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1; Capelli, Itzykson and Zuber (CIZ) Ll] classified all modular
invariants corresponding to the minimal conformal theories of [2] .

For any value of the central charge they describe one to three differ-
ent sets of integer spin combinations of the Virasoro representations,
which eventually correspond to local operator product algebras (OPAs).
However, the classification in [l] does not give information about the
concrete content of a given operator product (OP) , which content can
be extracted if the correlation functions involving the fields are
available. The spinless OPAs ( (A,A)-case in [1] ) have been exhaus-
tively described earlier by Dotsenko and Fateev (DF) (3] and the detail-
ed technical information already contained there should be in principle
sufficient,with some generalizations, to yield a complete analysis. An-
other approach based on the underlying éb(Z)x 86(2) Kac - Moody struct-
ture of the c < 1l conformal models has been pursued in [4],[5] .Applying
a formal correspondence, some of the CIZ OPAs have been recovered along
with various subalgebras. Yet we feel that this approach aiming to
translate in terms of correlation functions the rigorous algebraic
result in[6] is still quite formal, so an independent direct.investiga-
tion of the ¢ <1 conformal theories is justified.

OQur approach is much in the spirit of that in [5], however, it is
more explicit giving the expressions for the (4-point) correlation
functions, not just the OP rules. We start from a (volume) integral re-
presentation generalizing that in[B] which can be interpreted as aris-
ing from an electric-magnetic Coulomb gas on the plane. The monodromy
invariance of the correlations relies heavily on the monodromy invariance
of their DF-counterparts. The functions obtained are further extended
using essentially the monodromy factorization established in [3}, thus
getting a large class of correlation functions sufficient, e.g., to
describe the (D,A) CIZ series. The final results do not differ from
those stated in[S], however, there are certain discrepances on which
we comment in the text. On the other hand the approach followed here
allows the analysis, with essentially the same tools, of a wider class
of theories. In particular, local algebras containing half-integer spin

fields appear naturally, paralleling the (D,A) integer spin series.



Furthermore, algebras of fields with a definite statistics, generaliz-
ing for arbitrary m the Zg—statistics of the order-disorder Ising
model fields, emerge and in principle can be investigated along the
same lines.
For simplicity we consider only values of ¢ corresponding to the
unitary discrete series[?].
2. We work in the Euclidean region; the coordinates are denoted by
z = x1+ ix2 . xl—ix2 . (xl.xa) - xéimz . As usually the equiva-
lence of the noncompact picture to the compact one (i.e. fields de-
fined on the Riemann sphere) is guaranteed by the correct asymptotic
behaviour at infinity of the conformally invariant Schwinger functions.
We assume that the scale dimensions (Ai,zg) of the primary fields

Wi(xi) are given by the values selected by the Kac determinant formu-

la [8]
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H{C‘is an arbitrary constant for any set of contours \CS s which are
either closed, or start and end at some of the pointS'zi,'z'i .

This integral representation can be related to an electric-magnetic
Coulomb gas derived from a generalized vertex representation with a
"charge —2do at infinity". Each vertex depends on an electric a=(d+&5/2
and magnetic b=(«-«)/2 charge recovering as a particular case the
electric Coulomb gas representation of [3];(2b) expresses the conserva-
tion of the overall charges, including the screening charges d+ . The
representation allows in general for a second charge at infin;ty,,lead-
ing to two different values of the central charges for the two compo-
nents of the energy-momentum tensor (see Appendix A).

The two-point function of a field with dimension d= A +A and spin
8= A-ugis given up to an arbitrary constant by
, 2%, Ee&,d«l 1 o

3 5 = — exp—-i2 s arg 212

S(xl,xg) =
12,4

= = = --— . = =A "_': X pue oL
where o =20 —o;s %, = 24 - ;A=4(d ) (@,) , 4 Ao, )= ).

In particular, there are now two scalar fields of dimension A( ()
represented by the pairs [( By ok Py (2do— ol ,2do—d)J and
[(d,ZdO—id), (2do—d.d.)] which need not to be identified. On the
2-point level the charge conservation condition ensures the symmetry
(d,&)fﬂ’(Edo—a, 2 —a) . Assuming this symmetry (i.e., assuming that
any field can be equivalently represented by (of,X) or (2&6 <ols 2et -x))
the charge conservation for the general 3-point function reproduces
formally the right and left fusion rules and allows any arbitrary com-
bination consistent with them. However, we cannot expect that the gen-
eral expression (2) respects this symmetry and (or) to expect that the

operator content extracted from (2) is consistent with the fusion rules.

3 We shall start with an important particular case, which can be
looked as the straightforward generalization of the DF-integral repre-

sentation. Define the N-point function of the fields represented by

be » N »
(., ) with Zf o(_i -go(i - 221 b, ) = 0 by a formula like (2) with



the contour integrals replaced by a multiple 2-dimensional (volume) in-

tegral (in (2a) v, Ei § vﬂ,;E; ) , i.e., generalize the vertex repre-
J
sentation for the fields keeping the old scalar screening operators.

