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Abstract 

A generalized integral representation involving two types of 

charges 1s explored to construct correlation functions on the plane 

for c = 1 - 6/ m(m+l) < 1 discrete unitary Virasoro series. The 

various local operator product algebras emerging contain (half)-integer 

spin fields. The examples include also a generalization for arbitrary 

m of the Z - statistics of the Ising model order - disorder fields. 
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1. Capelli, Itzyks on and Zuber (CIZ) L1] class ifi ed all modular 

invariants corresponding to the minimal conforma l theories of [2J 
For any value of the central charge they describe one to three differ-

ent sets of integer spin combinati.ons of the Virasoro representations, 

which eventually correspond to local operator product algebras (OPAs). 

However, the classification in [11 does not give information about the 

concrete content of a given operator product (OP) which content can 

be extracted if the correlation functions involving the fields are 

available. The spin less OPAs ( (A ,A )-case in [ 11 have been exhaus-

tively described earlier by Ootsenko and Fateev (OF) l3] and the detail­

ed technical information already contained there should be in principle 

sufficient,with some generalizations, to yield a complete analysis. An-
A A 

other approach based on the underlying SU(2) X SU(2) Kac - Moody struct-

ture of the c < 1 co nformal models has· been pursued in [4J, [5] .Applying 

a formal correspondence, some of the CIZ OPAs have been recovered along 

with various subalgebras. Yet we feel that this approach aiming to 

translate in terms of correlation functions the rigorous algebraic 

result in ~1 is still quite formal, so an independent direct . investiga -

tion of the c < 1 conformal theories is justified. 

Our approach is much in the spirit of that in [51, however, it is 

more explicit giving the expressions for the (4-point) correlation 

functions, not just the OP rules. We start from a (volume) integral re ­

presentation generalizing that in [3 ] which can be interpreted as aris-

ing from an electric-magnetic Coulomb gas on t h e plane. The monodromy 

invariance of the correlations relies heavily on the monodromy invariance 

of their OF-counterparts. The functions obtained are further extended 

using essential ly the monodromy factorization established in [3J, thus 

getting a large class of correlation functions sufficient, e.g., to 

describe the (O ,A ) CIZ series. The final results do not differ from 

those stated in[51, however, there are certain discrepances on which 

we comment in the text. On the other hand the approach followed here 

allows the analysis , with essentially the same tools , of a wider class 

of theories. In particular, local algebras containing half-integer spin 

fields appear naturally, paralleling the (D,A) integer spin series. 
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Furthermore, algebras of fields with a definite statistics, generaliz-

ing for arbitrary m the 7
2
-statistics of the order-disorder Ising 

model fields, emerge and in principle can be investigated along the 

same lines. 

For simplicity we consider only values of c corresponding to the 

unitary discrete series[7]. 

2. We work in the Euclidean regionj the coordinates are denoted by 

1 2 1 2 1 ,2 
z = x + lX , Z = x -ix (x ,x ) x EIB:

2 
• As usually the equiva. 

lence of the noncompact picture to the compact one (i.e. fields de -

fined on the Riemann sphere) is guaranteed by the correct asymptotic 

behaviour at infinity of the conformally invariant Schwinger functions. 

We assume that the scale dimensions (6. ,~ . ) of the p~imary fields 
1 1 

~.(x.) are given by the values selected by the Kac determinant formu­
, 1 

la La J 

= '" (0( ) d.. ( 0( - 201.. ) 0( 
l-s 1-r 

(, 1) 
"'rs 

-0( + -d. rs rs rs 0 rs 2 - 2 + 

1 
1 ~ r..( m 1~sLm+1 01. .,,- -1; 0( +0( 20( =1/lm(m+1»Z 

+ + 0 

One looks in general for conformally invariant N-point correlation 

functions (N 073) of the type 

.t 

·f( ... Z.,o<.., 
1 1 

L o(i + (s-l)o( 
L' : 1 

( .. , 

Ie \ 

I 
.u"o( , ... u ,d.. ,,' ) f("z,. ,tZ, 

J - k + 1 1 

+ (r-1) d.. 
+ 

- 20( "­I I (w, -w , ) i j 
1 J 

i>j 

=20( 
o 

+ (5-1)0( 

(201 ) 

•• v . , oc:. I" V ,0< ",) 
J - k + 

(2b) 
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ofci is an arbitrary constant for any set of contours tC) which are 

either closed , or start and end at some of the points ' zi,zi 

This integral representation can be related to an electric-magnetic 

Coulomb gas d erived from a generalized vertex representation with a 

" c harge -2c( at infinitytl. Each vertex depends on an electric a=(0(+00/2 
o 

and magnetic b=(d-~)/2 c harge r ecover ing as a particular case the 

electric Coulomb gas representation of [ 3]j(2b) expresses the conserva-

tion of the overall charges, including the screening charges ~ .The 
+ 

representation allows in general for a second charge at infin i ty"lead-

ing to two different values of the central charges for the two compo­

nents of the energy-momentum tensor (see Appendix A). 

The two-point function of a field with dimension d= e:. +.6. and spin 

s= .6.-lJ is given up to an arbitrary constant by 

where c( =2d. -d I cI.. 2 
201 

exp-i 2 s arg z12 ( 3 ) 

In particular I there are now two scalar fields of dimension Ll ( rX. ) 

represented by the pairs (20( - "" , 20( -00 J o 0 
and 

[ (0\,20( - d. ) , (2c1. - rl., c/.. )] which need not to be identified . On the 
o 0 

2-point level the charge co nservation condition ensures the symmetry 

(~,~) ~ (2d -~t 2~ -~). Assuming this symmetry (i.e., assuming that 
o 0 

any field can be equivalently represented by (d,ct) or (2~ _ ~ , 2~ - o(» 
o 0 

the c harge conservation for the general 3-point function reproduces 

formally the right and left fusion rules and allows any arbitrary com ­

bination consistent with them. Howev~rt we c~nnot expect that the gen­

eral expression (2) respects this symmetry and (or) to expect that the 

operator content extracted from (2) is consistent with the fusion rules. 

