
ISTITUTO NAZIONALE DI FISICA NUCLEARE 

Sezione eli Trieste 

INFN/ AE-90/11 

3 ottobre 1990 

O. Cantatore, P. Micossi , C. Rizzo, O. Ruoso and E. Zavattini 

PROPAGATION OF A POLARIZED LASER BEAM IN A 

STATIC TRANSVERSE PSEUDOSCALAR FIELD 

Ser vizlo Doc um enl azio ne 
dei Laboratori Nazionali di Frascati 



PROPAGATION OF A POLARIZED LASER BEAM IN A 

STATIC TRANSVERSE PSEUDOSCALAR FIELD 

G. Canratore 

Department of Physics and Astronomy, University of Rochester, Rochester, N.Y. 14627 
and 

lNFN, Sezione Trieste, Via Valerio 2, 34127 Trieste, Italy 

P. Micossi, G. Ruoso and E. Zavattini 

Dipartimento eli Fisica, Universita' di Trieste, 
and 

INFN, Sezione Trieste, Via Valerio 2, 34127 Trieste, Italy 

C. Rizzo 

lNFN, Sezione Trieste, Via Valerio 2, 34127 Trieste, Italy 

1. INTRODUCTION 

We will investigate in this report the situation arising when a linearly polarized laser 
-+ 

light beam traverses a region where an almost static pseudoscalar field Ea is present. This 

field is defined by 
-+ 
Ea=grad<Pa, (I) 

where <Pa is the pseudo scalar potential; one possible origin of such a potential will be 

discussed below. The interaction Lagrangian between the pseudoscalar potential and the 

electromagnetic field is expressed by the term *) 

(2) 

*) Throughout this report we will use normalized Heaviside units . 



-> -> 
where E and B are the electric and magnetic field vectors of the light wave and M is a 

parameter (I/M=gayy) which characterizes the strength of the photon-photon-pseudoscalar 

field coupling. We will restrict ourselves to the case of a light beam propagating for a 
-> 

distance 1 in a static transverse pseudoscalar field E., and determine the changes that 

will occur, due to the interaction term (2), in the light polarization state and in the light 

propagation vector. 

The potential <1>. in equation (I) can be interpreted as being due to the existence of 

light pseudoscalar particles such as the axion [1,2,3), the arion [4,5J or the maioron [6]. 

Present limits for the mass m. of these hypothetical particles range around m.:<;10·3 eV. 

Physical effects due to the real presence of a pseudoscalar field could in practice 

arise in experimental apparati realized to detect small changes in the polarization state of a 

light beam in presence of a strong static magnetic field Bo caused by vacuum fluctuation 

phenomena in Q.E.D. [7,8J or by an interaction term of the type shown in equation (2) [9]. 

In these experiments a strong transverse magnetic field, throught which the light beam is 

sent, is generally provided by a coil surrounded by a soft iron yoke for the purpose of field 

containment. A magnetization is therefore induced in the soft iron, and the oriented 

electron spins could be, according to ref. (10), a source for the pseudoscalar field. In the 

following we will assume the mass rna of the pseudoscalar field sufficiently small and 
-> 

apply the formalism of ref. [10] to have a real quantitative example of the field Ea 

generated in the mentioned experimental set-up. 

2. DEDUCTION OF THE RELEVANT EXPRESSIONS 

-> 
An arion type field Ea, if it exists can have as source charged fermions. In particular 

the interaction of the arion potential <1>a with electrons is given by (in the non relativistic 

limit) [1 OJ : 

(3) 

where 'I' is the two component electron wave function and 'JTl. is a parameter (1/'JTl. =gaee) 

characterizing the arion-electron-electron coupling constant. 

... -From the Lagrangian in eq.(3) considering a distribution S (r) of spins due to 

polarized electrons, the pseudoscalar potential <1>a induced by the spin density 

given by [IOJ : 

2 

..... 
'1'* <J\jI is 



f 
-+s (-->') (--> -->') --> 1 ror-r '3 

<I>a(r) = -- 1--> -->, 13 dr 
41t'JTl. r-r 

(4) 

-+--> 
Before deriving an approximate expression for S (r), we will calculate, using 

---+ 
Maxwell's equations, the effect of such a field Ea on light polarization state 

