
\

ISTITUTO NAZIONALE DI FISICA NUCLEARE

Sezione di Trieste

INFNI AE-90/10

17 Settembre 1990

P. Battaiotto, A. Colavita, F. Fratnik and L. Lanceri

A FASTBUS MODULE FOR TRIGGER APPLICATIONS

BASED ON A DIGITAL SIGNAL PROCESSOR

AND ON PROGRAMMABLE GATE ARRAYS

S~ rvizio Oocument:lzione
dei Labor:uori r-.;.uionali oi Frascati

A FASTBUS MODULE FOR TRIGGER APPLICATIONS
BASED ON A DIGITAL SIGNAL PROCESSOR
AND ON PROGRAMMABLE GATE ARRAYS

P.Battaiotto
INFN-ICTP Microprocessor Laboratory, Triestejtaly

Universidad Nacional de La Plata, Argentina

A. Colavita
INFN-ICTP Microprocessor Laboratory, Triestejtaly

F. Fratnik
INFN-ICTP Microprocessor Laboratory, Triestejtaly

INFN, Sezione di Trieste, Trieste, Italy

L. Lanceri
INFN-JCTP Microprocessor Laboratory, Triestejtaly

Istituto di Fisica, Universitii di Udine, Udine, Italy

ABSTRACT

The new generation of DSP microprocessors based on RISC and Harvard-like

architectures can conveniently take the place of specially built processors in fast trigger

circuits for High Energy Physics e>:periments. Presently available Programmable Gate

Arrays are well matched to them in speed and contribute to simplify the design of trigger

circuits.

Using these components, we designed and constructed a Fastbus module. We

describe an application for the total energy trigger of DELPHI, perfonning the read-out of

digitized calorimeter trigger data and some simple computations in less than 3 ms.

(Submitted to Nuclear Instruments,and Methods)

1. INTRODUCTION

Until recently, general purpose microprocessors could not be used as basic

computing units in fast trigger circuits for High Energy Physics (HEP) experiments,

whenever the computing time per event was limited to not more than a few microseconds.

In time-critical trigger applications, even with increased clock frequencies, Complex

Instruction Set Computers (CISC) were not fast enough.

This led people in the HEP community to design and construct their own

programmable processors, based on more sophisticated architectures. Including

interfaces to detector electronics, buffer memories and other special units, a typical

processor [1] filled one CAMAC crate.

The cost of such processors and the effort required in their design, programming,

and implementation in specific environments, were still rather heavy. A better

performance can now be achieved tailoring the trigger processors around presently

available Reduced Instruction Set (RISC) microprocessors, like the Motorola DSP56001

[2]. The architecture of these DSPs allows operations on data, addresses and instructions

to bc carried out in parallel and pipelined; a fast multiplication is available, offering an

important improvement in speed and reliability. General documentation and software tools

satisfy the more demanding standards of commercial products.

We chose the DSP56001 as a basis for the design of a Fastbus module, intended for

trigger applications in the DELPHI Forward Electromagnetic Calorimeter (FEMC) [3].

The interfacing to Fastbus and to the detector front-end electronics was made more

compact and reliable by an extensive use of XILINX XC3020 Programmable Gate Arrays

[4]. All the circuits could fit in less than one half Fastbus board, at a cost roughly an

order of magnitude lower than that of an equivalent processor of the previous generation.

Two such modules are presently installed in the trigger system [5] of the DELPHI

FEMC. In this paper we briefly describe the hardware and software features of our

module, and give some results on its performance.

2. HARDWARE

The des ign of the module was kept as simple as possible. A block diagram is shown

in Fig. 1.

3

Fastbus DSP

Segme nt
56001

I Control 4- Reset I- Control W

Fastbus Boot & Monitor
Coupler

EPROMs ~

- Dual Port Memory I+-
~ FEB

MAILBOX F>
r--- ------- --- --- I

, ,
, , - , CSR

,
::) , , ,

A
, ,

dd ress Oata Control
, , ,

bus bus bus , ,
, ,
,

LTS f4-
local ~

, ,
, Interface ,

::)
Trigger

, , , , , ,
Supervisor

, , ,
---- ----- -- ______ 1
_________________ 1 , , , , ,

14-. Spec ial
,

ECL Bus , ,
Ee l Bus ?' Interface , b , ,

, , , , , , , , , , , , ,

~ Input
, , INPUT ,

,Tr igger In ter fa ce
,

:) ,
Data

, , , , , , ,
----------- _ _____ 1

Conlr ol Address Da!a
fin es bus bus

Fig. 1 - The architecture of th e Fastbus module.

4

The DSP performs fast trigger computations, executing programs normally loaded

from EPROMs.

The input trigger data are provided through an "INPUT Interface" which in our

specific application reads calorimeter trigger data digitizers (FDDP, Fast Data Digitizers

and Processors [6]).

Local Trigger Supervisor (LTS), through the "LTS Interface".

A special "ECL Bus Interface", following the ECLine protocol [7], makes the DSP

results available to other trigger processors.