Consider, for example, the 4-point function S(xl,x % ,xh) with d1=«é=

2" 3

=k = dlz dB ,dzz ado £ d2 =%, dﬁ =R, d4 = 2d0 -Y, to be denoted as

{(01,0() (2‘,(0_}3’5) (O(QN') (!3, ZOQO—X)P E r]

(4)

1 2 - 1 2
the integrand F is recovered from (2) with uj: yj+iyj i vj:y_—iyj, etc.
J

Recall that the 2-dimensional integration prescription for the DF-
analogue of (4), recovered for j= EdO—P, ensures automatically the
symmetry properties of the correlation under replacement of fields as
required by locality. It implies, in particular, that the fields repre-
sented by (ﬁ,p) and (ZdO—F,EdO—ﬁ) can be identified.

Let us first set F: §=, i.e., consider a 4-point function of
scalar fields of the same dimension A(ol) represented now by (d,Zdo—d)and
(Edd—&«X) along with (of,cl). The symmetry Xf{xs is ensured iff 2Aﬁﬁ)+2dz
is an integer. This implies that either r=1 and s=(m+1)/2 (s=m+3/2),
m+1l=6(mod 4),or s=1 and r=m/2 (r=(m+2)/2), m=6(mod 4). Let us consider
in more detail the first case, i.e., ck= dls' s=(m+1)/2 for m+1=6(mod 4).
Then it is easily seen using the conformal invariance of (4) that it
provides a correlation function symmetric under x2¢ax4 as well since
S(xl,xg,xs,xd) = S(xa,x4,x1,x2) - S(xl,x4,x3,x2). This means that
(EuO—d,a) and (dwzdo-d) can be identified as representing one and the

same local field. One also has S(xl,xz,xa,xd) = S(xz,xl,x4,x3).

4, Our choice of o implies that c-C=z 2« dé—Ed Qé = 2o Jg -2 a&_sa;d

is an (odd) integer ( cf. (2) and also Appendix B for notation), i.e.,
the exponents of the integrand in (4) differ from the DF-values at most

by integers. The integral in (4) can be computed in exactly the same



way as in the DF-correlation by reducing it to a (definite) linear com-
bination of products of multiple contour integrals, obtained by a shift
of the leintegration contour in the complex ;21 plane (see [9] ).

There are now only some new relative phase factors in general. The fact
that c-c = E-d is an integer implies that the monodromy properties of
the integral in (4) (and hence of the whole correlation) are the same

as of its DF-analogue , for which c=c; i.e., (4) provides a single -
valued function of all coordinate differences Zij' The explicit expres-
sion can be rewritten in a form exhibiting its asymptotic behaviour in
one of the channels. One obtains,up to alternating minus signs in general,
the same "diagonal" linear combination as that in [3] , involving the
old coefficients but with e, d, replaced by E, Er everywhere

in the E-dependent unnormalized contour integrals (see Appendix B for

details and explicit examples). The OP content is easily extracted

using the results of [3] . In the channel X 9X, 2% ,%, it reads (re-
call that o= , m+1l=6(mod 4))
1 m+1
2
m
b ok o (B0 i)t ¢ F (28t ~al. ; ) hB
o o 1k 1 m+l-k
k=1
odd
recovering the integer spin combinations (for. r=1) of the (A.. 1,D 5 )
m-— m+
2
series. In the channel xl.xs---;xg,x4 (4) yields in this case just the

old, up to sign changes in the coefficients, spinless content of
*
(ol , o) X (ot,el). ) Apparently the pairs [(d.d), (2&0 —oly, 20 —u}] and
o
[(20{0 —ad,ol),. (<, Zdb -u)] , each-containing equivalent fields, cannot

+

be identified (see also App. B), i.e., a doubling of the scalar field

#*
) We have difficulties in understanding the OP (5) and its generaliza-

tions following back the tensor product prescription as briefly sketched
in [5] - in particular precisely how (j:j)ﬁ (j,;—j), k+2 = m+1, j =
=(s-1)/2, will give for j=; anything but the content of (j,3) % (j.j).
Furthermore, as far as we can see, there is no trace in [5] of the

sign changes pentioned, without which (4) would reproduce up to trivial

prefactors in general the old DF-correlations.



) has emerged (see also [5] ). Preliminary

)

of dimension &A= A{c&l wifd
z

analysis of the local 3-point functions involving (Al

(A

¥ Cmeik
1m+1—k’Ajk) with values of k yielding an odd spin suggests that we

are actually dealing with complex fields, i.e., (o,cl) and (sz'd':m)

might be thought to represent here a scalar field and its complex
conjugation. This interpretation should be finally desided upon after
reconciling the sign changes mentioned above with the Osterwalder-Schrader
(reflection) positivity of the correlations. It might be easier to
demonstrate the positivity using the explicit expressions in the

channel implying (5)

It is easily seen that the result in (5) does not essentially
change if we apply (4) with = dls’ s-odd, ﬁ: ¥ = dr"”' ,m+1=6(mod 4).
Yar

The general integer spin combinations represented by (2« - o o 9
o ik rm+l=k

or (d , 2o =k .. ) 3 k—odd,appear in the R.H.S8. of the extension of
rk o r m+l=k
(5) with summation running from |s- ﬂ§”+1 to min(s+:%f—1, 2m+1—s—2%?).