From eq.(2) we have 

In absence of charges and currents Maxwell's equations now become 

-+ 
divB = 0 

-+ 
divD = 0 

-+ dB 
rotE = - at 

-+ aD 
rotH = + at 

from which 

Assuming a plane wave solution for the electric field in eq.(6) we find 

whence 

Thus eq (8b) becomes 

-+ ---+ 
~ ~ ~ B.Ea divE =- ikoE =-~ 

~ -+-+ 1-+-+ -+ 
rot B= -ik x B = M EaxE + iwE 

-+ 1 -+---+ 
B= -( k xE) 

w 
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(5a) 

(5b) 

(6a) 

(6b) 

(6c) 

(6d) 

(7) 

(8a) 

(8b) 

(9) 



or 

-> 
--+ k --+ -+ 1 -+ ---+ --+ 

rot B=- i- x (kxE) = M Ea x E + iroE 
ro 

-> 
k -> -> k2-> 1 -> -> -> 

-i- (koE)+i-E=M Ea x E+iroE 
ro ro 

taking the scalar product with Ii of both sides eq.(1l) yields 

from which using eq.(8a) we can write 

The refractive index n, assuming (n-l) « 1, can be evaluated from 

where ko is the wave number in vacuum. 

Using eq.(14) in eq.(13) we obtain 

Let li\be the unit vector along the direction of B, then eq(l5) can be expressed as 

(n-I) = - H~~·~aJ 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

From eq.(l6) we can see that n will be different for light beams with the polarization 
-> -> 

vector E parallel or orthogonal to Ea. The region of space where the arion field is present 

will therefore behave as a birefringent medium. 
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Furthermore a light beam travelling in a medium is deflected if the refractive index 

varies as a function of coordinates [II). Following ref. I 1 in the geometrical optics 

approximation we can write the fields of the light wave in a general form 

~ ---+ -+ a .. .... c(-+ --+ --+ -+ ;tr ..... S(--> 
E= e(r)e""'" r l, H= h(r)e"'V r l, 

where Ser) is a real scalar function of position, and e (r) and Ii' (r) are vector function 

of position which may in general be complex. The function S is often called the eikonal. 

The surface S = constant is usually called geometrical wavefront. 

The behaviour of the light rays defined as the orthogonal trajectories to the 

geometrical wavefront is governed by eq.(17) (11) 

d --> dr --> fs( 
--» 

ds n(r) ds = grad n(r) (17) 

where r is a position vector of a typical point on a ray and s the length of the ray 

measured from a fixed point on it. 

If the refractive index is constant equation (17) can be solved to give the parametric 

equation of a straight line. If Igrad nl « I equation (17) becomes 

de = dl I grad nCr) I 
n 

where 1 is the length of the light path in the medium and e is the deflection angle. 

In our particular case eq.(l8) yields 

where we have used eq.(16). 

At the first order in (n-I) eq.(19) can be approximated by 
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(18) 

(19) 

(20) 



This last eq. shows that a light beam traversing a region of space where a non 

uniform arion field is present will be deflected by an angle which depend both on the arion 

field and on the light polarization state. 

3. APPLICATION 

We will now apply the above results to the special case of a long dipole magnet and 

calculate an expression for <1> •• For the sake of simplicity the yoke of the magnet is 
~ 

assumed to be a soft iron cylinder. Near the magnet axis the magnetic field Band 
~ 

according to eq.(4) an arion field Ea are present; both generated by the magnetization 

density due to the oriented electrons ( fig . l).in the iron yoke. As we have already said in 
~ 

the introduction we are interested only in the effect of Ea. 

y 

x 

Fig. 1 - Schematic drawing of the magnet iron yoke with the coordinate axis. 

(Lenght of the magnet = d). 
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To evaluated <p. we assume that S = I s I is constant over the region of interest and 

thatSyCx<O) = SloO) ,S,(x<O) = -Six>O) and Sz= O. This is a good approssimation of 

the spin density distribution when the magnetic field is intense enough to saturate the 

magnetization. As shown in appendix (A) in the neighbourhood of (x,y) = (0, 0) the arion 

potential can be written as 

__ S [ a (1.- ~} 2J <p.(x,y) - 7t'Jll. 2yLo~ + a2 - b2 x (21) 

Saturated soft iron has 2 oriented electrons per atom [12]. Thus we have 

(22) 

where p is the iron density, W its atomic weight and No is Avogadro's number. From 

eq.(22) we can estimate S ~ 1.5.1023 spin/cm3 Assuming that a = 5 cm and b = 20 cm (fig 

1), we can finally write from eq.(l) and (21). 

