( 4.8) 

( 4.9) 

When q = 1, equations (4.1 )-( 4. 7) reduce to the canonical commutation and anticom­
mutation relations of ordinary bosonic and fermionic annihilation and creation operators. 
We shall denote by b;, b), ;;'; and ;;,: the classical relatives of bi, b), ,pi and ,p1; note that 

- - t- - - t -
Ni - N; = bi bi, and M; - M; = ,pi ,pi as q - l. 

The defining relations of the q-Weyl super algebra can be realized by expressing the 
q-oscillator operators in terms of their classical analogues. For the bosonic operators take9 

bi = .f ( .~IV.:...i +~1) - bi 
IVi + 1 

with 
sinh(1] IV;) 

sinh 1] 

Ni = IVi , (4.10) 

(4.11 ) 

(Notice that q has to be real or a pure phase, i.e. 1] has to be real or purely imaginary, for 
bi and bi in (4 .10) to be hermitian conjugates ). For the fermionic operators set 

M; = Mi . (4.12) 

It is easy to check that equations (4.1 )-(4.7) are verified under such identifications. For 

instance, since M; = Mi , one has q2M; = (1 - M;) + q2 Mi = ;;'i;;': + q2;;': ;;' i. 
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5. q-Oscillator representations of quantum superalgebras 

We shall now construct q-oscillator representations of the quantum superalgebras 
slq( m, n) and OSPq( m, 2n). We shall provide explicit expressions for the corresponding gen­
erators as linears and bilinears in q-deformed bosonic and fermionic oscillator operators. 
We shall successively consider the quantum superalgebras Aq(m,n), Bq(m,n), Cq(n + 1) 
and Dq(m,n) associated to the A(m,n), B(m,n), C(n+ 1) and D(m,n) Lie superalgebra 
series descri bed in Section 2. 

Let us observe first that the quantum algebra corresponding to the classical Lie algebra 
An admits the following four representations 7 ,17 

7r~! : 
h k = Nk-Nk+1, k=1, ... ,n. 

. bt bt 
en -2k+ l = t n-2k+l n-2k+2 

In-2k+1 = ibn-2k+1bn-2k+2 

h n - 2k + 1 = Nn-2ik+1 + N n - 2k+2 + 1 , 

en -2k = i bn-2kbn-2k+1 

In-2k = i b~_2kb~_2k+1 
h n - 2k = -(Nn - 2k + N n - 2k+1 + 1) , 

~(3). 
"An' 

k = 1, ... , [n/2] 

k = 0, ... ,[(n -1)/2j. 

hk = Mk - Mk+1, k = 1, ... , n . 

( 4 J 
7r A,,: 

'.1.1 .I. t en -2k+l = t '+"n-2k+l 'f'n-2k+2 

In-2k+1 = i .,pn-2k+1.,pn-2k+2 

h n - 2k+ 1 = M n - 2 k+1 + M n - 2k+ 2 - 1 , 

en -2k = i .,pn-2k,pn-2k+1 

I .. I.t .1.1 
n-2k = 2 o/n-2k 'f'n-2k+l 

h n - 2k = -(Mn - 2k + M n - 2k+1 - 1) , 

9 

k = 1, ... ,[n/2], 

k = 0, ... ,[(n- 1)/2j. 

(5.1 ) 

( 5.2) 

(5.3) 

(5.4) 



The symbol [x] stands for the integer part of x. Equivalent representations are obtained 
upon exchanging ei and Ii, and letting hi ...... -hi. 

Under the standard inner product on the Hilbert space of oscillator states, 1T"~,~, 1T"~,~ 
and 1T"~2 are unitary, while 1T"~2 is antiunitary. Upon suitably combining these repre­
sentations , realizations of the quantum superalgebras slq( m, n) and OSpq( m , 2n) will be 
obtained . 

• Aq(m,n) 

In this case we can form four algebra homomorphisms of Aq(m, n) into Wq(n+l, m+l). 

For instance, we can take the first m generators (ei' Ii, h;) to be realized as in 1T"~,~, and the 

last n ones given as in 1T"~2 . Explicitly, this provides the following unitary representation 
of Aq(m, n), 

ek = 1/>l1/>k+l 

em+1 = 1/>;"+1 b2 

em+l = bi bl+1 

Ik = 1/>1+1 1/>k 

Im+l = 1/>m+l b~ 
Im+l = bi+1 bl 

hk = Mk - Mk+l , 

hm+l = M m+1 + N2 , 

hm+l = Nl - N I+1 , 

This construction has been sketched in Ref.[lOJ. 

k = l, ... ,m, 

l = 2, .. . ,n + 1 . 