It is clear that for all r »1 the scalar fields represented by

[2qo—d » A ., ) and (& 5 liod ) cannot be identified.

v m+ rm ymed rmed
Z ER > F

5 We can further use (4) choosing p, to represent the newborn fields
B

in (5). Note that the choice o =dls ' B =drk. ¥ =« m+l-even,

r m+l-k’
ensures the symmetry of (4) under xleaxa , for s-odd, irrespectively
of the values of k)since 2&(2&0— p—-J) = (m-2r)(1-s)/2. Then

S(xl,xg,xs,x4) is symmetric (antisymmetric) under x2¢5x4 , xf&axs
(and hence under xzeéxd) if k-odd (even), m+l=6(mod 4), or K-even (odd)

m+l=4(mod 4), because the phase of the factor involving % a (ef. (2}))

2(20 - PIB - 27 (2 - f) = (m-2r) "2 = 25 (6)

is an even (odd) integer. These values of k and m+4 correspond to

integer (respectively half-integer) spin Srk of the field represented

by (2 -, &) or (f,2¢ -)).

Since the difference c-c = d-d = Zd;(g +p —2&) = 2r-m is an integer



for' this echoice of F and J the monodromy invariance of (4) is again
inherited from the moOnodromy invariance of the corresponding DF-corre-

lation with ¥ = 2&0—P . Thus (4) provides for d.:dls, s—odd)and F =drk’

¥=d m+l - even, local correlation functions involving integer

r m+l-k'
or half-integer spin fields depending on the parity of k and m+1 /2.

We see already at this level that half-integer spin analogs of the
(D,A) CIZ series naturally appear. Actually the series for m+l=4(mod 4)

starts, unlike the (A,D) case, already at m+l=4; it includes (A 0),

ig"
(05 &, ) 3rii(A £ﬁs) and the identity. (On the other hand the correlation

13 53,

provided by (4) for o= dlB'}3:d12 =)y , m+l=4, coincides with its DF-
counterpart.)

The formula (4) can be slightly generalized further to include
)

a second field represented by (dr 5 2&0— ok

1) or (20 — 8t gy0k
k o] £

/
r m+l-k k' r m+l-k

like, e.g., the cerrelation

(et,t) (2 - ol J(yo) (et ), 24 = gt (7)
o r rk le]

k' Tr m+l-k r m+l—k’)>

/

where o= dl ;,Zsf = +k-k , -k’ - even. The monodromy invariance
s

= = P
is preserved since 2o o -2 ol =
2 4 2 4 z

32 w

/
(m+1l-k-k) is still an integer.

The explicit expressiocn for the correlation function parallels again

the DF result leading to the OP content

ol ) (8)

ity X i 2 -k
ket ' 15;)x ( do r m+l-t

” ) =Z(2d0—o<

,oL
rk r m+l-k rt

while in the channel xl,xéﬁxg,x4 one recovers the old scalar content

(26h -t ol ) X (ol 1, 2o =g
o rk b5

’ = - =gk
k o r m+l-k ) ZZ(2a'lo le'gdb ) (9)

r m+l-k 1p
add

The limits of summation in (8,9) are determined by the combination
of the usual fusion rules for the two pairs in a given channel; in
(8) t and k have the same parity. These formulae cover all different

cases with the parity of k and (m+1)/2 related as explained above.



6. Everything above can be repeated with c£=dis replaced by drl,-ets.,
accordingly all restrictions on the values of m+l1 carry over to the
values of m. The integral in (4) in all our examples up to here is

very much of the type one expects in the 53(2) - case since it involves
one of the screening operators (represented by (d+,d4) or (d_,oi)) but
never both. And the results about the integer spin OPAs (for r=1 up to
now) are up to the subtleties mentioned above essentially the same as
those stated in [5]. Let us restrict to the case r=1 everywhere. If

m+1l = 6(mod 4) the integer spin algebra is exactly the subalgebra

which can be extracted from the CIZ result with the scalar field of
dimension Llfﬂ%i doubled. The (halfl-integer counterpart of (D,A) for
m+1=6(mod 4) consists of

A A = s (A A = : - }
i( is * Pip ), s—odd; ( it 21 m+1—k)’ k-even; m+1=6(mod 4) (10)

For m+1=8(mod 4), we again recover the ( A ,D ) subalgebra, the

m-1

scalar field of dimension LDyt represented now only by (QdO—d,d)‘~

(d,2d0—d),(x=<i,ﬂﬁg. Its products with the scalar fields dls , s—odd

and the integer spin fields are exhibited in (8,9) with k’, t - even.
The (halfl-integer spin subalgebra for m+l=4(mod 4) consists of

(A, A ), s-odd; (Alk,ﬂ k-odd; m+1=4(mod 4)ﬁ (139

ls 1 m+1—k)’
In both (half)-integer spin subalgebras the scalar fields are re-
presented in the correlation functions by ( dls'dls Jrs
Clearly, although (4) was sufficient for the complete analysis of
these subalgebras, there are certainly othér local correlation functions
involving, say, only nontrivial spin fields, which can be obtained
solely through the general representation (2). Such correlations, if

allowed, might in principle enlarge the (half)-integer algebra (10)

adding nonzero integer spins as well.