The Data Acquisition System (DAS) of our experiment requires Fastbus access to

the module. This is obtained via a standard Fastbus Slave Coupler plus Control and Status

Registers (CSR) and a Dual Pon Memory acting both as a Front End Buffer (FEB) and

as a "Mailbox" for communications between DSP and the DAS. This structure also allows

downloading of DSP programs cross-assembled or compiled in an host computer.

The dashed boxes in Fig. 1 indicate the circuits that are integrated in Programmable

Gate Arrays.

2.1 The DSP processor

The DSP56001 [2] is a RISC microprocessor with a Harvard type pipeline

architecture [8], sketched in Fig. 2.

Data and address manipulations are performed b~' three units:

a) a Data ALU, with 24 bit input registers and 56 bit accumulator registers,

performing logic and arithmetic operations, including single-cycle multiplication, between

56 bit operands;

b) an Address Generation Unit, offering several addressing modes for program and

data memories;

c) a Program Controller, prefetching and decoding instructions, executing loops and

controlling interrupts.

Three different memory address spaces are defmed: two for the data memory, called

X and Y, and one for the program memory, called P:

a) X and Y data memories include internal RAMs (two, 256 x 24 bits each) and

ROMs (two, 256 x 24 bits each), and can be expanded externally to 64K x 24 bi ts each.

We mapped the 31 registers of our interfaces to the external X space, and the Dual Pon

Memory (1024 x 16 bits) of the Fastbus Interface to the external Y space.

5

b) the P program memory includes a 512 x 24 bits internal RAM, and a smaller

"bootstrap" ROM . An external expansion up to 64K x 24 bits is possible.

YAS EXTERNAL

ADDRESS XAS ADDRESS r-
GENERATlCN PAS BUS

~ + SWITCH

f4- P x Y
BOOT· ffi03IW,1 MEMORY MEMCfIY - ON·CHIP :.- STRAP RAM RCM ROM

I~Rr-PERIPH. ROM RAM RAM - • •

II 1t
, i' • i'

... YDB
, 7

INTERNAL
II ~ L~ (EXTERNAL

DATA BUS XtJB DATA BUS

~ SWITCH) II ~ ~ PDB SWITCH

a:a II I I (
... •

, 7 , >-
,- - - - - - ~ r- - - - - - - -. ;- - - - - - ~

ADDRESS :: ca:.xx:e :: INTERRUPT DATA ALU
G5\ERl\TOO ': CCNTFO.. I I CCNTFO.... 24 x 24 + 56 ., 56 bil ._ - - - - - _. - - _ .. - --_' ,_ _ _ _ __ .

ffi03IW,1 CONTROLLER

Fig. 2 - A simplified block diagram of the DSP5600I.

The separate internal buses for X, Y, P data and addresses are multiplexed to one

external bus for addresses and one for data. To fully exploit the potential speed of the

microprocessor, external memory accesses must be minimized. We therefore bootstrap

our trigger program from an EPROM into the internal P memory; we use part of the

external space fo r an EPROM containing a debugging monitor program, whose execution

is not time-cri tical.

2.2 The inlerfaces

The registers and logic circuits of the interfaces shown in Fig. 1 were implemented

In three XILI NX XC3020 Programmable Gate Arrays (PGA) [4]. These VLSI ICs

contai n 64 logic blocks and 64 input/output blocks. Each logic block includes some

6

.....

-,

programmable combinatorial logic and two flip-flops. The routing of signals between

blocks is al so programmable. The programming is done using CAD tools and the final

programs are stored in EPROMs, from which the PGAs are initialized.

The "INPUT Interface" and of the "ECL Bus Interface" fitted in two equally

configured PGAs. The block diagram of one of them is shown in Fig. 3. E~ch PGA

contains an 8 bit slice of all the registers of the two interfaces. Four input registers can

retrieve data from four external data sources in parallel, and are separately addressable by

the DSP. An outpu t register for the special ECL Bus is accompanied by its handshake

control circuitry.

•
, ,

U)
(j)
c
:i

~ -c
0
U
0...
(/)

0

,

Lf

Lf

Special
Eel Bus

OUT. REG.

.----· lnput Trigger Data (4 buses)------ -

8

8 8 8 8

8 8

DSP Data Bus

Fig. 3· The Programmable Gate Array implementation of an 8-bil slice of the "INPUT nterface" and
of the "EeL Bus Interface",

7

A block diagram of the third PGA is shown in Fig. 4; it includes:

a) for the "L TS Interface": a "S tatus Register", by which the module can be

synchronized with the experiment, and a "Register of Results", used to communicate its

resul ts, compacted in a few bits, for fast trigger decisions;

b) for the Fastbus access: the "Control and Status Registers" CSRO and CSRI. The

first register is required to access the module as a Slave and perform standard actions

(resetting the module, runninglhalting the processor, requesting its attention). Some of its

non-standard bits are used to set options in the trigger program (real or internally

simulated data for the trigger algorithm, different types of detector segmentation, etc.),

and to select different ways of handling the Front End Buffers (FEB). The second register

can be used to select one of four FEB areas in which the DSP is expected to write its

results of the next processed event

Vl
Q) (fJ c:

:J:.:i ~-o

FASTBUS
Data Bus

Q)
f- - '--,---'

(fJ~ "---l----'
2

~~
u

2

to FEB
address

2

Service RUNI Resetl
Request HALT Clear

DSP Modu le

Local Trigg er Supervisor

TIMING RESULTS

3

DSP
Data Bus

RESULTS

2
C
c
u
a.
v;
o

Fig. ~. The Programmable Gate Array implementation of the "L TS Interface" and of the Faslbus CSR
rcgislcrs.