(5.5 ) 

One can also join the representation 1T"~!, with the representation 1T"~,~ (or its equivalent 
under ei ..... Ii, hi ...... -hi) using for em+l , I m+l, and hm+l the expressions given in (5.5). 
One has then, 

ek = 1/>11/>k+1 

em+1 = 1/>;"+1 bl 

. bl bl em +2 = l 1 2 

em+3 = i b2 b3 

Ik = 1/>1+1 ,pk 
Im+1 = 1/>m+1 bi 

Im+2 = i bl b2 

Im+3 = b~ b~ 

hk = Mk -Mk+J, 

hm+1 = M m+1 + Nl , 

hm+2 = Nl + N2 + 1 , 

hm+3 = -(N2 + N3 + 1) , 

k=l, ... ,m, 

( 5.6 ) 
and so until the index n + m + 1 is reached. The representation of Aq(m, n) thus obtained 
is not unitary anymore. However, it becomes unitary when the symmetric Cartan matrix 
(al) = (di aij) is adopted (see Appendix). 

The representation 1T"~4~ can similarly be attached to either representation 1T"~! or 

representation 1T"~,~ to form two additional representations of Aq( m, n). The first one 
is unitary, while the second one becomes unitary once the rescalings associated to the 
use of the symmetric Cartan matrix have been performed. When m = n, the center 
c = (hI - h2m+d + 2(h2 - h2m ) + ... + m(hm - hm+2) + (m + l)hm+1 should be factored 
out. 

From the four representations that we have just described one can obtain four addi­
tional homomorphisms of Aq(m, n) in Wq (m+ 1, n+ 1) by exchanging in an obvious fashion 
the bosonic and ferrnionic operators. 
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oBq(m , n ), m > O 

Four algebra homomorphisms of Bq(m,n ) into Wq(n , m) are obtained by combining 

7l"~ll_l or 7l"~'~_1 with 1T"~~_1 or 1T"~'~'_1' A unitary representation follows from using 7l"~1'~ _1 
and 7l"~'~_1' T his is the only one that we shall describe explicitly; the others are similarly 
constructed. Set 

ek = bl bHI fk = bl+ 1 bk 

fn=..p;bn 

hk=Nk-Nk+l , k=I, .. . , n-l, 

en = ..p I b~ hn = MI + N n , 

en+l = ..p1..p1+1 

em+n = (_I)M..p~ 

fn+l = ..p1+1..p1 

fm+n = ..pm ( _1)M 

hn+l = Ml - MI+I , 1= 1, ... , m - 1 , 

hn+m = 2Mm - 1 . 

(5.7) 
where M = L::I Mi . It is not difficult to check that the defining relations of Bq{m, n) 
are then satisfied. Note that a Klein operator enters in the expression of em+n and fm+n. 

Let us point out that different homomorphisms of Bq(m, n) into W(n,m) can be 
obtained by exchanging the b's and the ..p's. However, one then needs to use a set .. with 
more than one element. For .. = {n ,m + n} in particular, a representation of Bq(m , n) is 

obtained through combining 1T"~l_l and 7l"~'~ _1 as follows: 

ek = ..p1 ..pHI 

en = bl ..p~ 

en+ 1 = b[ bl+l 

em + n = (_l)Nb~ 

o Bq(O,n) 

fk = ..p1+1 ..pk 

fn = bI..pn 

fn+l = b[+lbl 

fm+n = bm(-I)N 

hk = Mk - M k+l , 

hn = NI + Mn, 

hn+l = Nl - NI+ 1 , 

hn+m = 2Nm + 1 . 

k=I, .. . ,n-l, 

l=l , ... ,m - l, 
(5.8) 

The representations of Bq(O,n ) only require q-bosons. Homomorphisms of Bq(O, n ) 

into Wq(n,O) can be constructed from either 7l"~l_l or 7l"~l_ l ' In the first case one has 

q= blbHI fk= b1+lbk h k = Nk-NHI, fork=I , ... ,n- l , 

en = b~ fn = bn hn = 2Nn + 1 . 
(5.9) 

This representation is unitary. The other one has (ek, fk , h k), k = 1, ... , n - 1, as III 

7l"~l_l' with (en.Jn, h n ) as in (5.9). These bosonic realizations of o3pq(l, 2n) were given in 
Ref.[17]. 

o Cq(n+l) 

