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Abstract 

We study para-supersymmetric quantum mechanical models contain­
ing many bosonic and parafermionic variables, The extension to an 
infinite number of degrees of freedom naturally leads to a simple two­
dimensional field theory. 
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1. INTRODUCTION 

In the usual approach to Quantum Mechanics the time-evolution of the observables is 
described by the Heisenberg equations of motion. Using the usual canonical commutation 
relations for the dynamical variables (and the equivalence principle), one can generally 
check that these equations are compatible with the classical equations of motion. However, 
it is well known that the canonical quantization rules, although sufficient, are not necessary 
to ensure this consistency. There is in fact an infinity of quantization procedures for 
which the quantum equations of motion agree with the classical ones. These schemes are 
referred to as para-quantizations,l and the dynamical variables satisfying the corresponding 
generalized quantization rules are said to be parabosonic or parafermionic. 

In the simplest situation of a single bosonic harmonic oscillator, with Hamiltonian 

.~ ." . 
(1.1) 

the quantum equations of motion ci. = -ia, at = iat , imply 

[a, H) = a (1.2) 

[The dot signifies time derivative.) The standard way of realizing these relations is to 
assume that the commutator between a and at is a c-number: 

(1.3) 

Nevertheless, the relations (1.2) are not incompatible with [a, at) being an operator. This is 
in fact the case in all parabosonic quantization schemes; in particular, in the simplest case 
one finds that the operators a and at obey the following trilinear parabosonic "commutation 
relations" : 

(1.4) 

Generalization to the case of many oscillators or to fermionic variables is straightforward.1 

The basic commutation relations of paraquantization, generalizing (1.2), are 

[a;,[a},a.)±) = 26;;all , 

[a;,[a},al)±) = 26;;a1 ±26;lIa}, 

[a;, [a;,a.)±) = 0, 

(1.5a) 

(1.5b) 

(loSe) 

together with the hermitian conjugate relations, with [A, B)- = [A, B) = AB - BA and 
[A, B)+ = {A, B} = AB + BA. The upper signs in (1.5) refer to para-Bose oscillators and 
the lower signs to para-Fermi oscillaton. 

As in the usual case, the Fock space on which the operators a; and a! act is built on 
a vacuum state iO}, 

a;iO} = 0 , i=1,2, .. . , (1.6) 
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by successive applications of the creation operators 41. The' requirement that the number 
operator N; be an hermitian non-negative operator for each mode i, implies 

Cia} 10) = p 5;j 10) , (1."7) 

with p a non-negative integer, called the order of paraquantization. One finds that 

(1.8) 

One can show that for fixed p, the conditions (1.6) and (1.7) imposed on the vacuum .tate · 
uniquely determine, up to unitary equivalences, an irreducible highest weight representa­
tion of the paracommutation relations (1.5). In the usual canonical case p = 1. 

These representations, labelled by p, can be described without reference to the vacuum 
state by giving a 'set of algebraic relations between 4; and al for each order. For p = .1, 
these relations are the usual bilinear commutations and anticommutation relations: 

[a;, aJl'!' = 5;j (1.9) 

When p = 2, the complete set of paraco=utation relations are trilinear in a; and a!; 
explicitly, 

a;aJa" T a"aJa; = 2 5;ja" T 25jioa; , 

a;ajal T alaja; = 25jioa; , 

a,aja_ T a_aja, = 0 , 

(1.10a) 

(1.10b) 

(1.10c) 

plus the ones that are obtained by hermitian conjugation. For higher order p, the para­
co=utation relations become more and more involved. In the following we shall only 
consider para-variables of order p = 2. 

In systems involving both ordinary bosonic and fermionic degrees of freedom, super­
symmetry transformations can arise as dynamical symmetries.2 These transformations mix 
the bosonic and fermionic variables. The corresponding generators are constants of motion 
and form a Lie superalgebra under the standard bilinear graded product. A natural gen­
eralization consists in systems involving dynamical variables both of ordinary Bose type 
and of para-Fermi type. In such situations, we might expect the presence of symmetry 
operations transforming the bosonic variables into the parafermionic ones and vice-versa. 
These operations generalize the familiar supersymmetry transformations and have been 
called parasupersymmetric.' Their generators realize new algebraic structures, referred to 
as parasuperalgebras, of which the ordinary superalgebras are special cases. The main 
feature of the parasuperalgebras lies in the fact that they involve multilinear product rules 
for the fermionic elements; therefore, they are not Lie algebras. 

