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1. The pioneering work of BPZI explored recent mathematical results2 on 

indecomposable representations of the Virasoro algebra to set a powerful method of 

building nontrivial two-dimensional conformal invariant theories. There are few 

examples of solvable conformal invariant theories on 2h=4 dimensions (see ref.3 for 

a overlook). Meanwhile, various infinite dimensional algebras, containing the 

IS-dimensional Minkowski (or Euclidean) conformal algebra, have been constructed 

inref.4 The setting there probably is not the ultimate one and further a 

representation theory should be developed. On the other hand one can generalize 

the approach in ref.S where the (scalar) minimal theories of ref.1 for c<I have been 

explicitly constructed in terms of euclidean n-point functions. The functions are 

SL(2,C) - invariant and correspond to the correlations of the primary fields. These 

fields generate the whole conformal theory i.e. an infinite set of SL(2,C)-covariant 

fields, closed under operator product expansions. The role of the infinite 

dimensional algebra - Virasoro, or, for c> 1, a larger, "extended Virasoro" algebra, as, 

e.g. in ref.6 is to render this set into a finite number of classes, each accomodating an 

infinite number of fields. The Coulomb gas integral representation with a charge at 

infini ty S,6 is a basic ingredient of various known minimal theories. It is trivially 

extended to arbitrary 2h dimensions, h-integer. However, the analysis of the 

singular behaviour of the 4-point functions at coinciding points in ref.S relies on 

the left -right factorizability, exploiting equivalent contour integral representations, 

and hence is intrinsically restricted to 2h=2 dimensions. We propose an alternative 

technique which is equally well suited for arbitrary 2h and for arbitrary n-point 

functions. 

2. The generalization of the vertex representation of ref.S using the gaussian 

ac tion for the scalar field <jl with Green function proportional to 
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is straightforward; 11 is an arbitrary mass parameter in the Euclidean space-time. In 

the absence of a charge at infinity this model is well known, and in particular, it is 

the building block of the purely longitudinal model (see, e.g. ref. 7,3 describing the 

interaction of a massless fermion with a pure gauge electromagnetic potential. 

The final result of the construction, paralleling that in ref.S , are the conformal 

invariant functions defined for noncoinciding arguments by 

where Va.(x) = exp i a. <f (x) and 

::: IT 
-<. <j 

for p 

L ~..:, = 2d.o 
-i,::'1 

) 0( -real (nonnegative); 
o 

(2a) 

(2b) 

otherwise (2a) is either zero, or not well defined. The fields $i have dimensions di = 

(3) 

Similarly the Coulomb gas representation of the c>l extended Virasoro 

theories, described by r fields ':Pi, i=l, ... ,r and vertex charges related to labels of finite 

dimensional representations of a rank r semisimple Lie algebra 6 can be generalized 

to h~l. Our technique applies to this case as well but for simplicity we shall illustrate 

it on the simplest example with a single field <p . 

The conservation of the charges (2b) implies that for any of the volume 

integrals in (1) 
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I (u b '" U b) 
"~) I NI >J 

N 
(4a) 

one has 

= .2 h . (4b) 

Starting as in 2h = 2 from one of the possible representations of the 4-point 

function for 6.i = 6., i = 1,2,3,4, the charges ~ are restricted to the values 

+- 0(+ J 
r,s - positive integers. (5) 

Assuming the relation 

0(+ P + 0<_ 4-- = 0 ,p, q coprime integers (6) 

characterizing in 2h=2 the minimal theories, one obtains that 

) 
(7) 

Requiring that 2aO - a rs is of the type given in (5), restricts the values r,s to 

1 $rS;p-1, 1 S; s S;q-l. 

As in 2h=2 the integral representations (1) for the three-point function select 

via the charge conservation condition (2b) the possible triples (6. 1,6.2'6.3) providing 

non-zero functions (see, e.g. ref.6a). The various representations, in which any cD 
,LIe< 

can be represented either by Va or by V2a-a, recover the known conformal 
o 

invariant expressions for the three-point functions up to constants given by 
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multiple volume integrals. Assuming that these constants are finite and non-zero 

and using (6), one obtains, given '*~ 1) , t.(a:z) with ui= ~ s ' i = 1,2,1 <;; ri <;; p-l, 1 
1.. ,,( 

<;; si <;; q-l , the selection rules on the dimension t.(u3) = t.(ur s) 
:0 .3 

1~ /JL
1

-Jl.!I,j+1 ~ 4;> ~ 'mL"tl. (/L,~/L~-1J 2r-1-.II..-.II.1.) ~ 1"-1 

1 ~ /-i, - ~2.j +-1 f, ?3 !: -mil"] (~1~<I.t -1 J .l'}-1-~1--1 ... ) i; ,.-1 . 
with r3' s3 running by two. 

