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ABSTRACT

We investigate the mathematical and physical properties of the Generalized Lorentz
transformations (both sub- and Super-luminal), The form here adopted for the Superlumi
nal Lorentz transformations is the one -recently introduced by us - which satisfies the re
quested group-theoretical properties. We clarify the réle of the rezinterpretation procedu
r& also from the formal point of view, for both the "longitudinal" and "transverse' coor
dinates. Careful at‘ention is devoted to define four-momentum and three-velocity for
tachyons, At last, the shape of a tachyon - obtained by applying to an ordinary particle a
generic Superluminal Lorentz transformation (without rotations) - is studied. As a sim-
plifyingtool, we make recourse also to the "light-cone coordinates" and to "dilation-invar
iant" coordinates, A
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1. - INTRODUCTION

Recently the Generalized Lorents transformations(l) (GLT) Eooth subluminal (LT) and
Superluminal (SLT)] have been rewritten in a form satisfying the requested group-theoretical
properties(z), such a new form reducing to the previous one by Mignani and Recami in the par
ticular case of collinear boosts,

Namely, in Refs, (2, 1) it has been shown that

-

sLT(U) = tsfLr@] ; @/T; uzc/u
(1)
S=il
so that the group G of all subluminal and Superluminal Lorentz transformations results to be
= ot :
& = &£ 8@ )

z4 {41t {41, -1, +1, -1}

(2)

where .2”: represents the ordinary (proper, orthochronous) Lorentz group, The group @ has,

in particular, the properties(l's)
det @G = +1, ¥ GEeG ; (3a}
GeG@ = -GG, 7 GEG ; (3b)
GEG = [Gea | YOO Eed (3c)

and of course

tS8e@

From eqs, (1) it follows that S is the "transcendent" SLT (i.e,, it corresponds to U — o).
Within the formalization adopted in Refs, (2, 1), the four-position x* is supposed to be
a vector even with respect to @ (i.e., to be a G-fourvector), so that the quadratic form
d_\c”’dx‘u is a scalar under LT's and a pseudo-scalar under SLT's (in particular, under the
transcendent transformation S). In other words, the GLT's are unimodular and special, and

such that the L'T's are orthogonal whilst the SL'T's are anti-orthogonal :

GTG =+ 1 (subluminal case : u2<c2); (4a)

2 2,

G G-=-1 (Superluminal case: u2> e {4h)

Let us notice that @& is non-compact, non-connected and with discontinuities on the light

cone ; moreover, its central elements are
C = (+1, -1, +il1, -ill), (5)

The new group G of the GLT's is the following extension of the group -Q’.I:



@ = B!, crT, 9, (2")

since the operation -1 has been shown“" 1-3) to be equivalent to the ordinary CPT(I"&)
-1 =PT = CPT.

Notice that our "new" GLT's, eqs. (1), do agree with our Refs. (1-4), but slightly dis-
agree with the form adopted in Refs. (5).
In the particular case of boosts along x, the SLT's take the simple form (in natural

units: c¢=1):

t':-'—-j_—_—t-ux :_T_i__-IJ_t
J1-u2 Ju2 o1
I_Superluminal case
x 3% . S0 T lU2>1;u21'-1; (6)

L-u? e 'Uz-l :LUzl/u

y' = liy; z'="_'iz;

the problem of interpreting eqgs. (6) has been exploited in Refs. (2, 6). In Refs, (2) we also jus
tified why we call "traasformations" the eqgs, (6). Here, let us only recall that in the 2-di-

mensional case the reinterpretation is straightforward, since the transcendent operation

1
0) through the similarity transformation

10) o 1) ,
B gl SSNECy 2 g (7

where T is a unitary transformation,

?) goes into (?

2. - THE GLT's BY DISCRETE SCALE TRANSFORMATIONS

What precedes can be rewritten in a more compact form by following the philosophy out
lined in Refs. (7), i.e. by making recourse to the language of the discrete (real or imaginary)
scale—transformations(ﬂ 3
ds'2 = desz p -92 =T, (8)
For instance, the GLT's can be of course rewritten as follows :

G = 9@3’_1 (211)

where 2 1is the discrete group of the dilations D: x"L = gx‘u‘; with 0= * 1, ti.