Many quantum mechanical systems exhibiting parasupersymmetries have been con­
structed and studied.s- v Generalizations along these lines of the superconformal algebra 
have also been discussed.1o However, the models discussed so far have only involved a single 
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parafermionic degree of freedom. Here, we ,hall discuss aimple examples of parasupersym­
metric systems involving many para-Fermi and ordinary BOle variables. In Section 2 we 
consider models which describe the motion of ordinary real bosonic and real parafermionic 
degrees of freedom in a cons-tant extemal magnetic field. The extension to field theory 
is carried out in Section 3 and in Section 4 a model with N complex free bosons and N 
complex free parafermions is analyzed. 

2. REAL VARIABLES 

Let us first discuss to fix the notation, a simple quantum m echanical model free of 
interactions and described by N ordinary bosonic degrees of freedom Zi(t) and N real 
parafermionic variables tPi(t), i = 1, ... ,N. It is the time variable.) Since we are imposing 
tP! = tPi, the parafermionic commutation relations (1.5) reduce to 

(2.1) 

We shall restrict our attention to parafermions of order p = 2. In this case, (2.1) is 
equivalent to the following trilinear relation: 

(2.2) 

which can also be rewritten in a more symmetric way, 

(2.3) 

Furthermore, bosonic and parafermionic variables are taken to commute among themselves: 
IZi, tPj) = O. 

The Lagrangian describing this simple system is given by 

(2.4) 

The equations of motion are simply: Zi = 0, ~i = 0 and the dynamics is trivial. Nev­
ertheless, L possesses symmetry transformations that interchange the bosonic and the 
parafermionic variables. By analogy with the standard supersymmetric case for which the 
parameters of the transformations are Grassmann variables, one is led to take as parame­
ters of parasupersymmetry transformations para-Grassmann numbers Oi, which obey the 
following algebra (specific to order p = 2)1.1 

(2.5) 
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Note that this implies (9i)S = 0, which naturally generalizeS the condition (ei)2 = ·0 for 
the Grassmann numbers ei. For arbitrary order p, one would have (9i)1'+1 = O. The 
numbers 8i are assumed to have non-trivial commutation relations with the variables ,pi: 

(2.64) 

- (2.66) 

Let us now consider the following infinitesimal transformations between the bosonic 
and parafermionic variables, _ . 

i 
5,Zi = -[8, ,pi] 

2 
(2.7) 

The Lagrangian (2.4) changes by a total time derivative under these transformations: 

5,L = A. , A = ~(8, ,pi]Zi • (2.8) 

The transformations (2.7) are thus symmetries of the action. The corresponding conserved 
Noether charge is easily computed: 

Q, = Zi 5,Zi + ~[8,5,,pil- A 

i i 
= 2[9,Pi,pi] = 2[9, Q] , 

(2.9) 

with Pi the momenta of Zi. Using the standard canonical bosonic commutation relations, 
[Zi,P;] = i5i; and the parafermionic relations (2.6), it is easy to check that Q, indeed 
generates (2.7): 

(2.10) 

The infinitesimal transformations (2.7) close onto an algebra that involve trilinear relations; 
using the properties of the para-Grassmann numbers, one finds: 

(2.11) 

and an analogous relation for .pi. To better understand the structure of this algebra, it 
is useful to pass to the Hamiltonian formulation which make no use of the relations (2.6) 
between 8i and ,pi that might seem ad hoc. 

The Hamiltonian coming from the Lagrangian (2.4) is just: H = lp? The para­
Fermi charge corresponding to the generator Q, is obtained from (2.9): Q = Pi.pi . Being 
conserved, Q commutes with the Hamiltonian: 

[H,Q] = O. (2.124) 
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Moreover, using the parafermionic relatioIlB (2.2), Q is also seen to utisfy 

Q' -=2{H,Q} , -: - , (2.12b) 

which is essentially the Hamiltoni&ll rewriting of (2.11). Algebras with defining relations 
like (2.12) have been called (real) parasuperalgebras of order P = 2. Their distinctive 
feature is the occurrence of a trilinear product rule for the fermionic elements. [Parasu­
peralgebras of order P would involve a (p + I)-linear product.1 

A few non-trivial (i.e. interacting) qU&lltum mechanical models with (2.12) as symme­
try algebra have been constructed. Most of them however only involve a single para-Fermi 
variable. The system described by the Lagr&llgi&ll (2.4) contains N parafermionic degrees 
of freedom, but it does not have interactions. In this respect, a simple extension is obtained 
by introducing &Il external const&llt magnetic field. The Lagr&llgi&ll is then given by 

..... . .. 
(2.13) 

with Fij the const&llt field strength corresponding to the vector potential Ai; in a suitable 
gauge one can write Ai = -!Fijzj. The equations of motion are easily obtained and read: 