(8) 

The result formally does not depend on h. In 2h=2 dimensions the assumption 

mentioned above has been justified by the explicitly found primary fields structure 

constants from the analysis of the asymptotic behaviour of the 4-point functions . In 

h>l the argument remains formal and, as we shall see, there appear singularities in 

general. 

3. Our next step will be to use subsequently for any of the volume integrals (4a) 

in the multiple integral in (1) the Symanzik representation 8. This representation is 

based on the Mellin transform and the final formula has the structure 

h _ "'-1.(' 4 ·u ( 

.3~ - IL-t.t. A.-.t.~ 
} 

(9) 
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where the kernel K( [sij' I\}) is a product of r -functions (see ref.S for the explicit 

expression). The contour integrals in (9) go along paths parallel to the imaginary 

axis. 

The asymptotics of the n-point functions can be analyzed closing the contours 

in the final resulting expression and accounting for the poles of the integrand. Let us 

illustrate the technique on some examples. The simplest example is provided by 

the choice s=2, r=1 or s=1, r=2, i.e. the cases with a single volume integral in (1). Then 

applying the general formula in ref.S one gets (n=4) 

(10) 

Assuming u=h34 <1, v=h24<1, each of the two integrals in (9) leads in general 

to two series of poles, which combine giving in the leading. order for, say, u~ 0 

(lla) 

where 

j=1,.(,. (lIb) 

The contributions to each of the constants Ci' i=I,2 come from two terms 

which sum up to the values 

C = r(h-b.-~:Jr(h-~,,)rch-$4) 
1 rc b, +b.J rc~3) r (Sit) 

C :: r(h- S~- ~,,)rch- b..).rc h- ~~.>. 
.l., r(~3+ ~,,)ro~ ) r(~:lJ 

(llc) 
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In this trivial example the result (11) can be reproduced directly from (2) taking 

in the integrand of (1) Xl ---. x2' or x3 ---. x4 and using the well known 9 integration 

formula 

(l2) 

The generalization to arbitrary n-point functions, n:2:4, represented by one 

integral, is straightforward. In the leading order one gets again two terms with the 

same exponents (lIb). 

Our next example corresponds to two volume integrals in (1), i.e. either s=2=r, 

or r=l, s=3, or s=l, r=3. Now we have to apply twice the Symanzik's formula (9), 

first for N=5 and second, for N=4. The final expression reads (for n=4) 

where the kernek K{Sij' Ok}) is given explicitly by 
;-

K ({~'jA\) = IT [r (-~.Li+ J,:-j<)r (-~,s+J~ ~iJ rc 6.,:H~.:+ ~3J J 

.3 IT rC-.;\k't)r( S~ +b~-h +-a)H.tsH'ts-~Jr (6; +- S; t ~S"- h +~3S- ~3~ ). 

(l3a) 

(13b) 
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'\(~~+~t,,+~;,,-4't~ ) r(h- ~1'_ ~S- Z ( rk +-)k )) 
k=2. 4 5 

5" - 1 

[n r(~< ) r (b; + d ~ H-l) H,~) 1 { ~{ -~~5)1 Cd; -"3,+ ~'t5) 1 (S~ -"\5)] 
~=1 

Here either 

or 

or 

r < I. __ 0(+ r. 
i) o. =- - 2,<:1._'": 1 '" == 1, t", " I 0 0 

(,. ... "" 0(_ "" 

ii) :i. == -.t" 0(. = S.' 
-t.. - ...,. "" 

... ) f' r I 
III o. = -.zc< 0(. '" o . 

"" + '" t... 

I 

I 

(14a) 

(14b) 

(14c) 

corresponding to the three cases, covered by (13): s=r=2, or s=3, r=l, or s=l, r=3, 

respectively. 