More formally, let us introduce the new, scale-invariant (or dilatation-invariant) coor

dinates
'qlug kxiu‘, (k=.i.-1, tl) (9)

where k is the intrinsic scale-factor of the considered object”'g).
Notice that, under a dilation D, it is n';“ = n,u* with ”fu = u'x;j ; while k' = o1k,

The important characteristic of the present formalism is that, under all the GLT's of

the group @, the quadratic form clcl2 z dnpd'qy' is invariant(x):
dg® = o’ , ¥ GEG . (10)

Notice moreover that, under a generic proper orthochronous Lorentz transformation
Legl, itholds gt = thn” 5 w -k,
It follows that - when going back from the coordinates ?}'u', k to the ordinary coordinates

x¥ - the generic GLT =G can be expressed as (x' = Gx)

¢ =wlpe, [ x,e =t1, ti"
k= 01k (11)

t
Le¥’ .

As it must be, the subluminal Loorentz transformations are the LT =1L and the Superluminal
ones the SLT =%Til., In other words”}, bradyons (antibradyons) correspond to k=+1 (k= -1),

whilst tachyons and antitachyons corresponds to k= 0,

3. - GENERALIZED (SUB- AND SUPER-LUMINAL) BOOSTS 8 IN THE "LIGHT-CONE
COORDINATES"

It is already known'?) that the ordina ry subluminal boosts along x can be rewritten in a

more symmetric, compact form in ferms of the coordinates
E=t-x; C= t+x; ¥ Z, (12)

where the first two coordinates refer to two new axes which are obtained from the axes t, x

by means of an Euclidean, anti-clockwise 45%-rotation (See Fig, 1). We shall call &, { "light
-cone coordinates" (even if they are sometimes, rather incorrectly, named "infinite-momentam-
-frame coordinates"). Namely, a proper orthochronous boost along x, with relative (subluminal)

speed u, can be written

z , (0 <a c+oo) (13)

Ereeg; L£'f@ i g @

(x) - Its sign included.



*
F=1-% }Etf)(
X
FIG. 1 - The '"light-cone coordinates"
g =t-x and § =t+x correspondtotwo
axes £, { which are obtained from the
axes t, x through an Euclidean, anti-
-clockwise 45°-rotation.
a-a”t 2
— L u< 1, (=1 zne®l; uizn, (13")
i g

where parameter. ¢ is any real, Eositive number a,

It is interesting to notice that in the present formalism the Lorentz boosts along x cor-
respond just to a dilation of the coordinates §, { (by the factor @ and a‘l, respectively). In
particular, the identity-transformation (u=0) corresponds to a=+1; the boosts along the po
sitive x-direction correspond to 1 <a <+ ; and the boosts along the negative x-directioncor
respond to 0 <a <1, For a-> +o we have u — 17 ; and for a -» 0" we have u = -(17), It is
apparent that

o =e, (14)

where R is the "rapidity".

By using this formalism, it is immediate to recognize that the proper antichronous
(= non-orthochronous) subluminal Lorentz boosts along x will correspond to the negative
(real) a-values: - < a - 0; together with y'=-y; z'=-z. Of course, the relative speed u
will run again within the same range: -1<u<+1, even in correspondence with the new (ne-
gative) values of a,

Similarly, the Superluminal boosts along x will corresponds - now - to the imaginary
a-values ; together with y'= Tiy; z'= tig, |

More precisely, egs. (13) can be extended to express in synthetic form all Generalized
(both sub- and Super-luminal) Lorentz boosts along x, by means of the discrete scale para-

(+)

meter p, as follows

E'= gak ; ¢ = ea~lg y' =ey: z! = 0@
(15)

e=*t1, *i, (0<a<+m; u2=ui§-1)

(+) - In this Section, for convenience, we shall represent by u the boost relative speeds both
in the sub- and in the Super-luminal cases.



where it should be noticed that a is any real, positive number, Such egs, (15) represent the
Generalized boosts(Z) before their reinterpretation; that is to say, they are equivalent in the

Superluminal ~ase to eqs. (6). Eqs. (13') must be generalized as follows:

a-a'l
ey i 2 2

a+a (u =ux?:1; D<a<+m) (15")
a= pa,

where u represents here the (relative) speed both of sub- and of Super-luminal boosts. Eq.
(15'") reduces of course to eq, (13') in the subluminal-boost case, In the Superluminal-boost
cases, however, eq.(15') can be derived only afler the reinterpretation of the first couple of
eqs, (15) (i.e. after the interpretation of the meaning of g = Fi ia the first couple of eqs. (15)).
For such a dalicate question, see Refs. (2); soon we shall touch again this point, Here, let us
anticipate thai the reinterpretation procedure of the first couple of eqs. (15) - as given in Refs.