7. Our next step is to generalize the results for r>l, trying to reach

at least the generality we had for r=1 subalgebras. We quit at this point
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the volume integral representation (4) and work directly with the
l1-dimensional contour integrals.

The idea is to extend any of the local correlations already con-
structed starting from (4),to a related correlation which differs

ol ol - (d ol - A ]
only by a change of the type ( i 15) ( o rs)’ or (Zdo - T AT

a(zao-d. ol }, ete.. Thus, e.g., one can get a scalar
r

k' “r'm+l-k
correlation, of fields with dimensions A , A o ,s—o0dd, m+1l - even,
rs r mi
2
to be denoted éi(o-rs’gtrs)(2u(o—dr,ﬂ¥,rxr‘m%!)(o(rs,drs)(d-r,:%! '2"‘0'“:-'.-_-31) >,
starting from its counterpart with r=1.
)
Leaving some details to App.B let us only sketch the idea,

which is essentially the one used in the algorithm of [5]. The crucial
point established in [3] is the factorization of the monodromy transfor-
mations of the general convolution integrals in[S]. Then the monodromy
invariance of the extended expression is a consequence of the invariance
of its simpler counterpart built via (4) and the invariance of the DF-

correlations. The OP relations one gets just incorporate the r-depend-

ence according to the rules in LS]; e.g., in our example
of ol Sl ol |, ol - 2 -0l A 12
(o I X (2t mdy el ) = T DL (12)
o 5 -7 'l1+1 [s- 'L;_-"|+4

with the usual, fusion rules dictated, upper bounds. We shall not

write down all generalizations of (8,9) (see[5)), let us only stress

that they again apply to the half-integer spin fields as.well. The results
for the OPAs generalize accordingly to these more general OP relations,
recovering the (A,D) series along with their half-integer spin counter-

parts.

8. The natural question arises can (4) be of some use for the investi-
gation of OPAs corresponding to the exceptional CIZ series. We haven't

much to say on this at present, let us only point out that it is rather

A more detailed and exhaustive presentation will be given elsewhere.
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trivial to find local 4-point correlafions accommodating some fields
among the set characterizing any of the (A,E) series. Indeed, there
are combinations of the charges, which ensure the conservation of the
total charge, without the need of introducing screening operators and
hence integrals. Let us give an example for m+1=18, corresponding to

thie (s case. The correlation
( 16,E7)

o o o G O - R - A, 13
44 1 15° 18 & o 17 drl)( 13 19)( ri IR 17) (18
Zolpele  pal-ol
J ()
'>J. 1] l»j
(d1=‘§:: , {::dfs, etc.) is built according to (2) with only coordinate

factors surviving. Correspondingly, there is only one field in any of

1 17'A1 17 )s (ArS'AEQ

which belong again to the set characteristic for (A

Nl o

the channels; here - (A ) or (Ar

Pl
15" r9

16’E7)' This simple

mechanism provides lots of examples of local 4-point (and non-zero
3-point) correlations for any of the (A,E) cases . It can be generalized

%450 "‘43)—->

(¢ , o, ),etc.. We shall not go further here since the results are
r 15 ¢ g

to include less trivial correlations - in our example (

inconclusive as far as the full désoription of the OPAs is concerned.

9. Finally let us point out one more class of correlation functions
which can be constructed starting from formulae like((4). The crucial
point in all our examples was the observation that the monodromy in-
variance of the integral in (4) was ensured by the invariance of its
DF-counterpart since the exponents in both cases differ by integers
(the overall values being not changed). This allowed actually to carry
over with small modifications the results in[é]to our case. All the
various possibilities accommodated in (4) provided single valued
coordinate dependent prefactors preserving this invariance. Let us
now abandon this last condition, but keep the crucial property, providing
the link to the DF results. Then we get at most a definite valued with

respect to any of the coordinates z, 6 expression. Consider fdr-example
1]
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(4) with o= =p=), s=(m+l)/2, m+l=4(mod 4). With this choice
= 2 : g
c-c = d-d is an integer again, while 2a(«t)+2 is a half-integer.