3. We shall start with an important particular case, which c an be 

looked as the straightforward generalization of the OF-integral repre­

sentation. Define the N-point 
" w _ 

(0<.,.;(.) with 201. -Lo( = (= 
1 1 I:' ;i.. '-=, i 

fun ction of the fields represented by 
" 2L b. ) = G by a formula like (2) with 

,:;1 1 
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the contour integrals replaced by a multiple 2-dimensional (volume) in-

tegra1 (in (2a) v.~ U. 
1 1 

, -, 
v. -) u. 

J J 
i.e., generalize the vertex repre-

sentation for the fields keeping the old scalar screening operators. 

Consider, for example, the 4-point function S(x
1

,x
2

,x
3

,x 4 ) with ~1 =«3= 

20<: -'(, to be denoted as 
o 

Z (0<.0<.) (0(.<>1) (P, 20( - 0) / 
o 

n 20<." _2;;.;;' 
_ z'-Jz ~J 

ij ij 
i> J 

( 4 ) 

J 
(,-. 2 

•••• Jlld Y
k 

ltd 

the integrand F is recovered from (2) with u.= 
J 

1 . 2 
y ,+lY . 

J J 

1 . 2 
v .=Y ,-lY . , 

J J J 
etc. 

Recall that the 2-dimensional integration prescription for the DF-

analogue of (4), recovered for 0= 2~o-P' ensures automatically the 

symmetry properties of the correlation under replacement of fields as 

required by locality. It implies, in particular, that the fields repre-

sented by (p.P) and (2o(o-p.2O(o-~) can be identified. 

Let us first set p= 0 = 0(., i.e., consider a 4-point fune 'tion of 

scalar fields of the same dimension 4(ol) represented now by (~,2d -~)and 
o 

(20( -ci.o{) a1ong -·wHh (o(,o{). 
o 

is an integer. This implies 

The symmetry x~x3 is ensured 

that either r=l and s=(m+l)/2 

. 2 
iff 2.6{-o() ... 20< 

(s=m+3/2). 

m+l=6(mod 4) ,or s=l and r=m/2 (r=(m+2)/2). m=6(mod ' 4). Let us consider 

in more detail the first case, i . e ., cJ...= 0( 
ls 

s=(m+1)/2 for m+l=6(mod 4). 

Then it is easily seen using the conformal invariance of (4) that it 

provides a correlation function 

S(x
1

,x
2

,X
3

,x
4

) = S(x
3

,x
4

,x
1

,x
2

) 

(2", -cl.cI.) and (01..,20( -0() can be 
o 0 

symmetric under x <4x as well since 
2 4 

= S(x
1

,x
4

,x
3

,x
2

), This means that 

identified as representing one and the 

4. Our choice of oi.. implies that 20( ""- -20<. d = 20(.;;' -20< 0( =' d-d 
- 2 - 2 - 4 - ~ 

is an (odd) integer ( cr. (2) and also Appendix B for notation), i.e. 

the exponents of the integrand in (4) differ from the DF-values at most 

by integers. The integral in (4) can be computed in exactly the same 
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way as in the OF-correlation by reducing it to a (definite) linear com­

bination of products of multiple contour integrals, obtained by a shift 
12) l2} 

of the y -integration contour in the complex y - plane (see [9J ). 

There are now only some new relative phase factors in general. The fact 

that c-c = d-d is an integer implies that the monodromy properties of 

the integral in (4) (and hence of the whole correlation) are the same 

as of its OF-analogue, for which c=c; i.e., (4) provides a single -

valued function of all coord inate differences z, . ' The explicit expres­
lJ 

sion can be rewritten in a form exhibiting its asymptotic behaviour in 

one of the channels. One obtains}up to alternating minus signs in general) 

the same "diagonal" linear combination as that in [3 J involving the 

old coefficients but with c, d, replaced by c , d, everywhere 

in the z-dependent unnormalized contour integrals (see Appendix B for 

details and explicit examples). The OP content is easily extracted 

using the results of l 3 ] . In the channel X
1

,X
2

-)X 3 ,X
4 

it reads (re -

call that 0(= 0( , m+l=6(mod 4» 
1 m+l 

2 

m 

(20< - d. ,<>... ) 
o lk 1 m+l-k 

( 5 ) 

od d 
recovering the integer spin combinations (for. r=l) of t he (A.. ,D 

m-l m+3 
2 

series. In the channel X
I

,X
3

-)X
2

, X
4 

(4) yields in this case just the 

old, up to sign changes in the coefficients, spinless content of 

(0( o()" (0< o(). *) Apparently the pairs [(0(,0<), (20(0 -.1., 2"0 -o()] and 

each " containing equivalent fields, cannot 

be identified (see also App . E), t.e. a doubling of the scalar field 

* ) 
We have difficulties in understanding the OP (5) and its generaliza-

tions following back the tensor product prescription as briefly sketche d 

in l5] - in particular precisely how 
k 

=(5-1)/2, will give for j= - anything 
4 

" k (j , j);< (j,2- j ) , k+2 = m+1 , j = 

but the content of 

Furthermore, as far as we can see, there is no trace in [5] of the 

sign changes mentioned, without which (4) would reproduce,up to trivial 

pre factors in general,the old OF-correlations. 
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of dimension D = D (0( 
1 