(2) - is equivalent to rewrite them as follows :

Er=eaf ; Pr=eetlf; yreey; 2 =0z 2 2
MS=ag 21 (15 bis)

azToa; e=%1, F5. ag(0, +m) ,

1

wherefrom eqgs, (15') can be straighforwardly derived, See the following (eqs. (22)).
In conclusion, if B represents a generic boost along x, then all Generalized (sub- and

Super-luminal) boosts can take the form (15) with (.5"+ = _‘f’_: u ..?_,_"; azpa; D<ac<+o):

Bc—_,‘t’_ﬁ: 0<a<+m &= 0 = +1 9 9 (16a)
(u =ux<1}

Be.f!jj: - <a <0 &= 0 = -} (16b)

Beig, . azia; -u)fa.l:!—u)4="g=fi; (u2=u§>1). (16¢c)

In particular, it is immediate to check that in the case of Superluminal boosts (¢ = Ti) from

eq. (15') it actually follows :

i; 0<a<+m) (17)

Of coursz, all Generalized x-boosts (eqgs. (15)) preserve the quadratic form, except for

its sign:
o 2 2 2 2
Bt = 1" < w” = @%EE syt - 2. (0% = £ (18)
Let us briefly come back to the problem of deriving eq. (15') in the case of Superluminal

boosts, by observing that the change of the quadratic-form sign can be obtained either by writ

ing down eqs. (15) and (18) with p= i, so as we did before, or by writing (instead of eqs, (15),



and only for the case of Superluminal boosts) :
g=ak; o= aatlE = ody;  z'=-iz; (i=ui>1;0<a<+am) (19)
K} 3 .Y ) 1 x 3

0]

where the real a €(0, + @) ; or rather - in more complete form

Er=8f; L =W ypecigys 2eeidg, (u2=ui>1;—00<-?i<+w)(19')

Il

now with real a£(-o0, +). Eqs.(19') are the transcription of egs. (6) in terms of the coordi-

nates given by egs. (12). It follows that in particular

1 PN |

el vl laes e, w-la@ 1y
t—z(ama )t-z(a-i-a Y23 x—z(a a )x-2(a+a )t,
go that for the relative boost-speed one obtains:
\«+'v-
u=% =a+al; u2>1; (20)
dx'=0 a-a

where eq. (20) should be compared with eq. (13'). Notice explicitly that the procedure express

ed by these eqs, (19)-(20) does correspond to our reinterpretation of the first couple of egs. (15)

given in Refs, (2) (i.e., egs,(19') coincide with egs. (15bis) for the Superluminal case).

To ‘ormalize the whole matter (i, e, the previous reinterpretation-problem) let us take
advantage - at this point - of the (discrete) scalz-transformation language introduced in Sect. 2,
That is to say, by substituting the dilation-invariant coordinates 7 = kx# for x* (and thus by
"generalizing" definitions (12)), let us eventually define the following scale-invariant "light-

-cone coordinates" :

[\~
w

p=n°-11; ywz=n+ql, 92, g (21)
In terms of coordinates (21), the transformations (15) can be written
pr=ap; wo=aly; p2.p2. pi3.p3, :
(la] Z1;u=n,) (22)

k'=polk; azpa: e:51,%i; a&o, +m);

where, as usual, o= T yields the subluminal, and ¢ = Ti the Superluminal x-boosts, Now,

+11 Generalized boosts (eqs.(22)) preserve the quadratic form, its sign included:
2 2
g - @22 - (82 = gy - (12)? - (%7 (23)

It is important to emphasize that egs. (22) in the Superluminal case yield just egs. (19'),
that is to say they automatically include the reinterpretation of the first couple of egs, (15) or

(16), as given in Refs, (2), In particular, in the Superluminal-boost cases, eqs. (22) have the



advantage over egs, (15) of yielding the correct Superluminal relative speed without any need
of reinterpretation ; actually, from egs. (22) one derives exactly eq.(15'), for both subluminal
and Superluminal boosts (without any explicit need of reinterpretation),

The more difficult problem of the generic velocity-composition-law will be considered

in Sect, 6.