We will again assume that ud, v<l and after performing the integrals in (13) 

we will take u~ O. Then it is convenient to start with the integrals with respect to 

s14' s34- This time the poles of the integrand depend in general on the rest of the 

integration variables, so one has to perfrom a sequence of integrations with the 

appropriate direction of closing the contours. The computation of the leading terms 

in the series appearing thus split into several different chains of integrations with a 

given choice of the poles to be accounted for _ Altogether one gets 4 or 3 different 

terms with exponents (compare with (lla» Aij( (/\}) given by 

(15) 

i,j=1,2, or i=1,2,3, j=l, or i=l, j=1 ,2,3, for (14a,b,c) respectively. 
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Accounting for the asymptotic behaviour of the prefactors in (1) , the results in 

(llb) and (15) are in agreement with the fusion rules (8). We expect that in the 

general case the explicit expressions for the exponents Aij will be, as in (llb), (15) of 

the same type for arbitrary h, repeating the structure for 2h=2. This expectation is 

supported by the observation that the general multiple contour integral 

representing the 4-point function is the same for every h, with the same structure of 

the integrand. With the choice (5-7) the value of any 1\ in 2h-dimensions is h times 

the value of 1\ for 2h=2. Comparing the explicit expressions 

(10), (13b) (and this holds true in the general case) we see that the whole difference is 

the scaled by h dependence of the arguments of the f -functions fCah+ L (±) si) ( si 
t 

are integration variables). Thus we can further expect that in the generic cases the 

contributions to any of the constants Cij (and the constants themselves) will 
, 

maintain this "scaling" structure. Thus the knowledge of the 2h=2 primary fields 

structure constants eventually provide the values of their analogues for arbitrary h. 

One has to be cautious, however, about the possibly arising singularities. For 

instance, in our simplest example with explicitly found constants (11c) the case 01 = 

<cr cr cr cr> correlation) the constant C2 in front of the contribution of the dimension 

d=2ll(a13) = h explodes, due to a pole of the f- function, for every h-even. This is in 

agreement with the fact that the vertex representations (1) for the 3-point function 

provided by ('«Va V2a-a Va Va »and« J' 12. 0 12.. 1"3J -

Va Va V2a- a » differ by an infinite constant, as can be easily checked using 
1t- 12, 0 <~ 
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(14). Although there remains still a possibility that this infinite contribution of the 

primary field of dimension il(a 13) can be cancelled down by such a contribution 

from a descendent field in the class of the identity, this effectively will change the 

fusion rules (8). The operator subalgebra provided by the classes [lL] and [<I> il( a ) ] is 
.1.1 

well defined for 2h=4 *). 

Presumably such singularities appear for every n-they show up at correlations 

represented by higher (depending on n) number of volume integrals. We expect 

that this problem will not arise for the h~1 generalization of the c> 1 models in ref.6, 

choosing appropriate r, increasing with h. 

4. The next to leading singularities of the 4-point functions can be reorganized 

comparing with the general conformal covariant operator product expansion 10,11 

to extract the contribution of descendent conformal covariant fields with 

dimensions differing by integers from the dimensions of the primary fields. These 

fields are the analogues of the quasi primary fields for 2h=2, which in a suitable basis 

span, together with their derivatives, the Virasoro (factor) representations generated 

by the primary fields. Further partial information about the correlations including 

such fields can be obtained from the knowledge of the general n-point primary 

fields functions 11. However, without the missing algebraic background, there is 

no way to distinguish the different descendent fields at the same level of dimension 

(and spin). 

*)The n-point functions and the resulting OPEs are conformal invariant, as far as 
integer dimensions di bigger than h appear, strictly speaking only after going to the 

Minkowski space (see ref.3). E.g. the 2-point function for d---)h given by (2a) provides 
an euclidean conformal invariant distribution only if normalized by a factor (d-h), 

yielding in the limit d--7h a a-function. On the other hand the 2-point Wightman 
distribution corresponding to (2a) is invariant under the Minkowski space 
conformal group. 
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The concrete models discussed here are still rather unrealistic. Apart from the 

problem of singularities in the fusion rules mentioned above, the most unpleasant 

feature is that they do not provide for h> 1 unitary theories. Recall that the 05-

positivity condition for the 2-point scalar function requires d = 2t. ~ h-1 11 . One 

possible way to overcome this drawback is to use the vertex representation only as 

a subsidiary step, constructing composite fields, e.g. of the type : \If exp ia<p:, where \If 

is a free field of dimension h -1 . 
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