8

3. SOFTWARE

We used the DSP software developement tools, a C-Ianguage cross-compiler, a

cross-assembler and a simulator from Motorola, to develop trigger algorithms and a

debugging monitor. A control program for initialization and tests was also written.

3.1 A simple trigger algorithm

In the DELPHI experiment, the fIrst application of our module is a "total energy"

trigger for the end-cap electromagnetic calorimeter. At each new valid beam-crossing, the

trigger program prepares some constants and then waits for the fIrst level trigger.

Digitized trigger data, corresponding to the energies deposited in 24 sectors of the

detector, are then read-out, added and compared with pre-defined thresholds. Results are

made available: to the Local Trigger Supervisor in the Register of Results, to other trigger

processors on the special ECl bus, and to the read-out system in the Front End Buffer.

The trigger algorithms, cross-assembled and tested by the simulator program in an

external computer, are recorded on EPROMs and bootstrapped into the DSP internal

memory from the "Boot EPROM" at power-on or reset.

3.2 Debuggillg monitor and control software

A debugging monitor has been written and installed on EPROMs mapped to the

external P-memory space of the DSP. It handles some basic tests of the memories and

registers of the module, under the control of a terminal, connected to the module, .

On the host computers interfaced to the Fastbus system of the experiment, a stand

alone control program can access the module via its Fastbus Slave Interface. It allows an

operator to interac tively initialize and extensively test the module. The DAS packages of

the experiment lise a subset of the available functions for initialization and read-out.

These func tions are mainly implemented by the CSR registers described in section

2.2.

The control program can also write and read the Dual Port Memory CDPM) in

Fastbus Data Space. As briefly mentioned in Section 2, one half of the DPM is dedicated

to the FEB. The other half is used for communications between the module and the

control program or DAS. A simple "Mailbox" protocol has been set up: from both ports,

9

messages can be written in the DPM, generating an interrupt in the other port. This

protocol can also be used to download DSP programs, cross-compiled in an host

computer.

4. PERFORMANCE

The module is clocked at 20 MHz, corresponding to a DSP half-cycle of 50 ns. By

fully exploiting the microprocessor architecture, and by carefully matching the timing of

the interfaces to the DSP cycles, we were able to pipeline several actions in one cycle:

read-out of a set of input nigger data into the "INPUT Interface" registers, rransfer of one

data word into the DSP internal registers, addition of the previous data in the DSP

accumulator. For example, the simple algorithm described in section 3.1 is completed in

less than three microseconds, including the recognition of the "Start" signal, the read-out

and addition of 24 data words, the comparison with two thresholds and the output of the

results to the Local Trigger Supervisor.

S. CONCLUSION

We have designed and built a Fastbus module, based on a commercially available

RISC microprocessor, the Motorola DSP56001 and on XILINX Programmable Gate

Arrays. The very large scale integration of these components allowed a reduction of about

one order of magnitude in both size and cost, with respect to specially designed

processors of the previous generation. At the same time, we obtained an important gain in

speed, in simplicity and in reliability.

The module is presently used in the nigger system of the end-cap electromagnetic

calorimeter of DELPHI. The flexibility of the module makes other nigger applications

rather straightforward. Extensions of the system including the addition of more memory

and other processing units on the same Fastbus board are being considered.

Acknowledgements

We gratefully acknowledge the support and advice of our colleagues of the

DELPHI-Trieste group. The technical skill of Giorgio Maselli from INFN Trieste has

been invaluable for the success of the project.

10

•

Refere nces

[1] T.Lingjaerde, Internal note CERN/DDnSI17.

G.Lu tjens, Repon CERN 81-07 (CERN, Geneva, 1981), p. 236.

[2] Motorola Inc., DSPS6001 Advance Information, ADI1290 Rev. 1 (1988).

[3] P. Checch ia et al., Nucl.Instrum. Methods A248 (1986) 317.

[4] Xll.JNX Inc., XC3020 Logic Cell™ Array Family (1988).

[S] D. Bulfone et al., DELPHI Internal note 86-100/DAS-42.

[6] F. Benolino et al., IEEE Trans. Nucl. Sci., NS-36(S) (1989) 1469.

[7] L.B. Levit, GJ. Blanar and M.L. Vincelli, IEEE Trans. Nucl. Sci., NS-33 (1)

(1986) 925 .

[8] H.S. Stone, High performance computer architectures (Addison-Wesley, Reading,

Mass., 1987).

1 1