We want here to observe that our coordinates @, v (or &, {) are so defined that u is

subluminal whenever in egs. (22) the quantities o and a-! have the same sign: sign(a'l)

|1}

= gign(a); and u is Superluminal whenever a and a'l possess opposite signs: sign(a‘l)
= -sign(a),

In what follows we shall touch the question of interpreting the second couple of egs, (15),
or (6), or (22), following Refs, (6). The problem of geometrico-physically interpreting in the
Superluminal case the second couple of eqs. (6), (15), (15 bis), (19'), (22) has been exploited in
Refs. (6), but only for the case of Superluminal boosts along a space-axis (let us call it x):

Cf. ¥ig. 2, and Refs, (6). Below, we shall extend those results,

"
Y Yr ‘ Y

|

() (b) (e) (<)

=
>
x-

FIG. 2 - Let us consider a particle which is intrinsically spherical, i, e. that is a sphere
in its rest-frame (Fig. a). Under a subluminal x-boost it appears - of course - as ellip-
soidal (Fig. b). Under a Superluminal x-boost it will appear as in Fig, d. Fig, ¢ refers

to the limiting case when the boost relative speed u — c. (It is understood that these fig

ures refer to the solid objects got by rotating them around their axes of abscissas). Cf.
also Refs. (6) and the text.

Another problem we shall deal with is generalizing eqgs. (15'), (17), (20) for the case when

the Superluminal velocity is composed with a non-zero initial velocity,

We are going to consider also some applications of the previous formalism,

4. - A SIMPLE APPLICATION

A first example to show the power of the present formalism is finding out howtg) a 4-di

mensional (space-tima) sphere

9
t2+xz+y“+zz=A2, (24)



that is to say

§2+%§2+y2+22=A2, , (24")

(S]]

deforms under a Lorentz transformation, Let us first consider a subluminal boost (eqgs, (13)).
Since the first two coordinates result to be merely scaled by the factor a €(0, w), we immedi
atly get that eq. (24') in terms of the new (primed) coordinates rewrites:

+2.,2 2

a‘2§'2+—%— @ PV y'2 + z'2 = A", (subluminal casejq&(0, + o)) (25a)

B =

which in the new frame is a 4-dimensional ellipsoid,

In the case of a Superluminal boost [eqs. (19", (15 bis)], eq. (24') can be rewritten - in
terms of the new, primed coordinates - as

a g2 y? g% a%, (Superluminal case ; a €0, +)) (25b)

DO =

a°2§'2+

o3| =

which in the new frame is a 4-dimensional hyperboloid.

Notice explicitly that this example (i.e., transforming under GLT's a 4-dimensional
set of events) has nothing to do with what one performs usually (in fact, ordinarily, one con

siders a world-tube and then cuts it with different 3-dimensional hyperplanes).

5. - ON THE PHYSICAL INTERPRETATION OF SLT's

We would like to extend the whole reinterpretation-procedure(z' 6) (of the whole set of
four equations constituting a SLT) to the case of Superluminal Lorentz transformation with-
out rotations, i, e, of a Superluminal boost L(ﬁ) along a generic motion-line 4. Let us first
realize such an aim in terms of the ordinary coordinates x”" A Superluminal Lorentz trans-
formation (without rotations) L(ﬁ), according to eqs, (1), as a 4x 4 matrix will write (ﬁ'//ﬁ;
u=1/U):

7 uyn )
L(T ;x*) = iL@x") = i ; (26)
_uynr d;«(y—l)nrns

=112 0
Y = (l-uz)| / 3 (0" < 1; U2>1) (26")
where L(ﬁ') is the dual (subluminal) boost along the same (generic) direction L, Quantity n
is the unit-vector characterizing the boost motion-line \ : nrnr = -1 =-112), The unit-vector
n points in the (conventionally) positive direction along L, Notice that u, U may be both pos-

itive and negative, and that ung = u_.

Let us observe that eq. (26) expresses L(ﬁ} in its "original" form, not yet reinterpret

ed. Of course, L(-I}; }_c‘"‘) can be considered as obtained from the corresponding Superluminal



2 0 =

boost Lo(x, U) = B(x) along x through suitable rotations [Lo(x, U) = iLg(x, u)]:

il 0 0 0
0 n n n
L(T;x" = RTIBOR; R = 2 i % (27)
g T=Rn. aA
0 ny ny nynZ
2
0 -1 -Anynz 1.- Anz
-1
A =11 +nx) i (27")

where B(x) is given by egs. (6).

It is important to underline that in Refs, (2, 6) we have been able to reinterpret the SLT's,
eqs, (1), only in the case of Superluminal boosts along an axis (so as assumed in Sect, 3). Now,
to reinteriret also the Superluminal transformation L{TJ.; x*) in eq, (26), let us compare L(U)
with T(U) :

i(ﬁ;x‘u’) = R—IE(X)R . (28)

where B(x) is now the (partially) reinterpreted version(2s 1) of eqs. (6) for the Superluminal
casell,2,6) .