,.,..-t~ ) has emerged (see also [5] ). Prelim~nary .-
analysis of the local 3-point functions involving (~b ) 

lk' Im+l-k 

(,6 , A ) . . 1 d . d d ' t t h t Im+l-k 1k w1th values of kYle lng an 0 spln sugges s a we 

are actually dealing with complex fields, i.e., (o<,ot) and (20( -0( "') o , 

might be thought to represent here a scalar field and its complex 

conjugation. This interpretation should be finally desided upon after 

reconciling the sign changes mentioned above with the Osterwalder-Schrader 

(reflection) positivity of the correlations. It might. be . easier to 

demon~trate the positivity using the explic~t expre~sions ih the 

channel implying (5) • 

It is easily seen that the result in (5) does not essentially 

change if we apply (4) with 0(= 0( ,s-odd, Il.= 0= 
Is r fA ,m+l=6(mod 4). 

r "";1 
The general integer spin combinations represented by (20'- - d. k' 0( ) 

orr" m+l .... k 

or (0( ,2d... -d... ) , k-odd,appear in the R.H.S. of the extension of 
rk 0 r m+l:""'k 

(5) with summation running from I ~+<I . ( mH s- -1.- +1 to mln S+l -1, 2m+l-s- ...... ~.,). 

It is clear that for all r ~1 the scalar fields represented by 

(20( -c{ ,:;\ ) and (d.. ,01.. ) cannot be identified. 
o r'!:!±.:! r~ r':!! .... ~ 

1. L 1. l. 

5. We can further use (4) choosing P'O to represent the newborn fields 

in (5). Note that the choice 01... = oJ. , f3 =cJ.. ,Y = oJ. ; m+l-even I 

1s rk U r m+l-k 
ensures the symmetry of (4) under xl~x3 for s-odd, irrespectively 

of the values of k since 20«20<. - jl- ({) = (m-2r)(I-s)/2. Then 
, 0 

S(X
1

,X
2

,X
3

,X
4

). is symmetric (antisymmetric) under X
2

<f-)X
4 

• X
1
f!:-)X

3 
(and hence under x r) x ) if k-odd (even), m+l=6 (mod 4), or k-even (odd) 

2 4 

m+l=4(mod 4), because the phase of the factor involving x
24 

(cf. (2)) 

2 (20; - rl ) P - 2 0 (2ol - a) oro 
( ) 

m+1-2k 
m-2r 

2 
25 

rk 
(6 ) 

is an even (odd) integer. These values of k and m+1 correspond to 

integer (respectively half-integer) spin S of the field represented 
rk 

by ( 20< -p, If) or ([3,201. - 0)· 
o 0 

Since the difference c-c d-d 2d-_ ( a + [3 -201.) 2r-m is an integer 
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for this choice of f and 0 the monodromy invariance of (4) is again 

inherited from the mOnodromy invariance of the corresponding DF-corre-

lation with y = 201
0

- P . Thus (4) provides for 0. =0( , s-odd and (/ =c<. , 
() 15 ) J rk 

O=d I m+l - even, local correlation functions involving integer 
r rn+l-k 

or half-integer spin fields depending on the parity of k and m+l /2. 

We see already at this level that half-integer spin analogs of the 

(D,A) CIZ series naturally appear. Actually the series for ffi+l=4(rnod 4) 

starts, unlike the (A,D) case, already at m+l=4j it includes (LJ.
13

,O), 

(O,Ll
13

); (Ll13'~13) and the identity. (On the other hand the correlation 

provided by (4) for d.=o(13,P=d
12 

=0 ' m+l=4, coincides with its DF­

counterpart. ) 

The formula (4) can be slightly generalized further to include 

a second field represented by (0( " 
rk 

2d - 0( ,) or (20( - 0. ,,01- ,) 
o r m+l-k 0 rk r m+l-k 

like, e.g., the correlation 

< (01,01)(201
0

- o(rk' o(r )(oI , o()(o< " 2<1 - 01- ,) 
m+l-k rk 0 r m+l-k 

( 7 ) 

0( = r;;J.. I , 2s I = 2 s 
Is 

+k-k' , 
, 

k-k - even . The monodromy invariance where 
- m-2r I 

is preserved since 2d d -2~ ~ = (m+l-k-k) is still an integer. 
24 24 2. 

The explicit expression for the correlation function parallels again 

the OF ~esult leading to the OP content 

(0< , , 01 ,))< (201- -01. ,01. ) 
Is ls 0 rk r m+l-k 

L (2d - 01. ,0( ) 
o rt r m+l-t 

( 8 ) 

while in the channel x ,x~x ,x one recovers the old scalar content 
1 324 

(20( -<I ,01. )X (ei. ',2d -01. ' 
o rk r m+l-k rk 0 r m+l-k 

= L (20( - d ,201.. - 01. ) 
o lP' 0 lP 

( 9 ) 

oU 

The limits of summation in (8,9) are determined by the combination 

of the usual fusion rules for the two pairs in a given channel; in 

(8) t and k have the same parity. These formulae cover all different 

cases with the parity of k and (m+l)/2 related as explained above. 
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6. Everything above can be repeated with 0(. = d. replaced by oc: I · ets. , 
Is rl 

accordingly all restrictions on the values of m+l carryover to the 

values of m. The : integral in (4) in all our examples up to here is 
"-

very much of the type one expects i~ the SU(2) - case since it involves 

one of the screening operators (represented, by (0( ,01. ) or (ot ,o(» but 
+ + 

never both. And the results about the integer spin OPAs (for r=l up to 

n ow) are up to the subtleties mentioned above essentially the same as 

those stated in [5]. Let us restrict to the case r=l everywhere. If 

m+l = 6(mod 4) the integer spin algebra is exactly the sub algebra 

which can be extracted from t h e CIZ result with the scalar field of 

dimension 1).1 .... ~4 doubled. The lha1:O-in teger counterpart of (O,A) for 

m+1=6(mod 4) consists of 

\ (A 1 1s 
Ll 

1s 
), s-odd; ), k-even; m+1=6(mod 4)1 

m+l-k . ] 
( 10) 

For m+l=8(mod 4), we again recover the (A ,0 ) subalgebra, the 
m-1 !!1f.l 

scalar "field of dimension Ai ,...+f represented now only by ( 20( -d.,e/..) '" -r 0 

(oI,2ol -00, 0( = cf., 
o .... ;' . Its products with the sca lar fields d 

1s 
s-odd 

and the integer spin fields are exhibited in (8,9) with k', t - even. 

