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Abstract 

A new quantum group and the calculus on quantum hyperplane is described, 
which are associated to R-matrix describing the braiding of certain chiral Toda fields. 
The classical limit of these structures relates to Poisson brackets of certain chiral 
WZW fields. 

* To appear in the proceedings of the IX Convegno Nazionale di Relativita Gen
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The Yang-Baxter equation and the related algebraic structures [1-4] play an 
important role in two-dimensional 'integrable physics'. Of particular interest is the 
appearence of quantum groups in conformal field theory [5-9]. In this short talk, 
building on the results of papers [10,15]' I am going to describe a new quantum 
group and the calculus on quantum hyperplane, which are associated to R-matrix 
describing the braiding of chiral Toda and WZW fields. 

At the classical level, the Poisson brackets of certain Sl(n) fields n(O have been 
recasted [10] in the r-matrix form 

where 

n-2 

r = -2 L L eij /\ elkOj-i.l-ke(i - k) + L hi' /\ h~+l (2) 
i<j k<1 J.I.=l 

Here IJ is the usual step function (IJ(O) = ~), hi' are the standard Cartan generators 
of sl(n), and C = AU lSi Aa is the 'Casimir-operator'. 

The fields n(O are characterized by the following properties: 1) factorization of 
the (periodic) WZW solution g(T,O') = gdT +0'). gn(T - 0'),2) left-moving chirality 
- ,~g~(O = [(Og£{O, where [(0 is the Kac-Moody current with level k, 3) 'primary' 
character {[~,g£{O} = -exp(inOAagd~), 4) monodromy described by saying that 
the columns are obtained from the first one by means of successive translations by 271'. 
Such fields have been constructed in [10] as gL = P N, where P is the path ordered 
exponent of the integral of [ (0 and N is a Sl(n) matrix, which depends on the zero 
modes of g( T, 0') and on the monodromy eigenvalues of P (g£{O do not depend on 
various choices such as the start and end points of the path ordered integraL etc.) 

For other results on the 'classical exchange algebra ' see [ll]. 
There is a reduction procedure [12] by which the Sl(n) chiral, say left moving, 

Toda fields can be identified as the last row of of gL. Since the exchange algebra 
(1) amounts to matrix multiplication from the right, mixing the columns of g£{O, 
the chiral Toda fields indeed satisfy the same exchange algebra as WZW fields . For 
similar reason (1) also yields the exchange algebra for the gauge invariant fields 
of the generalized Toda theories recently discovered by 0 'Raifeartaigh and Wi pf 
(13]. One interest ing feature of all these models is that the conformal im'ariance 
can be extended to general covariance and that one field can be interpreted as two
dimensional graviton, to which the other fields are minimally coupled. 

The analogical quantum reduction is not yet fully understood, but it can be 
supported by the fact that (1) is the classical limit of braiding of certain quantum 
chiral Toda fields constructed in [14] 

" 
'IMO,pdn = L Rjklm,pI(e),pm(O , ~ > e, (3) 

I ,nl == l 

3 



where 

n 

R = q L e;; 181 e;; + q L q-2(;-j) /n e;; 181 ejj + q-l L l(i-;) /n e ;; 181 ejj 

i i > j i<j 

i-j-l j-i-l 

+ (q - q-l) (L L q- 2k / n e;,j+ k 181 ej,;-k - L L q2k/n e ;,j_k 181 ej ,;+k) 

i > j k=u i<j k=l 

(4) 
The R-matrix (4) is an (invertible) solution of the quantum Yang-Baxter equation 

(5) 

To any such a solution one can associate a bi-algebra and its (formal) dual by a 
universal 'Leningrad' method [3]. This method, applied to the standard SI(n) R
matrix 

i::;!j i>j 

reproduces the Drinfeld-Jimbo quantum deformation SL(n)q, whose dual is the quan
tized universal enveloping algebra Uq(sl(n)) of SI(n) . The study of the quantum 
group defined by (4) was initiated in 114] where it was pointed out that (6) and (4) 
are related by a similarity transformation in en 181 en. However, except the lowest 
dimensional case n=2, this transformation is not of the factorized form, and there
fore the quantum groups defined Ly (6) and (4) need not be isomorphic. In the 

simplest nontrivial case n=3, the Hopf algebra associated to (4), denoted SL q (3), 
and its (formal) dual Uq(sl(3)), were described in [15]. It was shown, that though 

there is a multiplicative isomorphism between Uq (sl(3)) and Uq(sl(3)), the complete 
Hopf algebra structures are qualitatively different, for instance the new coproduct is 
not cocommutative on the Cartan subalgebra. 

Another difference can be seen is the classical limit. Due to the antisymmetry 
and Jacobi identity for (1) the matrix (2) is a skew symmetric solution of the modified 
classical Yang-Baxter equation. It can be located [15] in the space of sl(n) solutions 
classified by Belavin and Drinfeld as far opposite to the standard Drinfeld-Jimbo 
r-matrix 

rDJ = - L eij 1\ eji . 

i<j 

It equips SI(n) with a new Poisson-Lie group structure. 