AR Bl b ok N TR o0

W= = o 3
1/1-1:12 U2-1

x'= T —t;l."_)i'_) = 5 X;Ut ; (Superluminal case (6 bis)
V1-u? AR, nfide ~URS 1y Uz ilfa)

y' o= fiy; 2ok Amy

We adopt eqs. (6 bis) even if only the first couple of them appears as actually "reinterpreted"
in real terms, since in Refs. (6) we already showed how to interpret the imaginary units ap-
pearing in the last couple of eqs, (6 bis) (at least in some relevant éases) ; we shall take ac-
count of that in the following.

In connection with the (partially reinterpreted) eqs. (6bis), let us recalllls 6) _ inciden
tally - that the Generalized Lorentz boosts, both sub- and Super-luminal, can be writtendown

in a compact form and in terms of a continuous parameter 8 & |-0, 2:5] ag follows :

x' = ﬂyo(x-ttgc); t' = Qyo(t-xtgc); 5
(u” $1; 02022m)

y' = -Qéy: z' = - Q6z,
with
2
uitgg; .Q=.Q(0)5.E_§_g_.62; 6 = + 1't50 ;
Icos 0l |1 -tgz 0'

yoa+(|1-tg20|)"1/2; 0<0<2m;



&0 =

such a torm'1) of the GLT's shows explicitly how the various (positive or negative) signs in
front of x' and t' and the various (real or imaginary, positive or negative) "signs" of y' and
z' do succeed one another(l’ 6) as functions of u, or rather of 8, (Notice that in this last pa-
ragraph u? £ 1),
From eqs. (28) and (6 bis) we get for the Superluminal transformation i
-uy -¥ng

T xM = * w2 <1; r,s=1,2,3) (29a)
o’ id_+ (i+upn’ng [ ;

where y is defined in eq. (26'), with |ul <1, Egq.(29a) can however be written also as follows

- iF 'U‘fns
LO;x% =1 i - (U=1/u; U*>1) (29b)
Uyn' iés+(i+?)nrns :

where now 7 e l(U2 - 1)"1'/2, with U=1/u; u2 ). U2> 1. Notice explicitly that, even if the

SLT's in their original mathematical form are always purely imaginary, the SLT's in their

"(partially) reinterpreted" form appears to contain on the contrary complex quantities: But
this is not a problem, because the origin of those "complex quantities" is evident and we know
- of course - how to interpret them.

We have just to compare the matrices (29a) or (29b) with the matrix in eq, (26), includ-
ing in it its imaginary coefficient, in order to get an interpretation of eq. (28) analogous to the
one forwarded in Refs, (1, 2, 6) for the Superluminal boosts along x. Namely, the reinterpre-
tation will procede - as usual - in two steps: The first step consists (cf. also Sect. 3) in re-
interpreting the space-coordinate along the motion-line £ and the time-coordinate ; the second
step consists in interpreting(s) the imaginaries entering the transverse space-coordinates,

For instance, let us compare eq, (26) with eq. (29a), apart from their double signs :

t' = iyt+ipungx® ; xF = —qupn"t+ 16 x% - 1(7-1)n"ngx® ; (26)
t' = -uyt - ynsxs : x'F = yn¥t + iO:xs+ (uy +i)nrnsx'a . ‘(29a)
* * ®
First Step - To reinterpret (in terms of real quantities only) the time-coordinate and the
space-coordinate along the motion-line, one has to adopt the following reciEe (notice that
r, E 0 = -ngx®):

You can eliminate the imaginary unit in all addenda containing y as a multiplier,

provided that you substitute t for r, = -ngx® and -n_x% for t.

Let us emphasize (following Refs. (2)) that - when dealing with a chain of GLT's - such a rein




&4

terpretation-rule has to be applied, if necessary, only at the end of the chain(+).

Second Step - In the second ones of eqs. (26) and (29a), if we put T = X = (x,y,2) and ©' =
=X'= (x',y',2'), we can write T ?" +_13_ , where ?“ & (r )n and 'r?_L E'?-r,,ﬁ =T - (F-0)n.

Then, eq, (29a), e.g,, can be written:

T o= -I.“" +—;L' = pt-ury)n+ix . (29¢)

After having applied the "first-step Recipe", we are left only with the following relation
- , -
nlow i (30)

to be reinterpreted yet, i, e. only with the imaginary terms (not containing y as a multiplier):

()" = i(8] +n"n )x°, (30")
which enter only x'", Of course, -13_ is a space-vector lying on the plane orthogonal to the
boost motion-line, and therefore corresponds to two further coordinates only,

Since those terms (eq. (30')) refer to the space-coordinates orthogonal to the boost di-
rection, their imaginary "sign" has to be interpreted so as we did in Refs, (68) for the trans-
verse coordinates y', z' in the case of Supeluminal x-boosts (Cf. Fig. 2).

