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ABSTRACT 

Difficulties connected with introduction of Superluminal Lorentz transformations 
both as maps between frames of a single manifold and as maps between two manifolds 
are briefly discussed. It is suggested that fibre bundles with more than one canonical 
projection should be used. An example is given in which the bundle manifold is a Lie 
group. 

1. - INTRODUCTION 

It happened several times in the history of physics that completion of a mathema..!. 

ical theory by -making it more symmetrical led to new important discoveries. Thus it 

is not surprising that the beautiful symmetry that exists between the sub1umina1 and 

Superluminal Lorentz trans.form~tions in two dimensions (one space and one time)(1) 

led to many efforts seeking the extension to the four-dimensional-case(2). 

Mathematically. one seeks an extension of the symmetry between the proper or­

thochronous and antichronous Lorentz transformations that corresponds to the physi-

(ot) Permanent address: Faculty of Mathematics, University of Newcastle, N. S. W. 
2308, Australia. 
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cal symmetry between particles and antiparticles(3). The extension should consist of 

including the change of the sign of the metric gij'" - gij within the group, and should 

correspond to a symmetry between bradyons and tachyons(4, 5). Realization of such a 

symmetry as a transformation of frames, however, meets with some difficulties. 

We shall review here the most substantial of the difficulties and suggest a gener­

alization of the concept of a frame that could help to avoid them. 

2. - SUBLUMINAL AND SUPERLUMINAL FRAMES 

Consider a manifold M with a coordinate system xf', I' = 1, ... , n, and a metric 

g : 

( I) 

Forming the bundle of linear frames on M we can define a basis of the tangent 

t b (hl'al- f'. . - 1 )(X) h hf' . t·bl t . vee or space Y i ox, 1- , .•. ,n ,were i are Inver 1 e nxn rna rIces 

with the inverse h~. Then the metr ic of the frame is given by 

_ 1'1 I' vI v_ 1''' g . . -g(h.aax, h.oax )-h.h.g (x). 
IJ x 1 J 1 J I'V 

(2) 

When a passage to another frame is made by means of the action of the general linear 

group 

the frame metric transforms as 

a
j ~ GL(n; 1Rt), 
1 

(3) 

(4) 

A Lorentz frame i s characterized by gk~ being diagonal with the appropriate nur:: 

ber of + 1 and - 1 terms on the diagonal. The Lorentz group leaves such a frame me.,! 

ric-invariant , while the Lorentz group extended by Superluminal transformations 

should contain a transformation that changes the sign: 

(5) 

(x) The usual summation convention is used throughout. 

12 
• 



- 3 -

It is well known that such a transformation exists only for a metric containing e­

qual numbers of + 1 and - 1 terms on the diagonal(4, 6), but that simple argument is 

usually connected in literature with many other considerations so that it , may be 

worthwhile to show it here. 

Let gij be diagonal with s elements + 1 and r elements - 1, r + s = n, 

note the corresponding matrix G. We seek a square matrix A such that 

T 
A GA = - G. 

Writing down A in the column notation 

we have 
T 

0 for i f j u. Gu. , 
1 ~J 

T 
- 1 for i 1, ••• • s. u . Gu. = 

1 ~1 

T + 1 for i = 8+1 •.. ·. ,n. Ui G!3i = 

and de-

(6) 

(7) 

( 8) 

If. say, r> s, then there exist at most s ortho~ormal vectors while eq. (8) requires 

r of such vectors. Similar argument applies to r <. s. Matrix A of course exists for 

r = s. 

Thus for the realistic case of metric (+1, +1, +1, -1) such a straightforward ex­

tension of the Lorentz group is not possible. It is one of the reason why during ace!:. 

tain period it became very popular to consider theories based on a six-dimensional 

space-time with three space and three time coordinates(7, 4). 

It could be of some interest to note that in principle one could also consider con­

structions with non-square hi. Namely, the Latin indices could run from I to 6 with 

g .. being (+1, +1, +1, -1, -1, -1), while the Greek indices referring to the actual Sp! 
1J . 

ce-time manifold would still run from 1 to 4. 

The mathematical system corresponding to such a construction would be a prin­

cipal fibre bundle with a four-dimensional base manifold and GL(il,m) structure, pr! 

sumably reducible to the extended Lorentz group structure. However. one would need 

an embedding of the bundle of frames of the base manifold into such a larger bundle, 

and to define it one would probably encounter the usual difficulties connect.ed with eli 

mination of superfluous dim ensions. 
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3. - TWO SPACE-TIME MANIFOLDS 

The approach described in the preceding section was based strictly on transfor­

mations of frames in a single manifold with a fixed metric. Indeed, gl'v(x) of eq. (2) 

was never assumed to change when the frame metric transiormed according to eq. 

(4) . An alternative approach is to try to describe the special Superluminal transfor­

mation as a map between two space-time manifolds that changes the sign of the me.!. 

ric. Such a map may be non-linear, which may seem to eliminate the difficulties d~ 

scribed in the preceding section as well as elsewhere in the literature. However, if 

the map is a smooth manifold map, then the induced mapping of the tangent vector 

spaces is a linear map(8), The metric is defined as a bi-linear product on the tan­

gent vector space, and thus the metric inversion is again required to be carried out 

by a linear map. We have to conclude that also a non-linear but smooth point-to-point 

map between two manifolds transforming g,.."v into - gJitV is ruled out. It was sugges.l 

ed that a type of mapping called "quasi-catastrophe" should be employed(9), but the 

program was never carried much beyond the original suggestion. 