- F.. z, = ijZ; (2.14) 

The Lagrangian (2.13) changes by a total time derivative under the infinitesimal tr&llsfor­
mations given in (2.7), which are thus also symmetries of this extended system: 

6,L = A, (2.15) 

The corresponding conserved generator is given by 

(2.16) 

where 1ri = Pi - Ai are the bosonic velocities, and [z,,1rjl = i 6,;, [1r,,1rjl = iFij . 
It is again instructive to discuss the algebra of the parafermionic generators Q = 1ritPi 

at the Hamiltonian level. First of all, the charge Q commutes with the Hamiltonian 
H = !'II"i2 + ~Fij[tPi,tPj), so that (2.12a) is satisfied. The trilinear relation (2.12b) however 
is in general modified. Since ['II"i,1rjl is non zero: 

QS = 2{H,Q} + ~R, (2.17) 

where 
(2.18) 

is a new symmetry generator: [H,RI = o. Thus, adding to the free Lagrangian (2.4) a 
simple interaction term has produced a symmetry algebra which is more complicated than 
(2.12). 
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Nevertheless, for the particular case N = 2 one can check using the paracommuta­
tion relations (2.2) tha.t R is zerOj Eq.(2.17) then reduces to (2.12b). Actually, there are 
more symmetries.5 In particular, besides Q = Ql there exists a second conserved para­
supersymmetric charge Q2 = E,Pf,,pi' also obeying (2.12). One ca2l moreover check that: 
Q~Q2 + Q2QiQ2 + Q2Q~ = 2{Q2,H} and Q~Ql + Q2QIQ2 + QIQ~ = 2{Ql,H}. These 
two relations together with (2.12b) ca2l be conveniently combined into: 

Q,({Qi,Q~} - 86i~H) + Qi({Q~,Q,} - 86~,H) 

+Q~({Q"Qi}-86'iH) = O. 
(2.19) 

Introducing the hermitian conjugate operators Q = HQl + iQ2) and Qt = HQl - iQ2), 
(2.19) can be rewritten as 

-~ . 

Q2Qt + QQtQ + QtQ2 = 2{H,Q} , 

Qt2Q + QtQQt + QQt2 = 2{H,Qt } , 

Q' = Qt' = 0, 

[H,Q] = [H,Qt ] = 0, 

(2.20a) 

(2.20b) 

(2.20c) 

(2.20d) 

which is the form in which the complex parasupersymmetry algebra was first presented.' 
Although R is surely non zero as an operator for N > 2, this does not exclude the 

possibility that it could well vanish in a given parafermionic Fock space. We explained in 
the Introduction how the representation of the para-commutation relations (2.1) is char­
acterized by the choice of the vacuum state. Since we are dealing with p = 2 parafermions, 
it is natural to require (compare with (1.7»: 

1/>,1/>i 10) = 2 6'i 10) . (2.21) 

The fermion Fock space built on 10) is (N + 1 )-dimensional, and its basis {IO), Ii)} is defined 
by 

,pi 10) = -iV2li) 

1/>ilk) = iV26i.10) . 
(2.22) 

In this space, the 1/>,'s are represented by (N + 1) x (N + 1) matrices, explicitly given by: 

Il," = 0, ... ,N, k = 1, ... ,N . (2.23) 

One can easily check that the parafermionic relations (2.2) are indeed satisfied by the 
matrices (2.23). These matrices have an additional property: 

for i #i#k. (2.24) 
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This guarantees that the charge R is &era in this representation. There is a mce interpre­
tation of (2.23) in terms of group representations. It is well known that one can construd 
explicit realizations of the classical Lie algebras and 8uperalgebras using linear. and bi­
linears in ordinary Bose and Fermi oscillators. Xhis properly extends to para-Bose and 
para-Fermi oscillators.l,ll In particular, with the N para-Fermi operators tPi one can ob­
tain realizations of the algebra of SO(N + 1). In fad,using (2.1) one can easily .check 
that 

are generators of SO(N + 1): 

" [j';", J,..,] = i (6,.,. J .. " + 6~" J,." - 6,... J"" - 6"" J,...) • 

(2.25a) 

(2.25b) 

(2.26) 

The matrix realization given in (2.23) precisely corresponds to the fundamental represen­
tation of this algebra. 