This means that, if the considered SLT is applied to a body PB initially at rest (B =
bradyonic = slower-than-light; for simplicity, let it be spherical in its rest-frame), we shall
finally obtain a body Pp (T = tachyonic) moving along the boost motion-line b with Superlu-
minal speed V =U, such a body P - however - being no more spherical or ellipsoidal in shape:
The tachyon Pq, will appear, on the contrary, as occupying the spatial region confined between
a two-sheeted hyperboloid and a double cone, both having as symmetry-axis the boost motion-
-line L. See Fig, 3 and Refs. (). More precisely, let us consider the vector ?l‘ in eq. (30),
once eliminated its imagiiary "sign" (i,e., the vector iﬂl ) ; since 'r'-:_ lies on the plane orthog

onal to {, it can be described by the two coordinates ri &N, r?_ = Z such that
¥t =HN Zt =g (30M)

and the coordinates |Y'l = Y'/i =Y and |Z'| = Z'/i = Z express the fundamental sizes of the
"fundamental rectangles n(6) which individuate the double-cone shape, i.e, the fundamental
asymptotes of the two-sheeted hyperboloid (see also the following). In other words, quantities
Y'/i and Z'/i (together with quantity 4X = .V_l?ﬁ'-;: cf. Fig. 3) allows us to determine the éhape

of the tachyon. Fig. 3 refers to the simple case when Py is intrinsically spherical: More in

(+) - Let us recall also that, after the reinterpretation, the SLT's loose their group-theoreti
cal properties 2),
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FIG. 3 - If we start again from a spherical particle Pp as in Fig, 2a, then -
after a generic SLT without rotations, i.e. under a Superluminal boost along
a generic motion-line ¥ - we get what represented in this figure. In this case,
the tachyon P, occupies the spatial region confined between a two-sheeted hy
perboloid and a double cone, both having as symmetry-axis the boost motion-
-line t, Such a structure (the "tachyon shape") travels of course along £ with
the speed V =U of the Superluminal ¥ -boost. Notice that, if P is not intrin-
sically spherical (but e. g. ellipsoidal, in its rest-frame), then the tachyon-
-shape axis will not coincide with £, and its position will depend on the speed
V of the tachyon itself, For the cases when the space-extension of thetachyon
is finite, see Refs, (6),

general, the axis of the tachyon-shape will not coincide with * (but will depend on the tachyon
speed V =U). The double-cone semi-angle a is given(s) in our present case by the relation
tga = (V2 - 1)'1/2.

To clarify the above (second) step of our reinterpretation, it is necessary to add some
comments : (i) We do not aim to consider - and reinterpret - the GLT's when they are applied
to a vacuum point : In fact, the main teaching of Special Relativity is that each observer has a
right to consider the vacuum (i. e. the space, or the ether if you like) as at rest with respect
to himself(10) ; (ii) We do apply - and reinterpret - the GLT's (in particular the SLT's) .only
to transform the space-time regions associated with physical objects ; where we assume the
existing objects to be essentially extended (as required by the relativistic theories(1ls 6'4)'),
so to consider the point-like situation only as a limiting case; (iii) When considering an ex-
tended-type physical object, we adopt the symplifying convenction of referring the frame-axes

to its symmetry center,
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We have finally to pass from coordinates x# to coordinates of the type (12). We defined
eqgs. (12) for the case of x-boosts. In the case of boosts along the generic motion-line £, let

us generalize definitions (12) as follows:

3 -
)-r'Ll

O g stor ; El s ¢ =ten, ; T= (6%, ¢ (31)

=B =y -
where ¥, Bpen; and r, =

s -
terizable by two components only, so as r, .