12,214,223,234 function, which

changes sign when x144 x3 (or xzéa»x4). The simplest example is

provided by the value m+l1=4, i.e., the Ising model, studied exhaus-

Then (4) gives a double valued in z

tively in the literature[2] [10] . Thus (4) gives for any m+1l=4(mod 4)
a correlation having essentially the properties of the Ising model
order-disorder correlation < Cp < M > , the disorder field being

represented by (2do—d.d) or (d,zag-a), dﬂ:dqup Formulae like (4)
2

determine all the other mixed functions. The OP content of (§h+‘,$_")x
= R
(2d - oL ;o ) is given again by a formula like (5) (but now
o ol ol
- z
m+l=4(mod 4)),4i.e., it yields the half-integer spin fields
A LA ol AR 1 R G -1)/2 hich now enter a
e mer-k! @ Prmetanori’ VBT iR g

quasi-local OPA.'It should be mentioned that such representations

appear along with (Ar ) in the partition functions, invariant

:ni’zlrmﬂ

S i
under a subgroup of the modular group, consistent with 22—twisted
boundary conditions [11] . However, the OPAs appearing here,presumably
are inevitably larger, than those extracted from the partition func-
tions on the torus. %

As in our previous examples one can furtﬁer enlarge the class of

functions covered by (4), getting definite valued expressions (one-,
or two-valued , depending on the coordinate differences). We shall not
pursue this aim here. Note that a similar series exists for m+1=6(mod4).

Consider, e.g., (4) with 0(=dls, s-even and fR= J’:db Repeating

+1

2
everything with the screening operator (¢, ) in (4), one further

covers all m-even values.

While this work was in progress we received LlO] where the order-
disorder vertex representation of [12] has been used in a somewhat
different way for the construction of all the Ising model mixed n-point

functions.
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Appendix A

Let us define the Schwinger function of N fields Vi(xi) in the

region of arguments

2) 2) 29
: & rele Asl
x, > x, > ?xN ( )

by the generalized vertex representation

v (%.)0nu ¥ -y =gdf‘()"5) sxp T o (48] (A.2a)

Pl’bil | [ﬁN,bN] N s
fa,«(h,s.)

(%) * L& %sy(x)/\(x)} 1

,‘4)1

dp(A,S} = DN DS exp &dzx {-i% SF(X) SF

1 s = Je¥x[ P Ao« 3200 s.0]

a,b

Jze

o ; N J(g
a ) = .
7%(x) = ;Zajg(x—xj). 3 (%) = 1J':Zobj . (x-Jag, (A.2b)
J

The contour integrals in (A.2b) go from x_  to e. The "electric" and
J
"magnetic" charges a,, b,, i=1,...N, are real, a = 2ik , b = 2¥P .
i 2 o o o o o
p - real, The expression (A.2) is understood as a limit when x0 = R
o

gy, {2
goes to infinity (choosing R > xlj. It can be given a meaning if the

charges satisfy the conservation condition

N N
g, = Pl = 0wl B, o~ B (A3
s J 8 Jj=r d Po )

'

-

For d0=0=po this vertex representation has been proposed in [12],
and lattice versions have been explored earlier, see, e.g., [13] :
(Actually (A.2) is a slight modification, excluding unwanted self-
energy terms in [12].) The choice bj = 0y J = 0,1, N, reproduces the

representation used in LB]. Similar representation emerges naturally in



S

field theories on a torus[lq],lt can be looked upon as providing a
lagrangian formulation of the operator on-shell vertex constructions;
Sl g aj =$bj recovers chiral fields, etc.

Using a standard Gaussian integration technique (see [12Jfor details)
one recovers from (A.2) the general "electric-magnetic" Coulomb gas

representation exploited widely in statistical physics (see e.g.[lS]

and earlier references therein):

M
i
L Ny {ERr_ Y ISy BrerM] (xa) > = exp -z:k,a_b, .
Lal,b1] 1 [aN,bN] N 2ﬁa 33 - (A.4a)
N
GXPEﬁgZZ{; a ln[zij|+ g bib' lnlzij|+ ig(aibjarg z. .+a. b _arg = %

(ai + g bi)’ dis — (ai - g bi) (A.4b)

We rescale gb—b and set IEEE =1 in what follows. We have omitted in
(A.4a) an overall renormalization constant as well as a constant phase
factor trivial for po=0 - it could be avoided using a less symmetric
definition of the charges at infinity. In getting (A.4) one considers
each vLa,b] as a bilocal field defined as the product of the electric
and magnetic parts; the limit of coinciding arguments depends on the
initial mutual position of the two points és well as on the contour Cj
which might wind around them. The ambiguity created is accounted for
by the integers kj in the phase factor in (A.4a).It has been used in
[12] to get the right statistics. We assume such a limiting procedure,
that all kj =0 and consider (A.4) in the region (A.1) (or any other

region of this type). The resulting expression in which the phase fac-
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tors in (A.4) depending on sign ;i' reduce to a constant, will be ex-
J

tended beyond (A.l1). For N=2 one gets in this way up to a constant

the conformal invariant function

1 -
& V(o«,a)(xl) V(Zoto—d,2o(0—o_()(x2) ? =(x2 )m; exp -2i(a-2a) arg(zlz) (A.5)
12

with A= o((d-2eL -2;;), A= ol (K=2al +l}3); here and in what follows
o +Je o] L]
(d,&)fﬁ[a,b] where of ,o,a,b are related according to (A.4b).
From the Ward identities for the 3-point functions involving the
modified energy-momentum tenser one. obtains the values of the central

charges in the model

2

- 2 (A.6)
c =1 -24(oto+po) 02, Gl 2 -24(«0-)90)

One is forced to set ﬁo = 0 to ensure the invariance under space
reflection.( The energy-momentum tensor components depend linearly on
o Al ) However, (A.2) with o B # 0 might be useful in more general
theories.

