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Abstract 
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setting for the q-Laguerre and q-Hermite polynomials. 
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It is now being realized that quantum groupsl-5 and their representations might bear 
a relationship with the theory of basic or q-special functions8 - 8 similar to the one between 
Lie theory and ordinary special functions.s,lo Indeed, a few q-functions have already been 
identified as matrix elements of representations of quantum groups: the little q-J acobi poly­
nomials in SUq(2) representations,ll-IS the q-Bessel functions when the quantum group 
of motions in the plane is consideredH and certain basic hypergeometric functions in the 
case of SUq(l, 1).15 Moreover, the Clebsh-Gordan coefficients of SUq(2) can be expressed 
in terms of q-Hahn polynomials,u while other q-special functions can be obtained from 
harmonic analysis on quantum spaces.17 In the present letter, we establish the connection 
between the q-Laguerre and q-Hermite polynomials and the oscillator quantum group. 

The oscillator quantum algebra Wq(l) is generated by three elements a, at and N 
satisfying the defining relations: 

,,'! , .[N,a] = -a 

aat - qfat 41= q-lf 

[N, at] = at 

aat - q-t at a = qlf . 
(1) 

In the limit q -+ 1, (1) reduce to the canonical commutation relations of the harmonic oscil­
lator creation and annihilation operators. The algebra W,(1) and its generalizations18- 21 

have found many applications. In particular, they have been used to construct oscillator 
realizations of the quantized envelopping algebras22 and superalgebras2s - 28 of type A, B, 
C and D. In terms of 

k = qt(N+t) , 

the relations (1) translate into 

kk- l = k-Ik = 1 

k+ k- l 

[a,at ] = 1 _1 
q. + q • 

kak- l = q-t a 

kat k-l = qt at . 

(2) 

(3) 

The algebra W q(1) is a bona fide quantum algebra as it can be endowed with a Hopf 
algebra structure27 by taking the following definitions28 of coproduct ~: W,(1)-+ 
Wq (1) ~ Wq(1), antipode S: Wq(1) -+ Wq (1) and counit f:: Wq(1) -+ c: 

~(k) = (k ~ k)e-i9 

S(k) = k- l e2i9 

S(a) = _q-t a 

f:(k) = ei9 

t(a) = t(at ) = 0 

1 2i8 
~(N) = N ~ 1 + 1 ~ N + ( - - -) 

2 lnq 

~(at) = (at ~ kt + ik-t ~ at )e-i9/ 2 

1 2i8 
S(N) = -N - 2{ - - -) 

2 lnq 

1 2i8 
f:(N) = -(- - - ) 

2 lnq 

f:(1) = 1 , 

3 

(4) 



with 8 = f +211"1, I E Z. 
For our present purposes, it will be convenient to introduce another pair of annihilation 

and creation operators A and At related to a and at in the following fashion: 

l! 
A= q' a 

It is immediate to verify that A and At satisfy . 

IN,A) =-A 

(5) 

(6a) 

(6b) 

Before proceeding further, let us collect a few results in q-analysis that will prove 
useful. e We shall denote by (a; q)n the q-shifted factorial: 

and shall take 
co 

(a;q)co = II (1- aq.) , 
.=0 

One can also define (a; q)n for arbitrary complex n by 

() 
(a;q)"" 

a; q n = ( ). aqn; q "" 

n= 0, 
n=1,2, . •. , 

Iql < 1 : 

These products satisfy various identities like for instance 

(7) 

(8) 

(9) 

(10) 

We shall recall them whenever they will be required. Note also that (q; q)n/(l- q)n -+ n! 
as q -+ 1-. Of fundamental importance is Heine's q-binomial theorem which states that 

~ (a;q)n n (az;q)"" . 
L.J Z= , 
n=O (q;q)n (z;q)"" 

Izl < 1, Iql < 1 . (11) 

Two q-exponential functions are obtained from the above formula. On the one hand, upon 
setting a = 0, one gets 

"" 1 1 
eq(z) = ~ (q; q)n zn = (z; q)"" ' Izl < 1 , (12) 

while on the other, upon replacing z by -z/a in (11), letting a -+ 00 and using (10), one 
finds 

00 _(_-1) 

~q 2 

Eq(Z) = ~ ( . ) 
n=O q,q n 

4 

zn = (- z;q)"" . (13) 

t 



It is easy to see that eq(z)Eq(-z) = 1 and that 

Let Tz be the q-dilatation operator in the variable z, i.e. 

Tz /(z) = /(qz) • 

The q-difI'erence operators Dt and D; are given by 

Dt = z-l(l_ T.) , 
D; = z-l(l_ T.-l) • 

(14) 

(15) 

(16a) 

(16b) 

Observe that"n':'q)Dt - d/dz and (1 ~_,)D; - d/dz as q -+ 1 and that the q­
exponentials obey2e 

Dt eq(z) = eq(z) , 
D; Eq(z) = _q-l Eq(z) . 