(_ G.i) 0.1 
fax -"'J;;3 = 'JIl. (GeV)Yx (23a) 

E ( - r;g)= - 7.4 (1 - 0.01 x2) 
ay -"'J;;3 'JIl.(GeV) (23b) 

We can now apply eq.(l6) to obtain the value of (n - I) in the two cases of light polarized 
-+ 

along x axis or along y axis. At the first order in the coordinates we have for E along y: 

n-l = 0 (24a) 
-+ 

for E along x: 

(n-I ) _ _ 1_( 7.4 )2 
- 2~ M(GeV)'JIl.(GeV) 

(24b) 

and, taking ko ~ lOS cm- i , 

-+ 
for E along y: n-I = 0 (25a) 
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-+ 
for E along x: 

I 2 
(n- 1) = 3.0 10-20 ( ) 

M(GeY)'J11.(GeV) 
(25b) 

A light beam linearly polarized at 450 with respect to the x axis after travelling a distance 

1 in the arion field will acquire an ellipticity given by 

(26) 

where L\n is the difference between the refractive index along x and y axis, 1 is the length 

of the optical path and A is the light wavelength. Taking 1 =106 cm and A = 6.3 10-5 cm 

we have 

'l' = 1.5 10-9 ( I )2 
M(GeV)'J11.(GeV) 

(27) 

-+ 
Considering now finally the effect of the non uniformity of the arion field E. we can 

use eq.(20) to evaluate the angle by which the light beam will be deflected after traversing 

a distance dl in the field region. Let us assume that the beam enters this region at y = O. 

From eq.(23 a,b) we see that in this case the arion field is directed along y axis and 

depends on x. Eq.(20) then yield 

I 2 
dq= - 2.1 1O-24 x dl ( ) 

M(GeV)'J11.(GeV) 
(28) 

CONCLUSIONS 

We have shown that any present laboratory experiment devoted to the prcxluction of 

pseudoscalars by the interaction of light with a strong magnetic field [13] will not be 

pratically affected by the interaction of light with the pseudoscalar field prcxluced by the 

spin density in the magnet yoke. Infact if we consider the tcxlay accepted laboratory limits 

[13] (M(GeV), 'J11. (GeV) > 106) the effects are many order of magnitude below the 

sensitivity. Actually the effects are so small that it seems very unlikely that they will be in 

the sensitivity range of any future proposed experiment. 
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APPENDIX A 

We have already pointed out that in the static limit, the arion potential <l>a( 1) induced by 
-> 

the spin density '1'* cr'l' can be written 

f
->~ ~~ 

~ 1 S(r').(r-r') 
<l>a(r)=-- I~ ~'13 dr'3 

4lt'J11. r-r 
(4) 

In figure 1 we show the reference coordinate system. Let 's take S constant over the region 

of interest with Six<O) = S ix>O) , S .(x<O) = -S .(x>O) and S z = O. Therefore we define 

in the region (x> 0) Sx = S sinS, Sy = -S cosS, Sz = 0 and in the region (x < 0) Sx = -S 
~ 

sinS, Sy = -S cosS, Sz = 0 where S is the angle between the position vector r' and the x 

axis. Eq.(4) becomes 

'" (~ S senS(x-r'cosS)-cosS(y-r'senS) , dr' dO , 
'Va r ) = -- r " dz + {[f

tt/2[ fd(2. J 
4lt'J11. -tt(2 a -d(2. (~ (x-r'cosS)2 + (y-r'senS)2 + (z_z')2 )3 

(A.I ) 

- senS(x-r'cosS)-cosS(y-r'senS) r' dr' dS dz' 
[f

3tt
(2[ fd(2. ] 

1t(2 a -d/2 (~ (x-r'cosS)2 + (y-r'senS)2 + (z-z')2 )3 

Integrating over z' with d- >oo we obtain a simpler formula that using the properties of the 

trigonometric functions becomes 

<l>a = _S _ (xSinS - yCosS) r' dr' dS [f
tt
(2[ ] 

2lt'J11. -1t(2 a (x - r' CosSP + (y - r' SinS)2 
(A .2) 
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Eq. (A2) yields 

<1>. = 41t
Sm [- 2x ArcTan(a/)+ 2x ArcTanr/)+ 2x ArcTan(a?} 2x ArCTan(b?) + 

(A.3) 

Eq.(21) derives from eq.(A3) by a standard power series expansion about origin. 
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