T- (?-E}E. Notice that 7_.-;‘; (gz, §3) is a space-like vector charac-

In terms of these new coordinates, eqs, (26) can be rewritten as (a<(0, +m))
£°= 0a8®; pl-algl; p®3- 0823, -ty (32)

eqs, (32) represent the SLT's (without rotations) in the original, non-reinterpreted form, To
reinterpret the first couple of eqs. (32) it is enough to remember defs, (31) and apply the rule

in the previous recipe, i.e.

omit i ; and T 1
The consequences in eqgs. (32) are:
LRETAT TR LR R L AT (33)

where £'0, g‘] are now real but nevertheless correspond to Superluminal relative motion,
due to the change of sign in §'C (see Sect. 3).
Such a reinterpretation can be easily formalized (i, e, "automatized") by making re-
course to dilation-invariant light-cone coordinates, and pr"oceding in analogy to egs. (21)-(22).
As to the imaginary "signs" of g‘z- 3, the interpretation procedure is just the same as

for y', z' above,

6, - THE VELOCITY-COMPOSITION PROBLEM

In Sect, 3 we left open the velocity -composition problem,
First of all, let us observe that dx*/ds does not represent a G-fourvector (since dx"
is a G-fourvector but ds2 is a pseudo-scalar under SLT's); therefore, the four-velocity and

the four-momentum, in order to be G-fourvectors, are to be defined :

(=8
=

p_ dx [z

- ptz myu (34)

u

Wil
o,

T
o
for both tachyons and bradyons ; where dro is the (G-invariant) proper-time element(l'z).

Now, from our SLT's in their original (not yet reinterpreted) from (28), it is immediate
to obtain that, if ul“u“ = 41, then

uat= -1,

i
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so that we expect a SLT to transform bradyons B into tachyons T, and vice-versa, However,
since the velocity (in particular the 3-velocity) does refer to the already interpreted situation,
it is better to start from the reinterpreted form (29) of the SLT's. (In any case, when starting
from egs. (25) one has soon after to apply the reinterpretation-rule contained in the "first-step
recipe", Sect, 5).

Let us for instance start from SLT's (without rotations) in their form (29b), and apply
a SLT along a generic motion-line ¥ with Superluminal speed U z1/u (U2> 1; u? < 1), to the
case of bradyon Pp with (initial) four-velocity uM and (initial) velocity V. For the purpose

of generality, it is essential that ¥ and T are not parallel, We get (r,s = 1,2, 3)(*):

uw'® = -7+ Uusng) = -F(u®- Uu,) ; (U =1/u; U 152 1)
(35)
T = +F (004 uSn o’ + 167+ uBngn®) = - (ay - DuO)n” + i)

S

where u;= -u'n il

g3 vl zul+un u” =u¥ -y 0", where T is still the unit vector along #, and

P= (U2 - 1)‘1/:2 so as in eq. (29h). Let us observe that uw'® is real, and that the second one of
eqgs, (35) rewrites:

o . l..l“'Ul.Io 9
u! =2 -u'n_ = -}'(u"-UuO) = i ——— L Ly, (3~ 1) (36)

where uj is real too and only w! is purely imaginary. Notice that u,, uy (u), u}) are the
longitudinal (transverse) components of the space-part of the object four-velocity, with re-
spect to the boost motion-line %,

At this point, let us define the 3-velocity V' for tachyons in terms of their 4-velocity

u'? as follows(l’ 2) s

S AL 0 1

u = i u = oy W (J =1,2,3) (37}
V2o

From egs. (36), (37) it follows :

Ueryy 1 -uv, A ey ivl\/l—uz
1 = 1 . L | =
V|| UvIl -1 vy -u ! VJ. A Uv" -1 vy -u ‘ (38)
(U2> 1% !.12<.1; u=1/0)

where once more |l and L mean parallel and orthogonal, respectively, to the boost motion-

-line {. It should be noticed that

%

I

|H
|_<:l

; Vj‘_ =i (38")

=t

~
vV,
|

(%) - One should pay attention to not confuse the boost speeds u, U with the 4-velocity com-
ponents ut of the considered object,
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where % is the transform of v under the dual (subluminal) Lorentz transformation Lﬁ?), with
wz=1/U; 3//0.

Again, V“' is real and V' is purely imaginary. However v g always positive, so that
|v'| is real; actually, from eqs. (38') it follows:

R i,
it tavte Wl | mi
Mort in general, from eqs, (38) one derives for the magnitudes the "Terletsky relation":

2 (1-v31-u?
% i T,

(1-U-v)

2

{ =17 e 1 UZ,V'2> 1) (39)

which - incidentally - has been shown elsewhere'l: 2) to have general validity and to be G-co-
variant (i, e, to hold for any values, sub- or Super-luminal, of v, U, V'),

It is worthwhile to recall explicitly that egs. (35), (36) and (38), since they have been de
rived from the (partially) reinterpreted form of the SLT's, do not possess any morel?) their
group-theoretical properties, For instance, egs. (38) cannot be applied when transforming (un
der a SLT) a speed initially Superluminal(z).