We shall also need the q-integral 

r 00 

10 /(t)dqt = a(l- q) 2:: f(aq")q" • 
o fta:O 

(17a) 

(17b) 

(18) 

One checks that it is the inverse of D+, in that foA Dt f(t) dqt = /(a) - f(O), Iql < 1-
The q-gamma function is defined by 

r (z) = (q; q)"" (1 _ )1-Z 
q (qZ; q)"" q , Iql < 1. (19) 

We have obtained a q-analog of Euler's formula for the gamma function which we were not 
able to find in the literature. 

LEMMA: The function r q(z) admits the following integral representation 

-L 

rq(z) = 1'-' t z
-

1 Eq (-q(l- q)t) dqt, Iql < 1. (20) 

The proof can be easily obtained by successively using (18), (13), (9) and (12). 
The connection between Wq(l) and the q-Laguerre and q-Hermite polynomials will be 

obtained by considering two different realizations of this quantum algebra. Our analysis 
will closely follow the one given in Ref.[10] for the ordinary (undeformed) case. The first 
representation is constructed on the space of entire functions in the complex variable z. It 
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will be convenient to use the polar coordinates z = pel'. We shall endow this space with 
the following inner product 

(cpl"') = L cp(z) "'(z) dfp(z) -

= 2~ [" d8 1~ df p2 E f (-q(l - q)p2) cp(pel') "'(pel') • 

An orthonormal basis is then provided by the monomials 

In} = JI'f(~ + 1) z" • 

(21) 

(22) 

Indeed, one can check that: (nlm) = Sm,,,. Also note that rf(n + 1) = (qjq),,/(l- q)". 
A representation of Wf (l) in this space is obtained by setting 

.... '. . ' 

d 
N=z- , 

dz 
. 1 + 

A=-l- D., -q 
At = z. (23) 

It is easy to see that the relations (6) are identically obeyed under this identification. In 
this model the action of the generators on the basis states is readily computedj one finds 

Nln} = nln} 
rr=qn 

A In} = V ~ In - I} v1 - q"+1 At In} = 1-q In+1}. (24) 

The operators A and At are seen to be the hermitian conjugate one of the other when q 
is real. 

In analogy2e with ordinary Lie theory, we introduce the operator 

U(a,{3,-y) = E f (a(l- q)At) Eq ({3(1- q)A) Ef ("«1- q)N) , (25) 

which in the realization (23) becomes 

(26) 

We define the matrix elements Ub(a,{3,-y) through 

00 

U(a,{3,-y) z" = L Ub(a,{3,-y) z~ . (27) 
~=O 

[Note that we are using the unnormalized basis: {z" = v'rq(n + 1) In)}.] We shall show 
that the elements Ub(a,{3,-y) can be expressed in terms of the q-Laguerre polynomials 
which are usually presented as follows30 
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In the process, we shall obtain from (27) a generating fuilction for these iJ-orthogonal 
polynomials. Using the identities 

( .+1) (qjq)" 
q j q ,,-. = ( ) , qjq. 

(29) 

(q-k jq)" = (_ I)"q-bq .(.,-1) (qjq). , 
- - (qj q).-" 

(30) 

one easily recast the expression (28) for the q-Laguerre polynomials in the form 

... " .' 

In the limit ~. -+ 1-, Li>')(zj q) tends to the ordinary Laguerre polynomials Li>')(z). 
Clearly, Eq (-y(1 - q)zd/dz) z" = Eq (-y(I- q)n) z". From the definition of Eq and 

with the help of (29), one shows that 

(32) 

One thus obtains 

Eq (0(1 - q)z) Eq (fWn z" 

= 
~ ~ _-:---,(.=,q j;.;:q:.:..)",,:--:--,- M( M -1)t1 (1-1) 1 1 _ +1 L..J L..J ":'" q j a pm (1 - q) z" '" 
1=0 m=O (qj q),,-m (qj q)", (qj q)1 (33) 

Comparing with (31), one thus finds that 

Now, using (30), the q-binomial formula and (9), the right-hand side of Eq.(32) can be 
summed to give28 

(35) 

One therefore also gets 

U( - a,q,O)z" = Eq (- o(l-q)z ) (-~jq) z". 
z " 

(36) 

7 
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Combining (36) and (34), one finally obtains from (27) the following generating function: -

GO . q) L /_-o)(_-lt1) (n-li) li 
E,(-a(l - q)z)(--jq zn= q . 2 Lli (ajq)z . 

z n 
- .4=0 -

(37) 

This is the q-analog of the relationJl ,10 

. . . . 00 . . 

e-CU (z+l)" - L L~n-li)(a)zli, (38) 
..10=0 _ - _ 

. ,~. -~' . 

for ordinary Laguerre polynomials, to which it reduces in the limit q -+ 1-. 