4. - GENERALIZED FRAMES 

The usual construction of the bundle of frames that describes the space-time m~ 

nifold together with its metric and its parallel translations starts with the base man..!, 

fold. A fiber composed of frames is attached to each point of the base manifold and 

the: larger bundle manifold is created. A canonical projection in the bundle manifold 

maps the fibers back to the pOints of the base manifold. The success of such a descriE. 

lion, not only for the space-time structure but also for electromagnetic, weak, and 

even strong interactions where the construction does not originate from the base ma­

nifold, suggests an idea that the actual fundamental space is the bundle manifold. 

The canonical projection can be then connected with our physical ability of per­

ceiving such a generalized space. Indeed, the action of the structure group along the 

fibers of a fiber bundle is directly connected with physical measurements. In the case 

of a bundle of frames, measurements of angles and velocities correspond to the Lo­

rentz group elements, and in the POincar~(lO) or de Sitter(ll) structured bundles also 

measurements of displacements are added corresponding to the translation group el! 

ments . Once the philosophy of the bundle manifold as being fundamental is adopted, it 

is easy to imagine that some manifolds may have more than one canonical projection, 

each with its own structure group acting on the corresponding fibers. Each of the pr£ 

jections is thus associated with a class of observers using a common measuring techn..!, 
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que. For example. one can have two such projections, one associated with bradyonic 

observers. the other with tachyonic observers. Such a structure is described in the 

next section. 

5. - LIE GROUPS AS BUNDLES WITH MORE THAN ONE PROJECTION 

When one looks for examples of fibre bundles with more than one canonical pro­

jection, one should consider structures that are geometrically more homogeneous 

than the bundles artificially constructed from a base manifold and a group. Such stru.£ 

tures are Lie groups, since if H is a closed subgroup of a Lie group C and G/H is 

the corresponding quotient manifold. G can be considered as a principal fibre bundle 

with the structure group H and the base manifold G/H(8). Using different subgroups 

one can obtain different projections in the same bundle manifold. For our purpose we 

may try to have two projections with the Lorentz group being a common subgroup of 

both structure groups. This reflects the usual assumption that the Lorentz group acts 

equally on both subluminal and Superluminal frames . The two projections should be 

then distinguished by the translational part of the stru·cture group. We choose a repr! 

sentation of a Minkowski space by a de Sitter structured bundle in the spirit of ref. 

(11). This has more desirable properties than a Poincar~ structured bundle. In addi­

tion to those properties discussed in ref. (11), it is important for our purpose that the 

de Sitter translations have a well defined non-singular inner product naturally deter­

mined by the geometry of the group manifold. Let Lij and Pi' i, j • 1, •.. ,4, denote 

the ten generators of the (4,1) de Sitter group. Then the invariant Killing product of 

the de Sitter translations is after the appropriate normalization 

(9) 

where gij is the diagonal Minkowski metric (+1, +1, +1, -1). For the generators Lij 

and Q
i 

of the · (3,2) de Sitter group we have 

( 10) 

The simplest group that can accomodate both de Sitter groups as subgroups is the 

14-dimensional group generated by L . . , P. and Q. with the commutation relations 
1J 1 1 

fL .. , P k] • gjkPi gikPj ; ri· ·,QkJ • gjkQi - gikQj ; ( 11) 
~ 1J - 1J 

[P., pl - L .. ; [Q. , QJ • L .. 
1 J_ 1J - 1 J 1J 
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and 

( 12) 

If its group manifold G is considered as a principal fibre bundle with the struc­

ture group H, generated by L .. and P. and the base manifold G/H, there are two 
1J 1 

c r oss-section that describe a Minkowski space in the sense of ref. (11). Namely the 

four-dimensional abelian subgroups generated by Qi + Pi and Qi - Pi respectively. 

With a connection in G being the invariant connection where the horizontal direction 

is determined by Qi we can write the horizontal lift of 0i = Qi + Pi as 

(13) 

Similarly for the other cross-section we have 

Q. = o. + P .. 
1 1 1 

(14) 

The two cross-sections thus correspond to Minkowski spaces connected by space 

and time inversion. We can also say that the gauge trasnformation that carries one 

cross-section into the other represents such a discrete space-time transformation, 

or that the two cross-sections corresponds to part i cles and antiparticles. 

The same group manifold viewed as a principal fibre bundle with the structure 

group H2 generated by Lij and Qi and the base manifold G/H 2 also generates Mi!! 

kowski spaces using the two cross - sections. However, the translations are now me~ 

s ured in the Q-direction instead of the P-direction, leading to the opposite metric. 

In this way the group manifold possesses the same kind of Z(4)x Lorentz group sy~ 

metry as described in ref. (4). 

The I4-dimensional Lie group described above is not semi - simpl e . Geometrical 

studies in the group manifold may thus be hindered by the fact that the group metric 

is singular. It is, however, easy to extend the group by one more generator. D with 

commutation relations 

(15) 

and to replace the relation (12) by 

( 16) 

constructing the 15-dimensional group SO(4,2). Also this group considered as a de 

Sitter structured fibre bundle with the invariant connection generates a four-dimen­

sional Minkowski space in the sense of ref. (11) . Although the base manifold is now 
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five-dimensional, the cross-section generated by Q. + P. and D departs from the hor 
11-

izontal direction (given by Qi and D) only in four dimensions. The fifth dimension de 

fined by D remains unobservable since D is horizontal. 

In conclusion we should stress that there is no hope of deriving from the above con 

struction any kind of direct mapping (linear or non-linear) between two Minkowski s~ 

ces wHh opposite metrics. In order to arrive at some physically interpretable conclu­

sions one will have to .define, at first, an event in the group manifold. and then derive 

the description of the event by the two kinds of observers whose observational possi­

bilities reduce it to an event in a Minkowski space. 
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