The second ingredient of the DF-algorithm apart from the charge at
infinity, leading to c <1 , is the introduction of the "screening"

2 -
operators V (o4 =oloi o{o + 1 ) with scale dimensions A= 1 =A,

{ Sy, %k )
or of the chiral vertices with A=1, A= 0 (A= 0, A= 1) provided by

v (s ,0) V(O,di) ( (4,0) :Iﬁ,d], etc., see above). Note that both
screening conditions have more solutions here, namely V (s | olo)
oy g
d V Vv
= (%, 2a ) ( (2, o) bi . a3d o Eheadt Ghn Be STEeREIVELY: papluoel

by the basic combinations V Then (2) corresponds to

N i
(O{ilo) (Osoli) /
the generalized vertex representation (A.2) (N3 3) taking arbitrary

number of screening vertices V v . The

v Y
fat c0i5, (06l Yo Iy 4 30). < dD& )
1 - 2 . * *
variables (u,v) replace y + iy when y is continued in €. It is
assumed that the correlation in (2) is computed according to (A.4) -
all phases are neglected (taking,say, a sum with appropriate coefficients
over different regions of arguments) and the resulting expression is
then integrated. Similarly one recovers the volume integral representa-

tion (4) using the screening vertices V
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(=] -1 s-1 r-1
2 2 1 25 /
<¢i(xl)..?N(xN)>o=j.. Md y,r1d ¥.0 k% )e.V _ (XIFT W (y,)flvd d(yj)>

; i g 1
gl ‘]J’T J (%% ) (“u,dyj i ("‘-—."‘-) Jvf:f k-h +

(& :=7)

Clearly this electric-magnetic Coulomb gas interpretation of the
integral representations (2) or (4) is rather subtle but the original
approach in 112] seems to be unapplicable directly here because of the

charge 2&0 at infinity.

Appendix B

1. The general expression (4) reads for «= dls

d(ot,e0) (2 =, ) (¢, 00 (B,2e_-) )= const EJ' zf“;“J zf";l—"’g S . .jjj:dauj (B: kL)
EIuijl 43 ?(zl—uj)a(fl—ﬁj)a(zz—u‘j ) (2,5, )E(za-uj N JB(z4-uj )d('z;-ﬁj)a
where

a.= —a- = b =b = 20(_9{, C = 20(_(20(0—P); c = 20((; 25= 26(2
a+b+c+d+2(s~2)5 ==2 = 5+B+5+a+2(s—2)5. v (B2}

d:d:; A = — -_= A
( 1 1'% 2do P,dz X,etc )

The nontrivial phases of the prefactor in front of the integral

in (B.1) £ = oh WS e
( ) for P - K = ek are equal to
ok o, ~P o = Rl N R [ Eee) & BBl ik
1%g Ty == ARl T STel B el e

(B.3)
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Z z
12 34
Denoting by I(z,1-2), =z = e the appropriate limit of the
13 24
integral in (B.1) for xd» “),ﬁa-ﬁ (1,0), xl—ao we pat Dnsbesd of
?
(B.1)
( 2 )—ZA(O()
X
13 2&(2& p)l /
- z(l-z) (1-2) (z,1-2) (B.1)
ZZA(;B).Z_QA(K) [ ] J
42 42

The miltiple 2-dimensional integral in (B.1') is reduced to contour

integrals as explained in [9], giving (for c-¢ - integer)
2 ii(c-c)(k=-1) o e .
I(z,1-2z) = 2 e ~"tCTCNETHg (b,a,c51-2,2) I (a,b,c3z,1-2z) (B.4)
b d k ‘ s+1-k
where ( for 'z ¢ [1,e JU(~-=,0}) ‘4
j_ggokas-l( k-1
J (b,a, c’%‘ff;H_E.E Z'Z"Z) sk(a ble ‘[ﬁzdv_{ﬁzduj gk—l,s—k(u'V):
5-lk ke -1 ’
= ; (B 5a)
¢ 2
g (u, v)_lju (u . -1) (u_—z)cﬁ(—v')a(l—v,)b(z-v)r]u g!]v lT(u —v ?
m,n ) J J J J-ﬂ J 4 J =
i j JJ
-kt r le-1 o Y =
sk(a,b)=fTs(a+jo)]7s(b+i0), s(a)=sinna; @kz (siu)ﬁ U5y P
";u Lz0
‘f
o s _idp e
I 1 labiciz,..251-2,..1-2z)= s ey 5) [s()]e Jf:]dujjﬂdv B ko fue?)
s-k k-1 N t=1
a Zz
(B.5b)
- S
h  (u, v)-i‘iu = )(z =l ) ﬂ"’ R o )° (v,-2z) nu 6 !v?f.g Miv,-u)°
m,n 1 T TR

l 1 =1 “’J !lJ 'pJ

and the integrals in (B.5) are contour integrals in the complex uj(vi)
plane;the contours Cj are ordered in such a way that (for z-real)

the differences uij’ i<¢3: vil R f¢rj‘, have nonnegative imaginary
parts. The (z,1-z) dependence of the integrals (B.5) is made clear if

a change of variables v, k6 —1-v, is performed. .
i i
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For ¢ = ¢ (B.4,5) reproduces the DF result in a form, in which the
invariance under the change (z,z)& (l1-z,1-z) is automatic, but tﬁe
monodromy as well as the asymptotic properties are not explicit. De-
forming the contours, (B4) can be brought to a form (analogous to the
diagonal form of [3] for ¢=c) in terms of integrals having simple mono-
dromy properties around one of the points 0,1, «. Transforming EJ(E) in