3. FIELD THEORY 

The simple quantum mechanical models discussed in the previous Section can be easily 
extended to continuum systems describing an infinite number of bosonic and parafermionic 
degrees of freedom.12 We shall concentrate our attention to the field theory analog of the 
Lagrangian (2.13) in two space-time dimensions. The system involves a bosonic field X(t, z) 
and a parafermionic field ,p( t, z) satisfying the self-dual equations of motion: 

x = X' tb = tP' • (3.1) 

[The dot means time differentiation, while the prime represents differentiation with respect 
to the space variable z.] The theory is governed by the Lagrangian: 

L = ~ f dz dy X(t ,z) sign(z - 31) X(t,y) - ~ f dz X2 (t, z) 

+ i J dz [,p(t,z), (tb(t,z) - ,p'(t,z»] , 
(3.2) 

from which (3.1) arise as Euler-Lagrange equations. The extension of the paraco=utation 
relations to field variables is straigthforwardj instead of (2.1) and (2.2) one respectively 
has (at fixed time): 

[[,p(z ), ,p(y)] , ,p(z)] = 25(31 - z),p(z) - 25(z - z),p(y) , (3.3) 
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-1/>(z)1/>(y)1/>(z) +1/>(z)1/>(y)1/>(z) = 25(z -~)1/>(z)+25(y - z)1/>(z). ' . (3.4) 

On the other hand, standard quantization of the bosonic part of the Lagrangian (3.2) 
produces the commutator:lI , . 

Ix(z),x(y)] = i5'(z - 3/) • (3.5) 

The field x( z) is thus the continuum analog of the variable Wi of the previous Section and 
the distribution 5'(z - y) appearing in (3.5) can be interpreted as a functional constant 
U(l) field strength: .1"(z,y) = 5'(z -y). Furthermore, as before bOlonic and parafermionic 
fields are taken to commute: lx, 1/>] = O. 

It is easy to check that the following infinitesimal transformationS, 

5,1/>(z) = -OX(z) • (3.6) 
.. ,:~ . .;. 

are symmetries of the Lagrangian (3.2). The corresponding conserved charge Q, = 
i J dz [8,1/>(z)]X(z) generates (3.6). As in the finite-dimensional case, it is convenient 
to deal with the Hamiltonian H = i J dzX2(z) + i J dzdy.1"(z,y)[1/>(z),1/>(y)] and the 
parafermionic charge Q = J dz X( z )1/>( z). The generator Q commutes with H and more-
over: 

1 
Q' = 2{H,Q} + 2R. (3.7) 

where 

R = J dz dy X(z) [1/>'(y)1/>(y)1/>(z) + 1/>(Y)1/>(z )1/>' (y) + 1/>(z )1/>'(y)1/>(y)] • (3.8) 

Clearly, R must also be conserved and in fact, [H,R] = o. Note that the Hamiltonian and 
the symmetry operators Q and R are not well defined since they involve multiplications of 
fields at the same point. An infinite subtraction is sufficient to well define them. One can 
check that the algebra (3.7) remains unaltered when renormalized operators are used. 

Since in general the charge R is non zero, the symmetry algebra of the system is 
complicated. A choice of the vacuum state analogous to (2.21) would reduce it to (2.12) 
since in the corresponding Fock space R is represented by the null operator. However, 
this choice makes the theory rather trivial, at least for what concerns the parafermionic 
spectrum. This is more easily seen by going to momentum space and writing 1/>(z) = 
J dke-ih b(k), with bt(k) = b(-k). In terms of the Fourier components b(k) the relations 
(3.3) and (3.4) become: 

[[b(p),b(k)],b(q)] = 25(k + q)b(p) - 25(p + q)b(k) , (3.9) 

b(p)b(k)b(q) + b(q)b(k)b(p) = 25(p + k)b(q) + 25(k + q)b(p) • (3.10) 

The vacuum state for which R = 0 satisfies: 

b(p)b(k)IO} = 25(p+k)10}, (3.11) 
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the analog of (2.~1). However, this implies that the Hilbert wpace of the .ystem contains 
only single-particle parafermionic .tates. 

It is interesting to note that the Lagrangian (3.2) actually POBlesSes many more arm­
metries besides the transformationa (3.6). It is in fact invariant ~der local conformal 
transformationa, given by:H 

(3.12) 

where f( t + z) is an arbitrary function of its argument. The co~ponding generat~r' is ' 
given by: 

(3.13) 

Moreover, (3.2) is alao invariant under the local vemon of the trandormationa (3.6), when 
the parameter. ~ is made to depend arbitrarily on the variable t + z. The corresponding 
conserved generator is again given by Q, = f[8, "]x. Together, these local infinitesimal 
transformations would seem to provide a parasuperconformal generalization of the super­
conformal transformations. A model for a parasupersymmetric extension of the infinite 
conformal algebra in two dimensions was provided in Ref.[10]. The algebra that Q/ and 
Q. realize is however more involved. 