The (hal~-integer spin subalgebra for m+1=4(m od 4) consists of 

I (Ll D.) s-odd·, 
1s' 1s' k-odd; m+1=4( mod 4) \ (11 ) 

In both (half)-integer spin subalgebras the scalar fields are re-

presented in the correlation functions by (c/.. ,d.. ). 
. 1s 1s 

Clearly, although (4) was sufficient for the complete analysis of 

these subalgebras, there are certainly other local correlat ion functions 

involving, say, only nontrivial spin fields, which can be obta in ed 

solely through the general representation (2). Such correlations, if 

allowed, might in principle enlarge th. (half)-integer algebra (10) 

adding nonzero integer spins as well. 

7. Our next step is to generalize the results for r>l, trying to reach 

at least the generality we had for r=l subalgebras. We quit at this point 
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the volume integral representation (4) and work directly with the 

I-dime n sional contour integrals. 

The idea is to extend any of the local correlations already con-

structed)starting from (4),to a related correlation which differs 

only by a c hange of the type (0( ,d. )-'> (0( ,eX ), or (20( -0( k'O< 1 
1s Is rs rs 0 r r m+l-k 

-)(2d.. -0( I I d... 11k" etc .. Thus, e.g., one can get a scalar 
o r k r m+ -

correlation, of fields with ~imensions ~ I h 
r s r' !!!J;.l 

I s-odd I m+l - ' even I 

l 
,g:(o< d.. )(20( -d., , cI. )(d.. , 0< )(d.., 

rs"' rs 0 r ~ r ~1 rs rs r!:!±1 
to be den oted ,2..( -0' I ,) » 

o r ~ J 
• L , '-

starting fr o m its counterpart with r=l . . ) 
Leaving some details to App.B let us only sketch the idea, 

which is essentially the one used in the algorithm of lS]. The crucial 

point established in [3J is the factorization of the mono dromy transfor­

mations of the general convolution integrals in (3J. Then the monodromy 

invariance of the extended expression is a consequence of the invariance 

of its simpler counterpart bu il t via (4) and the invariance of the DF-

correlations . The OP relations one gets just in co rporate the r-depend­

ence according to the rules in l3]; e.g., ~n our example 

(ol , ol ) 1< (20< - d.. ,ol, ) 
rs rs 0 r ~ r .., ... 1 

~ 1: 
) 

m+l-k 
(12 ) 

with the usual, fusion rules dictated, upper bounds . We shall not 

write down all generalizations of (8,9) (see [5 J), let us only stress 

that they again apply to the half-integer spin fields as.well. The results 

for the OPAs generalize accordingly to these more general OP relations, 

recovering the (A,D) series along wi~h their half-integer spin counte r-

parts. 

8. The natural question arises can (4) be of some use for the investi-

gat ion of OPAs corresponding to the exceptional eIZ series. We haven't 

much to say on this at present, let us only pOint out that it is rather 

• 
A more detailed and exhaustive presentation will be given elsewhere. 
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trivial to find local 4-point correlations accommodating some fields 

among the set c haracterizing any of the (A,E) series. Indeed, there 

are combinations o f the charges, which ensure the conservation of the 

total charge, without the need of introducing screening operators and 

hence integrals. Let us give an example for m+l=18, corresponding to 

the (A' r.E ) case , The correlation 
16 7 

)(200: -01 ,c<. )(c/. ,01. )(01 ,2 -01 17) 
o r 11 rl 13 19 rl 0 r 

( 13) 

z. d.,' c:J.j Zo<' 0/, 

n 
, J 

Z, Z, 

,. >J' lj lj 

(01. 1 =0(.",)' c(1 ~1~ , etc.) is built according to (2) with only coordinate 

fa c tors surviving. Correspondingly, there is only one field in any of 

the channels; here - (6.
1 

17,L-\ 17 ), (Ll
r3

,L\,9 ) or (Llr 15,Ll
r9

), a l l of 

which belong again to the set characteristic for (A IE ). This simple 
16 7 

mechanism provides lots of examples of local 4-point (and non-zero 

3-point) correlations for any of the (A ,E) cases It can be generalized 

to include less trivial correlations - in our example (0< S,oI )-) 
1 1 f 9 

(0'.('1S' 0«,5' ), etc .. We shall not go further here since the results are 

inconclusive as far as the full d~scription of the OPAs is , concerned. 