The q-Hermite polynomials Bn(Wj q) are defined b,.,2-14 

-oY"f ' .' , " 
Hn(wjq) = L [~] w

li
, 

10=0 ' 

(39) 

where [~l, is the q-binomial coefficient 

(40) 

n 

('" + y)n = L [~] y' ",n-' , 
'=0 ' 

(41) 

for any two indeterminates", and y satisfying "'y = qy"', we can write" 

H,,(Wj q) = (w + T .. )". 1 . (42) 

These polynomials obey the following orthogonality relation34 

-2
1

, 1 Hm(- :jq) H,,(- :jq) few) dw - q-"(qjq)n Sm,,, , (43) 
11'l li"I=1 vq vq W 

with 00 
few) = L q'>/2w lo , Iwi = 1. (44) 

'=- 00 
Note that few) = {}3 C~i Inq, 2~i Inw) . 

The relation between the q·Hermite polynomials and the oscillator quantum algebra 
is established from the following representation of W,(I) on functions of w. [See also 
Ref.[19].] Take 

I I 
A = - - (1 - y'WTw) 

I-qw 
(45a) 

8 
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In[l- (1- q)AtA] . 
N= . 

. lnq 
(4Sb) 

It is again easily verified that the defining relations (6) are identically satisfied by these 
operators. For instance, it is immediate to see from the above definition of N and using 
AAt - q AtA = 1 that [qN,A] = (1- q)qN A and to conclude that [N,A] = -A. 

Now one checks that 

(46) 

satisfy A ¢o = 0, that is 
¢o(w) = v'W¢o(qw) . (47) 

The basis stat~s ¢,,( w), corresponding to the vectors z" in the first representation are 
obtained by repeated application of At on this ground state. One notes using (47) that 

At ¢o( w) F(w) = ¢o( w) [-y-q( - :.Jg + T .. ) ] F( w) for any arbitrary function F, to find 

with the help of (42) that 

¢,,(w) = (At)" ¢o(w) = (-y'q)" ¢o(w) H,,(- ':;'jq) . (48) 

In this representation of the oscillator quantum algebra, the basis vectors are thus expressed 
in terms of the q-Hermite polynomials. The orthogonality relation that they satisfy is 
inferred from (43). Furthermore, one verifies that A, At and N, as given in (45), act on 
the (unnormalized) basis states ¢,,(w) exactly as their homologues (23) do on vectors z": 

(
1- q") A¢,,(w) = 1- q ¢"-l(W) , At ¢,,(w) = ¢"+l(w) . 

(49) 
It follows that ¢n(w) will transform like z" under the action of U(a,,8,,.): 

Eq (a(l - q)At) Eq (,8(1 - q)A) Eq (,.(1- q)N) ¢,,(w) 
00 

= L UIm(a,,8,,.) ¢,,(w) 
(50) 

~ (_-.)(_-.-1)" (n "l a,8 
= L..,. Eq('"(l- q)n) q , ,8"- L" - (--jq) ¢,,(w). 

"=0 q 

The left-hand side of this equation can be evaluated straightforwardly and after some 
simplifications and the redefinitions Ii = al y-q, P = -,81 y-q, 10 = -wi y-q, the following 
relation between the q-Hermite and the q-Laguerre polynomials is found: 

" 00 . ( 1)" ~ ~ [n] qt[m(m-2n+ll+lo(H1l] - Ii" p-m H (10. q) 
L..,. L..,. m r (k + 1) m+" , m=O "=0 q q 

00 

- ~ 1 "("-2n+1) .0-" L("-"l( - .0. ) H ( -. ) -L..,.q' fJ" afJ,q ,"w,q. 
"=0 

(51) 

9 
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~ [n] ~ . 
10" = .L.J r (-Irq H,,_ .. (1Ojq) , 

. ~-r=O f ".-
(52) 

and (10 +T .. )'1O" = 1O"q'''H,(q-''1Ojq), one arrives at the identity: 

" L [;] (_Irq'I'it) H"H-.. (1Ojq) = 1O"q'" H,(q-"1Ojq) , 
=0 

(53) 

which is of help in deriving the following simpler relation between L~~)(zj q) and H.(zjq). 
Upon setting fJ = -1 and letting Ii -+ _q-(,,+l)li, w -+ q"w in (51), one obtains: 

(53) 

00 

= L (_I)·qW(·-:-+1)-,,(nH+1)! L~"-·)(q-("+1)lij q) H. (q"Wj q) . 
: I I 

.=0 

It should be noted that 
lim H,,(1Oj q) = (10 + I)" . 

9-1-
(54) 

Substituting z for -( w + 1), it easily seen that (53) goes into (38) in the limit q -+ 1-. 
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