(7) 

Now, restricting to n =3 , I will describe the Hopf algebra SL q (3) in more detail. 
It is generated by the unit and nine generators, arranged in a matrix T = iij; I,J = 
1,2,3. The coproduct and the counit are universally given by 

(8) 

The relations (commutation rules) can be written in the matrix form as 

R (T 181 1)(I 181 T) = (I 181 T)(T 181 1) R . (9) 
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The appropriate deformation of the classical determinant turns out to be 

detqT = tllt22t33 - €2tllt23t32 - €2tI2t2It33 + €6tI2t23t3! + €6tI3t2It32 - €BtI3 t 22t3! , 

(10) 
which can be compared with the standard one 

Here and below we use the notation € = g1 / 3. Like det q , det q belongs to the 
center and has the multiplicative property 

(12) 

for any two matrices T and T' containing two commuting copies of generators. One 

additional constraint det q(T) = 1, consistent with (9), allows one to compute the 
antipode S (q-deformation of the inverse) from the equation S(Tij) . Tjk = Ojk, as 

-€-2t ,2 t 33 + tl3 t 32 

til t33 - €"t I3 t 31 

-,"til i32 + ,6i12 i 31 

€-6tI2t23 - €-" t I3 t 22 ) 

-C"tll t 23 + tl3 t 21 . 

tllt22 - €2t12t21 

(13) 

It would be interesting to know if the two quantum groups Sl'I(3) and SLq(3) 
are equivalent in some larger framework, ego the quasi-Hopf algebras, or if they are 
physically equivalent. In fact they have one importrant common property: both (4) 
and (6) satisfy the Hecke condition 

(14) 

There are few consequences of this property. First the branching of the mul
tiple tensor products of the defining representation is expected to be very similar 
for Uq(sl(n)) and for Uq(sl(n)) because of the duality relation with the Hecke alge
bra. Next, just as the standard R-matrix (6), (4) can be 'Yang-Baxterized', ie. a 
spectral parameter can be introduced. Finally, note that (forgetting the coordinate 
dependence) the relations (1) can be viewed as describing (n copies of) 'Poisson
hyperplane', which is a classical version of a 'quantum plane' (cL [3]) defined by 
the relations (3). It is possi ble to introduce the q-calculus [161 on this new quantum 
plane in the spirit of [17], which is generated by the coordinates xi, one-forms dxi 
(dxidxi = 0), and vectors ai. The exterior derivative, d = dxiai, satisfies d 2 = O. 
The commutation rules read 

X 1 ::c 2 = E-lX 2 :z:: 1 , X 1 X 3 = f.2 X 3 X 1 + (€-l _ (-2)x 2 x 2 , x 2 x 3 = (-lx 3 x 2 , (15) 
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Moreover, there are also nontrivial relations between tensors of different type 

x1dxl = ,6dxlXI, x l dx 2 = ,' dX2x l + (,6 -1 )dx l x2, 

x 1dx 3 = ,2dx3XI + (,6 - 1)dxlx3 + (,' _ ,-2)dx2x2, 

x 2dx l = ,2dx1x 2, x 2dx 2 = ,6dx2x2, 

x3dx 1 = , 'dX l x 3 +(,8 _ ,2)dx3xl, x3dx2 = ,2dx2x3, 

8 2 2 28 lX =€X 1 , 

8 3 4 38 IX =EX 1, 82x l = "x182 + (,' - , - 2)x283, 

82x 2 = 1 + ,6 X282 + (,6 - 1) x383, 

8 I 2 18 3X =€X 3, 

(18) 

(19) 

82dx 3 = ,-'dx382 - (,2 - ,-')dx 281, 83dxl = ,-' dx I83, 

83dx 2 = ,-2dx283, 83dx 3 = ,-6 dx 383 - (1 - ,-O)dx I 81 - (1 - , -O )dx282. 
(20) 

For comparison, the calculus on the standard 3-plane is: 

X 1 X 2 = qx 2 x 1 , x 1x 3 = qx 3 x 1
, x 2 x3 = qx 3 x2

, (21) 

dx l dx 2 = -q- Idx 2dx 1, dx 1dx 3 = - q- Idx 3dx l , dx 2dx 3 = - q- Idx 3dx 2, (22) 

8182 = q- 1 82 81 , 8183 = q- 18381, 82 83 = q- 183 82 • (23) 

The relations between different tensors read 

xl dxl = q2dx l x l , x l dx 2 = qdx 2x 1 + (q2 -1)dxlx2 , 

x l dx 3 = qdx 3x 1 + (q2 _ l)dx lx3, 

x2dx 1 = qdxlX\ x2dx 2 = q2dx 2x2, x 2dx 3 = q2dx 3x 2 + (q2 _ 1)dx 2x 3, 

x 3dx 1 = qdx l x 3, x 3dx 2 = qdx2X3, ' x 3dx 3 = q2dx 3X3
j 

81xl = 1 + lx181 + (q2 - 1)x282 -. (q2 - 1)x383, 81X2 = qx 281, 

81 x 3 = qx 381, 82 xl = qx 182, 

82x 2 = 1 + lx282 -'- (q2 -1 )x383, 82x 3 = qx382, 

83 xl = qx 183, 83x2 = qx 283, 83X 3 = 1 + q2x 383 j 

81 dx l = q- 2dx 181, 81dx 2 = q- 1dx 281, 81dx 3 = q- 1dx 381, 

82dx l = q- I dx I82, 82dx 2 = q- 2dx 282 - (1 - q-2 )dxI81, 

82dx 3 = q- Idx 382, 83dxl = q- 1dx I 83, 83dx 2 = q- 1dx 283, 

83dx 3 = q- 2dx 383 - (1 - q-2)dx 181 - (1 - q- 2)dx 282. 
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(25 ) 

(26) 



It can be checked that it is precisely the Hecke condition (14) together with the 
Yang-Baxter equation (5), which guarantee I,he consistency of these calculi, Denote 
by pol(xi) a generic polynomial in xi. Then, ai applied to both sides of (15,21), and 
(the a-linear part of) pol(xi) times (17, 23) require the condition (14), while (15, 21) 
times pol(xi), ai applied to (18, 24) and the (a-nonlinear part of) pol(xi) times (17, 
23) require the equation (5) for consistency 

The extension of these algebraic structures to n > 3, the quantization of all 
other Belavin-Drinfeld classical r-matrices, and the study of their physical relevance 
is currently under investigation. 
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