9. Finally let us point o ut one more class of correlation functions 

which can be const ructed starting from formulae like(4). The crucial 

point in all our examples was the observation that the monodromy in-

variance of the integral in (4) was ensured by the invariance of its 

OF-counterpart since the exponents in both cases differ by integers 

(t he overall values being not changed). This allowed actually to carry 

over with small modifications the results inl3]to our case. All the 

various possibilities accommodated in (4) provided single valued 

coor dinate dependent pre factors prese~ving this invariance. Let us 

now abandon this last condition, but keep the crucial property, providing 

the link to the OF results. Then we get at most a definite valued with 

respect to any of the coordinates Zij expression. Consider for example 
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(4) with c< = oljS = P = O. s=(m+1)/2. m+1=4(mod 4). With this choice 

2 
26(ol)+2~ is a half-integer. c-c = d-d is an integer again, while 

Then (4) gives a double valued in z ,Z ,i ,z function, which 
12 14 23 34 

changes sign when x <f-'> x (or x r) x ). The simplest example is 
1 3 2 4 

provided by the value m+l=4, i.e. 

tively in the literature L2J .[1 OJ 

the Ising model, studied exhaus-

Thus (4) gives for any m+1=4(mod 4) 

a correlation having essentially the properties of the Ising model 

order-disorder correlation <: (J" r C7 f1 > 
represented by (20<. -01.01) or (0'-.20( - ol). cf.-= "', 

o 0 

determine all the other mixed functions. The 

the disorder field being 

..,tt. Formulae like (4) ..-
OP content of (~~ ,~:=.!.!Lx. , , 

( 20( - 0/. ; d.. ) is given again by a formula like (5) (but now 
o r"'~f r ...... ~1 

m+l=4(mod 4», "j .e., it yields the half-integer spin fields 

(Ll.1'. )$(.6 ,) . k=1 . 3 ..... (m-1)/2. which now enter a 
rk r m+l-k rm+l-k rk 

quasi-local OPA. It should be mentioned that such representations 

appear along with (~ _",f' LJ _ .. ) in the partition functions, invariant 
'(~ .,~ 

• L 

under a subgroup of the modular group, consistent with ~ -twisted 
2 

boundary conditions lllJ . However, the OPAs appearing here~presumably 

are inevitably larger, than those extracted from the partition func-

tions on the torus. 

As in our previous examples one can further enlarge the class of 

functions covered by (4), getting definite valued expressions (one-, 

or two-valued depending on the coordinate differences). We shall not 

pursue this aim here. Note that a similar series exists for m+1=6(mod4). 

Consider, e.g., (4) with c(=ol , s-even and p= '( =CJ.. • Repeating 
1s r~ • everything with the screening operato~ (ot+, ol-t) in (4) ~ one further 

covers all m-even values. 

While this work was in progress we received LlOJ where the order­

disorder vertex representation of L12J has been used in a somewhat 

different way for the construction of all the Ising model mixed n-point 

functions. 
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Appendix A 

Let us defi n e the Schwinger function of N fields V.(x.) in the 
1 1 

r egion of arguments 

(2) <2 ) 
x ' )x ') 

1 2 

by the general i zed vertex representation 

a 
J (x) J;(x - x.) , 

J 

-b 
J (x) 
r 

) dr ("\,S) exp J (!I,S) 
a , b 

Jd f' (A , S) 

( A • 1 ) 

( A . 2a) 

(A . 2b) 

The contour integrals in (A.2b) go from x. to 00 . The "electr i c" and 
J 

" magnetic " charges a. , b., i=1, . .. N , are real , a = 2id. , b = 2il1 , 0( , 
1 1 0 0 0 '-0 0 

Po - real . The e x pression (A.2) i s understood as a limit wh en x = R 
(2) (2) 0 

goes to infini ty (choosing R > x ). It can be given a mean i ng if the 
1 

c h arges satisfy the conservation condition 

;J 

La . 
j: 1 J 

- 20( 
o 

o - 2p 
'0 

(A.3 ) 

For ~ =O=A t h is vertex representation has been prop o sed in l12], 
o ro 

and lattice versions have been expl ored earlier, see, e,g. t [13 J . 

(Actually (A . 2) is a slight modifi cation , excluding unwanted self-

energy terms in [12J. ) 

re p resentation used in 

The choice b. = 0 , j = 0,1, .. . N, reprodu ces the 
J 

L3]. Similar representation emerges naturally in 



-15 -

field theories on a torus [14~ . It can be looked upon as providing a 

lagrangian formulation of the operator on-shell vertex constructionsj 

e.g., a. =!b . recovers chiral fields, etc. 
J J 

Using a standard Gaussian integration technique (see l12Jfor details) 

one recovers from (A.2) the general t'electrlc-magneti c " Coulomb gas 

representation exploited widely in statistical physics (see e.g. L15] 

and earlier references therein): 

J 

. exp ~ ') fa. a. 1n 1 Z .. I + 
2rg~. 1 J lJ 

, >J 

u - -

( 
24' 01.' 2"iol..· n 1 J-.. J 

z.. z. . exp 
' . 1 J 1 J 
, >J 

z = z -z 
ij i j 

(A.4a) 

g2 b . b . 1n \Z . . 1 + ig(a.b.arg z . . +a.b.arg zJ'l' ~ 
1 J lJ 1 J lJ J 1 j 

-i a.b. sign j2l) exp 
"2 J 1 lJ 

~ 
i ., 

L k
J
. a

J
. b

j 2 '-0 ,-

1 
~ • (a . - g b.) 

i-~ 1 1 
~81/g 

(A.4b) 

We rescale gb->b and set la iig =1 in what foilows. We have omi tted in 

(A.4a) an overall renormalization constant as well as a consta nt phase 

factor trivial for Po=O - it could be avoided using a less symmetric 

definition of the charges at infinity. In getting (A.4) one considers 

each V as a bilocal field defined as the product of the electric 
la, b J 

and magnetic parts; the limit of coinciding arguments depends on the 

initial mutual position of the two points as well as o n the contour C . 
J 

which might wind around them. The ambiguity created is accounted for 

by the integers k
j 

in the phase factor in (A.4a).It has been used in 

[12J to get the right statistics. We assume such a limiting procedure, 

that all k
j 

=0 and consider (A.4) in the regi o n (A.l) (or any other 

region of this type). The resulting expression in which the phase fac-
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[2 ) 
x .. 