We do not pass here to the light-cone coordinates, since nothing would essentially change.

Eq. (39) shows that, under a Superluminal Lorentz transformation (U2> 1), a bradyonic
speed v goes into a tachyonic speed V', But we have still to discuss the presence of imaginary
units in the components of the tachyon 3-velocity transverse to the SLT motion-line (cf, the
second one of eqs. (38)). To such an aim, we have to remember what said in Sect. 5 for the
transverse coordinates, in connection with the "second step" of the reinterpretation procedure:
See eq. (30") and the comments following it [we are going to work under the same conditions
(i) ~(iii)].

Under those circumstances and conditions, we can interpret V_ﬂl and Vj_z in analogy
with Y', Z', or rather in analogy with pj'[, p'z.

Namely : Let us consider, in its center-of-mass frame, an initial, spherical object vwith
center at 0 whose external surface expands however in time for t 2 0; that is to say, let us

consider in the initial frame the following "symmetrically-exploding spherical bomb" :

0£x2 +y° + 25 % (R +w)°, (t> 0) (40)
where the initial (t =0) radius R of the "bomb" and the speed v of the "spherical explosion"
are fixed, constant quantities. Let us now pass to a second observer, moving e, g. along the
x-axis with Superluminal relative speed - U, The first limiting-equality in eq. (40) gives rise
- as we already know - to a double cone with the x-axis as its symmatry-axis, and moving
with speed V =U along the axis x=x', The second inequality in eq, (40), when expressing it in

terms of the Superluminal-frame (primed) coordinates, transforms into



L
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(41)

& (V2 1)32 - 2t'Rv J'v"" sl VS s vz}t'z . (x'>t'/V)

i

FIG. 4 - Let us start from a spherically symmetric object P whose radius,
however, for t =0 changes with time: r =R +vt. In its rest-frame, Pg re-
mains always spherically symmetric, Under a Superluminal x-boost we get
a tachyon P, with a complicated shape and time-evolution, This figure re-
fers to the case when vV < ¢2, quantity V being the tachyon speed (i.e., the
relative speed of the Superluminal boost), It actually depicts the simple case
when v<<c /V In all cases, however, the initial (bradyonic) "exploding
bomb" Pg transforms into a final (tachycmic) "bomb!" P, which "explodes"
in two _jets that remain confined within the double-cone. Notice that the limi
tation x'=t'/V should be added to these pictures, The arrows in this figure
indicate velocities that are slower-than-light with respect to 0'; that is to
say, the vertex 0' of the douhle-cone travels (of course) with the Superlumi
nal speed V, but the hyperholoid sheets move with subluminal speed with
respect to 0',

The same results may be obtained, more elegantly, expressing eq, (40) - or, rather,

the equation of the "bomb" world-cone - in Lorentz-invariant form (for the subluminal ob-

servers) :

Ex‘u'+by')u B s g
Bapithh € o o 5 s . .
(xyﬁ%b‘u)(x +bi) & o £(1-v") (xﬂ+bﬁ)(x +b5
" (40"
Xy'u‘u?,U .

and then passing to the Superluminal observers just remembering that the SLT's invert the qua

dratic-form sign. Egs. (40), (40') refer, actually, to a truncated "world-cone", In eq, (40'),

quantity xM = (t, x, ¥, z) is the generic event-vector inside the world-cone, vector uf is the
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four-velocity of the "bomb" center-of-mass, and b = w*R/v.
When in eq, (41) it is
vl (41')

the equality sign in eq. (41) corresponds to a two-sheeted hyperboloid, whose position relativ-
ely to the double-cone - however - now changes with time, The :istance between the two hyper

boloid vertices, for example, reads

vy - vy =20 -2y [eevEon e VST (42)

2

When ia eq, (41) it is on the contrary vV > 1, the geometrical situation is more compli-
cated.

But, in any case, the "exploding bomb" is seen by the Superluminal observers to "ex-
plode" always remaining confined within the double -cone(6: 12},

This means the following: (i) as seen by the subluminal observers, the (bradyonic) bomb
explodes in all space-directions, sending its "constituents" e, g. also along the y aud z-axes,
with speeds Vg Vo respectively; (ii) as seen by the Superluminal observers, however, the
(tachyonic) bomb looks to explode in two "jets" which remain confined within the double-cone,
in such a way that no constituents of its move along the y' or z'-axis: In other words, the
speeds V.‘Y, \/"z of the tachyonic bomb constituents "moving" along the y', z' axas, respectively,

would result to be imaginary(s' 12),
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