— = c- —
(B.4) brings in sign changes due to sinu(x+c) = (-1) Csinu(x+c).

2. Let us first apply (B.1,4) to o= ot _}3 Y; m+l=6. We obtain up to

(single-valued) prefactors

R o in(ec-c)

N.Il(a,a,c;z)Il(a,a,E;z)+13(c;z)Ia(E;z)+e 212(c,z)12(5,z)§ (B.6)

Now we have used the DF—notation for the s=3 independent multiple

contour integrals I (a;a,cizl= I (a a,c;z) given in general by (cf. LB] )

=

(S é le-1 - F /
(a b c a,b,c;z)= C ( )jJEdu J{tdv JﬁzduJJ? J,gs—k(u)hk—l(v)'
4 o

i i 8‘ ]

cg__ (W) Bl (V) :j(ui-vj)zé(ui-v‘j)z Stu,viu,v) (8.7)
J Wy
-2 -2 _2
S(u,v; u V)- ﬂ(uJ—u )l‘l(u ) ) I (vj-u ) n (v =0y )
by 4 W Ly

r

1 ‘ el , ! s-1 i,
C k(S,§)=sk(5,5) sl(S,S) exp(15{C+ id % )//s (&) s (&)

| / 2

!
a =2e o 5 b =24 o, etc., 24 =2d:; etc., (cf.(B.5)),

En=&(m,0) ’
h (h') is defined as in (B.5b) with a,b,;,aa,b,c (aLch3. For generic
values of the parameters the integrals in (B.7) provide a canonical
basis for z=0.

Recalling that the leading terms in Ik(a,b,c,z) for z—0 are given

A =
by ~z %, Ak=(k—1)(1+a+c+(k-2)5), one sees that Ik(a,b,c;z) and
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Ik(a,b,c;z) give contributions which differ by integer powers of z .
Note that (B.6) with the prefactors added is not invariant under

x é3x,, or, equivalently, under (di..él )e»(dg.éé) Indeed the correla-
tion function .<(zdo—d,d)(d,«)(d,ul(d,2db—od> computed in the same way

. c-C
is given up to prefactors ( and a sign (-1) ) by

Z
3 et
,.z_zé(“)(’é |1—zl2)2d,z {klk(c.a.a;Z) 1 .(c,a,a52) = (B.8)
k=1
L3 Py T
—2A() [ _ =1 2ol =
=,.Z(1_Z)J [Z(1-2)] Zyk I (a,a,c52z) I (a,a,852) ;) =2) =2y =1.

=

We have reexpressed the z-dependent integrals in (B.8) by a change
of variables and used that d=a=c (cf. (B.2)). Comparing with (B.6) we
see that the singlevaluedness in 212 still allows for relative sign
changes, the monodromy transformation being effectively the '"square"
of reversing coordinates. It is clear that we cannot identify (of,ol)

and (2do—d,d) preserving the locality. Let us finally rewrite (B.8)

in the basis which exhibits the asymptotics for 1-z.-»0. We get

L3 _ii(e-c)(k-1)
2A(a) ‘1-Zl 20l Z o

~ 1z fkllk(a,C.a;l—z) ° (B.8")

k:f

The last expression differs from its DF-counterpart only by the

relative minus sign in the sum.

3. This example can be generalized for ol =ol , s-odd, f=§=c, m+l-even.
1ls rmid?
~
The contour integrals{exp(iﬁ{é—c)(k—l)) I

S+l_k(a,b,c;z)§ are expressed

s 5 1s =
as a linear combination of the integrals [expii(&-c)(j-1) Il_(a,b,c,;z)i
J

~

in (B.7) with the same coefficients ™ 1 (a,b,c) as if cgzc, since
s+l-k j
for c-c - odd integer (s-odd) o " k',(a,b,E) = exp(in(C-c)(k+j)) «
s+1l-k j

#*
Rk g =) ). Thue all off-diagenal terms will cencel as in the

*

This property of o j(a.b,c) is much easier to get than its full

k
explicit expression, which we actually do not need, if we exploit the
fact that the two representations for the DF-correlations {in terms of

a volume integral, or as a linear combination of contour integrals)

should coincide up to an overall constant, which can be fixed.
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DF-case, while the diagonal terms enter with the old DF-coefficients
(j(a,b,c), up to an overall constant; see lslfor the explicit expres-

sion. We obtain

s A7 (e=c)§-1)
] 1ls -
1(z,1-z) =, ). .(a,b,c) e I)j(a,b,e52)T [(a,b,8;52) (B.9)
o0 J
Using the general relation
rs
1ot A(a,a'’ A(b,b' i
Ilk (a,b,c3a,b,c;z) = z (a8 )(1—2) (b, )Irs (b,a,d;b,a,d;z),(B.10)