We have two homomorphisms of Cq( n + 1) in W q(n , I) . There is one which is con­

structed out of the representation 7l"~l_l given in (5.2) when n is odd, or, when n is even, 
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out of the equivalent representation obtained from the substitution ei ..... Ii and hi .... -hi. 
lt is explici tly defined by 

el = ..p I bI It = ..pi bi hI = NI - MI + 1 , 

e2 = ib l bl 
I 2 12= ibI b2 h2 = NI + N2 + 1, (5.10) 

e3 = ib2 b3 h = ib~ b~ h3 = -(N2 +N3 + 1) , 

and so on, till: 

t b2 

2 cosh 1) n 

t I 2 
en+I = 2 h (bn ) cos 1) 

t I 2 
In+I = 2 h (bn ) cos 1) 

In+I = t b2 

2 cosh 1) n 

for n even, 

for n odd. 

This representation becomes unitary when referred to the symmetric Cartan matrix (alj) = 

(di aij) (see Appendix). 

The other representation of Cq(n+ 1) in Wq(n, 1) , uses 1I"~!_1 and is defined as follows 

el = ..pi bl It = ..pI bi hI = MI + NI , 

eHI = b!bH1 IHI = b!+1 bk hk+l = Nk - Nk+1 , k=I, ... ,n-I, 

t (b I )2 t 2 1 
en+l = In+I = 2 h bn hn+I = Nn + 2"' 2 cosh 1) n cos 1) 

(5.11) 

• Dq(m,n) 

Two homomorphisms of Dq(m, n) into Wq(m , n) are obtained upon combining 1!Y~_ l 
or 1r~: _ 1 with 1r~'~'_1' The first produces the following unitary realization: 

ek = b! bHI Ik = b!+1 bk hk = Nk - N k+I , k=I, . .. ,n- I , 

en = ..pI b~ In = ..pi bn hn = Nn + MI , 

en+1 = ..p! ..p1+I I n+1 = ..p!+I..p1 hn+1 = MI - M 1+I , I=I , ... ,m-1, 

em+n = ..p;" ..p;"-I Im+n = ..pm-I ..pm hm+n = Mm- I + Mm - 1 . 

(5.12) 

For Dq(m,I) , the form of this q-oscillator representation had been conjectured in 
Ref.[16]. A second realization is formed by taking the first n - 1 generators (ek, Ik, hk) as 

in representation 1I"~:_1 keeping the remaining generators as in (5.12). Finally, two new 
homomorphisms of Dq(m, n) into Wq(m, n ) can be obtained from the representations just 

described by letting bi ..... ..pi, bi ..... ..p!, Ni .... Mi -1 and Mi -> Ni + 1 in all the generators, 

except for em+n and Im+n, which are realized as em+n = i b;"_ l b;", Im+n = i bm- l bm. 
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Appendix. Conversion to symmetric Cartan matrices 

Two Cartan matrices A = (aij) and A' = (a:j) are equivalent13 if there exists a matrix 
D such that det D of 0 and A' = D A. Using this freedom, we can symmetrize the Cartan 
matrices of the basic Lie superalgebras. In fact, let Dij = di Oij with di the components 
of the vector gi"en in Section 2; the symmetric Cart an matrices A' = (alj) of Ref.118] are 
related to those listed in Section 2 by A' = D A. 

We here indicate how various formulas translate when one chooses to describe quantum 
superalgebras with (aij) instead of (aij). Let Ei, Fi and Hi, i = 1, . . . , r, be the elements 
that generate the quantum superalgebra characterized by (aij) and T. They satisfy the 
defining reiations lO 

(A.l) 

degH i = 0: deg Ei = deg Fi = 0 , i f/; l' ; deg Ei = deg Fi = 1, i E l' , 

together with the Serre relations (3.6), still involving the Cartan matrix (aij) and the 
rescaled generators £i = Ei e - t H;, Fi = Fi e - ! H; • 

This set of generators is straightforwardly related to the set ei, J; and hi, i = 1, ... ,r, 
that satisfy (3.1) and (3.6). One has 

Ei= 
sinh( 1) di) _:-':-'----'cc e . 

sinh 1) • 
Fi= 

sinh( 1) d;) r 
sinh 1) • 

Hi = di hi . (A.2) 

When di is negative, Ei and Fi will no longer be hermitian conjugate, if ei and Ji were. 
Conversely, as indicated in Section 5, there might be cases where one needs to use (aij) 
and the generators Ei, Fi and Hi for certain representations to be unitary. 
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