1J 
reduce to a constant, will be 

tended beyond (A.I). For N=2 one gets in this way up to a constant 

the conformal invariant function 

ex-

(A. 5) 

with A= o{(oI - 2ol. -2~), .6= ;;£(0<-201 +2,,); here and in what foll ows 
o ,To 0 Fe 

(oll~)"E.[a,b] wh ereoJ.. ,;{, a ,b are related according t('l (A.4b). 

From the Ward identities for the 3-point functions involving the 

modified energy - momentum tenS<fr. one. 'obtains "t-he values of the .central 

6 h a~~ e s irt the model 

c = 1 - 24 (0<. 
o 

1 - 24(ol 
o 

( A , 6) 
c 

One is for .ced to set Po = 0 to ensure the invariance under space 

reflection.( Th e energy-momentum tensor components depend linearly on 

d. in. ',) However, (A.2) wi th c/....p I:- 0 might be useful in more general 
o ro 0 0 

theories. 

The second ingredient of the OF-algorithm apart from the charge at 

infini ty, leading to c ~ 1 is the introduction of the "screening !! 

operators V 
( ""±, 01 ! ) 

("'+ = cI i J",- 2 + 1 
- 0 0 " 

with scale dimensions ,6= 1 = Do, 

or of the chiral vertices with ~=1, A o (A= O,A= 1) provided by 

v ("':± ,0) , V(o,oI!) 
(d..,0) = [0{ ,01.], etc., see above). Note that both 

screening conditions have more solutions here, namely V ("" 01_) 
±, .. 

and ( V 
(2.L ,<>1.) 

o -
all of these can be effectively replaced 

by the basic combinations V(ol. ),V( of)' :!,O O, :!. 
Then (2) corresponds to 

I 
the generalized vertex representation (A.2) (N.;> 3) taking arbitrary 

number of screening vertices V (~ 
) ' V ,0 (O,ol) 

variables 
1 2 

(u,v) replace y ± iy 
2 

when y is continued in C . It is 

The 

assumed that the correlation in (2) is computed according to (A.4) -

all phases are neglected (taking , say, a sum with appropriate coeff icients 

over different regions of arguments) and the resulting expression is 

then integrated. Similarly one recovers the volume integral representa-

tion (4) using the screening vertices V (y)' 
("'+,«..) , 



-17 -

(A. 7) 

II 

2 b. 0) 
,j= 1 J 

Clearly this electric-magnetic Coulomb gas interpretation of the 

integral representations (2) or (4) is rather subtle but the original 

approach in l12] seems to be unapplicable directly here because of the 

charge 2~ at infinity. 
o 

Appendix B 

1. The general expression (4) reads for 01= 0( 
Is 

«01..0<) (2"'0 -p.t) (0<.0<) (p.201
0 
-0»= const Il 

i;>j 

;>,;.",. 
z '" ij 

( B. 1 ) 

nl 45 a - - a c - -
u .. 1 n (z -u ) (z -u.) (z -u·) (z -u. 

C b _ - b d _ - d 
) (z -u ) (z -u ) (z -~ ) (z-u) 

'. 1J . 1 J 1 J 2 J 2 J 
It J J 

where 

a.= a = b = b 2 "'_ 0(. c = 2 oIJ 201 0 - Jl); c 

a+b+c+d+2(s-2)S =-2 = a+b+~+d+2(s-2)S 

3j 3j 4j ;j 

(B. 2) 

The nontrivial phases of the pre factor in front of the integral 

in ( B . 1 ) for f= 01 .(=d. 
rk r rn+l-k 

are equal to 

- 1-s 1-s 
(c-,,) 201 0( -201 01. _(m_2r) 2c1. d. - 2,,( 0( 

1 2 1 2 2 2.. 1 4 1 4 
( B . 3 ) 

2cJ. 0( -20< m+1-2k -
01.= (c-c) 25 

2 4 2 4 2 rk 
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Denoting by l(z,1-z), z 
z12

z
34 

________ , t he appropriate limit of th~ 
z z 

13 24 

integral in (B. I ) for X
4
-) 00 , X,3 -J (1,0) I X -) a 

1 we get instead of 

( B. l) 

2"'(jl)_2A(t) l ,1 2«(2", -p~ - - .1 2oi.If 
Z(I-z~ 0 Lz(l - z~ I(z,l-z) 

/ 
(B. 1 ) 

z42 z42 

The mil t iple 2-d imensional integr a l in (B.I ' ) is reduced to contour 

integrals as ex plain ed in L9 ] , giving (for c-c - intege r) 

I(z,l-z) 
iiO( c - c)(k-l) ( . ) ~ _ 

e J
k 

b,a, c ,l- z ,.z I (a ,b, ciz,l-z) 
s+l -k 

(B.4) 

wher e ( for' z ¢ [1,00 .)-U( - 00 , O} ) 

- iS~fo,.k j""" J (b,a,cjl -z, .. ,l-z;z •.. , z)=s (a , b)p. "n dv . n duo g (u ,v ) 
k -.--~____ - ---.- ~ k "-1 J . J k-l, s -k J 

J- J- f 
s-k k _1 -tP, 

(B. 5a) 

~ a bc" abe , 25 2~ 2 ij 
g (u,v)= nu '. ( u,-I) (u. - z) n(-v.) (I - v.) (z-v)nu .. l1v .. I1(u.-v.i 

m,n j:1 J J J "'1 J J J '. 1 J . . 1 J .. 1 J 
J- ILJ d'J ~ JJ 

I (a,b, c iz, .. zjl-z, .. l-z)= 
s+l -k ~ 

s -k k-1 

,·k ) -
2... /f + 

k-I _ 
( t ) ,. 