€ sH-lc

A(a,5)=(5u1)(a+c+l{s-2)5-+(r—1)(£+6+1+(r—2)6)—2(s—1)(r—l),

d = -2-a-b-c-2(s-2)8§+2(r-1); d' =—2-a'-b'-c'-2(r-2)8' +2(s-1),

one can rewrite (B.9) as

» ‘ iT(E=-cXj-1)
S o | 1+(8-2)8) 2 , 11
[z(l—z)J(s Ylarsrls(5-2) )Z: Xj(a:b.c) e (B )
=t
Ilj(a.b.c;z) Ils+l_j(b.a,d;z)
In our case d = ¢ (cf.(B.2)) while the exponent of the prefactor

i . i 1 d -2« ) = <Rl A
in (B.11) is equal to 2 ls(2010 2«2) 2d1d2 2d1d2

The case d='dls, s-odd , p:dr.k, KEdb'm+l—k’ m+l-even, is treated
in exactly the same way. The final expression, picking up the pre-

factors reads

2o (2 =Ph- . -1 2d(20t =) i (e-¢)j — e
[z(1-2)] o )[z(l—z)] o 0’ _ -
~ 2 Yl Eabsgle I_lj(a.b.c.Z)Ilw_j(b.a.d,z)

2 )2A(u)z2A([3)22A(a’)

o
(XIS 42 42 ’

(B.12)
The integral (B.9), with the prefactors added, can be used as a
definition instead of (B.1), exploiting the property aﬂp(a,b,@) =
expi(€-c)i(j+p+s-1) o, (a,b,c) of the coefficients relating

{Ij(a,b,é;z)ito{Ij(b,a,é;l—z)L
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4. The expression (B.12) is our starting point for an extension

beyond (B.1).

- = , N=ol . Defi
Let o dfs' F c‘r‘k e w1k efine
&@hot) (2e =B, ) (o) (B, 20 -H)> = f(a.p.a’;{zij‘g ) (B.13)
-2 iﬁ(c—E)j rs rs £
- ! 7 —_— -—
<22 . (a,a,c)¥. (aya,c)e I. (a'aicia,a,c;z)I .(a,ad;a,a,d;z)
i J 1 1j ls+1-J
J:fﬂzg
where
a=2d =2d o +1-r = b,
- rs -1
=2dl i = c = ol
c=2 -(2 o dr'kg' o r'm+l-k
d=2a (20t —of )=—2-a-b-c-(5-2)8 +2(1-r) (B.14)
- o r'm+l-k
=2k ot b!' =24 (2 ), c'=2ct
= = = o - =
A v ve d+ o E><r'k N + r'm+l-k
d'=-2-a'-b'-c'=(r-2)§" +2(1-8)=2at (2 -0 J= e'+m+1-2k
+ o r'm+l-k

and the prefactor f is the same as that in (B.12) with the new value

of o, It is clear from (B.14) that a and b differ from their old

values by the integer r-1. Note that Xj(a+p,b+p,c)= Jﬁ(a,b,c+p) =

Ks(a,b,c) for p-integer (see[S]). Let r-1 pe even. Hence the monodromy

coefficients depending on the parameters a,b,c do not change. Then

the monodromy invariance of(B13) is a consequence of the factorization

of the monodromy transformations, the invariance of (B.12) and the in-
i

variance of the DF-correlations for s=1, since d = ¢  + even integer

(cf.(B.14)). Using (B1l0) again (B.13) can be rewritten up to prefactors

as
im(c-c)j
rs rs = -
Z a}(a.a,c)dl(a,a,c)e Ilj(ﬁ,ﬁ,d;a,a,c;z)lr+l_l j(aﬂaﬁc;a,a,c;z)
N4

(B.15)
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For the scalar function (i.e.F::K::d ) d'=¢c', d =c, in (B.13).

r'med

F
Choosing r-odd is sufficient since for r-even, m-r is odd, but actu-

ally the argument generalizes for r-even as well.

Let illustrat B.1 b le f 1l = y =k == v
et us illustrate ( 5) by an gxamp e for m+ 6: ot - .F J

Up to prefactors one has

2

z)) _2A(d)[5(1-5ﬂ 2d{_xi11(°'2)121(6’z) ' ar'113(':'2”23(6'2)

~[=01- (B.16)

I (c,2)I_(3,2) - I (c,2)I (3,2)+2(1 (c,2)I (3,2)+fI (e,2)I (5,z)
21 11 3 22 12 7.2 22

23 1
'
where a’: s(a'+b'+c')/s8(e!') and the exact dependence of the in-
tegrals on the parameters is as in (B.15); c¢=d, c¢'=d' .It further

can be rewritten in the form (B.13).
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