4. COMPLEX VARIABLES 

We have so far examined the parasupersymmetries of simple models involving real 
bosonic and parafermionic degrees of freedom. We shall now study in this respect, another 
system which is naturally described in terms of complex variables. Our quantum mechani­
cal model involves N ordinary bosonic oscillators and N parafermionic oscillators of order 
p = 2. 

. The Bose annihilation and creation operators ai and a!, i = 1, .•• , N, obey the canOD­
ical commutation relations 

[ai, a}] = 6ii [ai,ai] = [aI, a}] = 0, 

while the Fermi operators "i and "I, i = 1, ... ,N, satisfy 

"i,,1". + "1o,,1"i = 26ii ". + 26i. "i 
"i"i"! + "!"i"i = 26i. "i "i"i". + "."i"i = 0 • 

(4.1) 

(4.2) 

We further assume that the bosonic and parafermionic variables commute among them­
selves: [a;, ,,;] = [a!, "i] = O. The Hamiltonian describing the system is simply 

1 1 
H = 2"{al,ai} + 2"["]''';] . (4.3) 
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The parafermionic charges 

(4.4) 

are conserved: [H,Q] = [H,Qt] = O. They mix bosonic and parafermionic variables and 
therefore generate parasupersymmetry transformations. In one dimension (N = 1), Q and 
Qt, together with H, realize the relations (2.20). In general, for N > 1, the situation is 
more complicated. In addition to 

Q' = 0 (4.5) 

one also gets, 

Q2 Qt + QQtQ + Qt Q2 = 2{H,Q} +2(N -l)R, (4.6b) 

_~. Q(Qt? + QtQQt + (Qt?Q = 2{H,Qt } + 2(N -l)Rt , (4.6b) 

with R = a1 lit i and lit i the following trilinear in the ,p's: 

(4.7) 

The operator R commutes with the Hamiltonian and a new symmetry generator is thus 
obtained. 

In order to understand better the role of the charge R, let us set N = 2, and construct 
the explicit representation of the parafermionic algebra (4.2) in the Fock space built on 
the vacuum state 10}, specified by (see (1.6) and (1.7)) 

,piIO) = 0 ,pi ,pJIO} = 26ii 10} . (4.8) 

The fermionic Fock space is 10-dimensional and in addition to 10} the normalized basis 
states are: 

II} = ~,plI0} 

14} = ~(,pJ)2 10) 

17} = 2~,pJ(,pI)210} 

12} = ~,p~ 10} 

15} = ,pJ,pI 10) 

18) = 2~,pI(,p~)210} 

13} = ~(,pl)210) 
16} = ,pl,p~ 10) 

19) = !(,p~)2(,pl)210) • 
4 

(4.9) 
The operators ,pi and ,pI are now represented by 10 x 10 matrices and one can straight­
forwardly evaluate the combinations lIti. Using this explicit realization, one then discovers 
that lIti and lit! satisfies the parafermionic commutation relations (4.2); in other words, 
the lit's form a second inequivalent realization of (4.2). 

One can now determine the algebra satisfied by the charge R. Since the lit's obey 
(4.2), the computation goes as it went for Q, and explicitly one gets, 

(4.10) 
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R2Rt+RRtR+RtR2=2{H,R}+2(N-l)S · __ ... . 

R(Rt)2 + RtRRt + (Rt)2 R = 2{H,Rt} +2(N -l)St . 
.' . (4.11a) 

(4.11b) 

The additional generator S is again of the form S = a! IF;, ·where IF; are the trilinears in 
the W's that are obtained upon effecting W; -+ IF; and t/J; -+ W; in (4.7). Remarkably, the 
charge S is something that we already know. In fact, using the matrix representation, one 
discovers that . 

(4.12) 

in other words, S = Q. For N = 2, Q, R and H therefore constitute a closed set of 
generators. 

Unfortunately, this picture works only for N = 2. Consider the operators W; given in 
(4.7), with N arbitrary. On the standard vacuum defined in (4.8), one easily sees that: 

.)". ' . :-
W;/O) = 0 (4.13) 

However, one also finds that, typically 

(4.14) 

(W!WJWl: + Wl:wJw!) 10) = (N : 1)2 [(1 + (N - 2)2) Sjl: W! + 2(N - 2)S;1: wJ] 10) . 

( 4.15) 
The right-hand side of this formula is equal to 2 Sjl: W! only when N = 2 and the W's do 
not therefore satisfy (4.2) in general. It follows that as N increases the set of generators 
of the invanance parasuperalgebra gets enlarged by more and more elements. 
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