Ma e ;;" abc 26 205 , 2 S 
h (u , v)=nu .(1-u . )(z-u . • ) Ilv (1 - v . ) (v.-z)nu .. ilv .. n(v .-u . ) 

m,n J J J 1 1 1 '. IJ '. IJ " , 1 J 
J~1 1; 1 It.J I l J IrJ 

(B.5b) 

and the integrals in (B.5) are contour integrals in the complex u,(V.) 
J 1 

plane ; the con tours C
j 

are ordere d in suc h a way that (for z-real) 

the differences u .. • i<::::J' ; Vii.:: J, I , h ave nonnegative imaginary 
1 J it jt • 

parts . The (~ .l-z ) dependence o f t h e integrals (8 . 5) is made clear if 

a c hange of variabl es vi~l-vi is performed . 
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For q = c (8.4,5) reproduces the DF result in a form, in which the 

invariance uhder the change (z,z)~(l-z,l-z) is automatic, but the 

monodromy as well as the asymptotic properties are not explicit. De­

forming the contours, (84) can be brought to a form (analogous to the 

diagonal form of [3)for c=c) in terms of integrals having simple mono-

dromy properties arouruione of the points 0,1, 

(8 .;4) brings in sign changes due to sin~(x+~) 

~ 

00. Transforming I (c) 
- J c - c _ 

(-1) sin.(x+c). 

in 

2 . Let us first apply (B .1, 4) to d...= cI. = P = 0; m+1=6. 'vie obtain up to 
13 

(single-valued) prefactors 

(B. 6) 

Now we have used the OF-notation for the 5=3 independent multiple 

1s ] contour integrals Ik(a,a,c;z)=I1k(a,a,c;z) given in general by (cf.L3 

CIO e fJO ~ 

rs , I I ( I J ,·k I"'f 1,·1 I ff., I 
Ilk(a,b, c,a,b , c;z)=clk(o,d) ndu. ndv. ndu. ndv . gS _k(u )h

k
_

1
(V). 

J=1 J r' J J~1 J J-:.1 J , 
1 0 1 0 

, I I I 2S, I 2~' \" I f 
.g ' l(u) h (v) Jl(u . -v.) n(u.-v.) cl(u,v;u,v) (B.7) 

r- 1-1 i ' 1 J .. 1 J 
~ I'J 

( , , - Z -1 
O(u,v;u,v)= Il(u.-u . ) 11 (u . . -v.) 11 

I 

a =20( 0( , 
+ f 

J 1 , " J 1 ,'.; 
~JJ J N 

, 
b =2d. 01 , etc., . , 

-2 
( v . -u.) Jl 

J 1 

'" 
-2 

(v. -v. ) 
J 1 , 

I / s-l c r 1 I is 'f) s (0) s - (6) 
e 

, etc., (cf.(B.5)), 

, I I f 
h (h is defined as in (B.5b) with a,b,c_)a,b,c (a,b,c). For generic 

values of the parameters the integrals· in lB.7) provide a canonical 

basis for z=O. 

Recalling that the leading terms in Ik( a,b,c,z) for z-')O are given 
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Ik(a,b,c;z) give contributions which differ by integer powers of z 

Note that (B.6) with the prefactors added is not invariant unde~ 

x1Hx 2, or, equivalently, under (o(i' '~1 )~(ot2,ol2) Indeed the correla-

tion function .c: (20( -01,0/) ("(,0<) ("' ,01.) ("(,2"( -0<» computed in the same way 
00 _ 

c-c 
is given up to prefactors ( and a sign (-1) ) by 

(B. 8) 

, 
-2L>(O<) (_ 2 2", l 

- z z 11-zl ) .2.(. Ik(c,a,a;z) 
1c~1 

l ] -2L> ( "') [- - J = z(l-z) z(l-z) 

We have reexpressed the z-dependent integrals in (B.B) by a change 

of variables and used that d=a=c (cf. (B.2». Comparing with (B.6) we 

see that the singlevaluedness in z12 still allows f or relative sign 

changes, the mon od romy transformation being effectively the "_square 'l 

of reversing coord inates. It is clear that we cannot identify (~,~) 

and (2~ -d,,,,) preserving the locality. Let us finally rewrite (B.8) 
o 

in the basis which exhibits the asymptoti cs for l -z ·-.,.O. We get 

(B.8' ) 

Th e last expression differs from its DF-counterpart only by the 

relative minus sign in the sum. 

3. This example can be generalized for r::J. =0( , s-odd, fl=Y=o( m+l-even. 
_ Is . J Q r'~' _ · 

The contour integrals lexp(iiT(c- C)(k -l» I (a,b,Ciz)\ are expressed 
s+l-k 

I - - l' - \ as a linear co mbina tion of the integrals expi ,,( c-c)(j-l) Ilj(a,b,c, ;z) 

in (B.7) with the same coefficients ~ ,(a,b,c) as if ccc, since 
s+l-k J 

for c - c - odd integer (s-odd) ~ . . (a,b,;) = exp(ii(~-c)(k+j» 
s+l-k J 

N 

"'­
s+l-k 

. ) 
. (a , b, c) . 

J 
Thus all off-di agonal terms will can c el as in the 

.) ~ 
This property of 0( kj (a, b, c) is much eas i er t o get than its full 

explicit expression, which we actually do not need, if we exploit the 

fact that the tw o representations for t he OF-correlations (in terms of 

a volume integral, or as a linear combination of contour integrals) 

should coincide up to an overall c o nstant, which can be fixed. 
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OF-case, while the diagonal terms enter with the old OF-coefficients 

(j(a,b,c), up to an overall constant; see [3]for the explicit "exptes­

sion. We obtain 

s 

I(z,1-z) =L (,(a,b,e) e 
J J'1 

Using the general relation 

(B. 9) 

, I I 
(a,b,c;a,b,ciz) 

A(a,a')( )A(b,b') rs 
z l-z I 

rt1..f 

, I I 

(b,a,d;b,a,djz) ,(B.10) 
HI-I., 

, 
A ( a , a') = ( s-1 ) ( a+e + l-+(s- 2) d + ( r-1 ) ( a'+e'+ 1 + (r- 2) I) ) -2 ( s-l ) ( r-1 ) , 

d = -2-a-b-e-2(s-2)6+2(r-1); d' =-2-a'-b'-e'-2(r-2)b' +2(s-1), 

one can rewrite (B.9) as 

lz(i-zl] (s-1)(a+c+1+(s-2)~) 1. 
lq 

O'j ( a , b ,'e) e 

. I
1J

,(a,b,c;z) I . (b,a,d;z) 
ls+l-J 

(B.11 ) 

In our case d = e (ef.(B.2» while the exponent of the prefaetor 

in (B.11) is equal to 20<1S(20(0-2,;(2);; 20(10(2-2011012 

The case rA= 0(15' s-odd , P=clr1k , O=o£.r' "m+l_k' m+l-even, is treated 

in exactly the same way. The final expreSSion, pi9king up the pre-

factors reads 

[ ( )J 20«2~ -N-( -)J U(20< -0) i,~(,--,)j 
z l-z 0 LZ l-z 0 -

~v. (a,b,c)e I ,(a,b,CiZ)r (b,a,d;z) 
L D J 1 J l>tI-J' 

\ 
2 ) 26(.) 2A(a)_26(J) ' _ x z)- Z J-I 
13 42 42 

(B.12) 

The integral (B.9), with the prefactors added, can be used as a 

definiti o n instead of (B.1), e xploiting the property 0(, (a,b,c) = 
J P . 

expi(S-e)n(j+p+s-1) ~, (a,b,e) of th e coefficients relating 
, . JP 

II ,(a,b,e;z)\ to \1 ,(b,a,c;1-z)l. 
J J 
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4. The expression (B.12) is our starting point for an extension 

beyond (B.1). 

Let cJ.=<f. p=c/. , O=d. 
rs r'k r ' m+l - k 

Define 

« .. , 01) (20( - G, n (01,0()( P , 20( - if»> = f (0< , a ,t; t Z .. \ ) . 
o ) 0 ) l J 

( B . 13) 

iu(c-c)j 

:1 . Lt. ( a , a , c ) if 1 ( a " a', c') e 
rs , I I rs I ,-' -

I (a,8 , c ; a,a , c;z)r .(a,B,d;a,a , d;z) 
j~r t"" J 1J 15+1- J . 

wh ere 

8=20< <:;I. =20<.. 0( +l-r b , 
- rs - Is 

c=2<f. (201 - 01 l' 
- 0 r ' k 

C =20£ oi 
- r ' m+l-k 

d=2« (20( - 01 )=-2 - a - b-c-(s-2) cl +2( 1-r) 
- 0 r ' m+l-k 

(B . 14) 

, 
8=2« of. =b I 

+ rs 
,c ' =2~ (2d -~ ), c ' =2~ d 

+ 0 r ' k + r ' m+l - k 

+2(1-s)=201. (2.0< -0< l= c ' +m+1 - 2k 
+ 0 r 'm+l- k 

and t h e pre factor f is the same as that in (B.12) with the new value 

of 01.. It is c l ear from (B.14) that a and b differ from their old 

va l ues by t h e in teger r-l. Note t h at t . (a+p , b+p,c)= O . (a,b,c+p) = 
J J 

r.(a,b,c) for p - integer (see[3J). Let r-l be even. Hence the monodromy 
J 

coefficients depending on the parameters a,b,c do not change. Then 

t h e monodromy "invariance of(B~3) is a consequence of the factorization 

of the monodromy transformatio n s, the invariance of (B . 12) and the in-

variance of t h e DF-cor r elations for s=l, 
. _I f 

Slnce d = c + even integer 

(cf.(B.14)). Using (BlO) again (B.13) can be rewritten up to pre factors 

as 
ii/(c - c)j 

L OJ ( a , a , c ) 0
1 

( a , a , c ) e 

j/ 

rs I ff rs I " -I (a a C ·a a c·Z)I .(a,a,-c,·a,a,c,'z) 
1 · """ J r+1-1 J 

(B.15) 
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For the scalar function (i.e.p=)(=<f.. ) d'=c', d =c, in (B,13). 
Uri !:!..±..! 

l. 
Choosing r-odd is sufficient since for r-even, m-r is odd, but actu-

ally the argument generalizes for r-even as well. 

Let us illustrate (B.15) by an example for m+l 6: ol =""23 = f = ({ • 

Up to pre factors one has 

[ ]
-26(0<) [_ _ ] 

~ z(l-z) z(l-z) 
, 

- 01
13

(c,Z)1
23

(C,z) 
(B.16) 

-I (c,z)1 (~,z) - I (c,z)1 (~,Z)+2[I (c,z)1 
21 11 2.3 '3 22 12 

(c,z)+oi (c,z)1 (c,z)Y 
1·2 Z2. ~ 

, 
where t= s(a'+b'+c' )/s(c') and the exact dependence of the in-

tegrals on the parameters is as in (B.l5); c=d, c'=d' .It further 

can be rewritten in the form (B.13). 
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