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ABSTRACT 

We investigate the mathematical ami physical properties of the Generalized Lorentz 
transformations (both sub- and Sllpe r -Iuminal). The form h t> l:"e adopted for the SuperlumJ. 
nal Lorentz transformations is the one -recently introduced by us - which satisfies the r~ 
quested grollp-theoretical properties. We clarify the rOle of the r e interpretation proced~ 
re a130 from the formal point of view. for both the Il longitudinall! and ll transverse u coor 
dinates. Careful at~. ention i s devoted to define four-mome ntum and three-velocity for -
tachyons. At last. the shape of a tachyon - obtained by applying to an ordina r y particle a 
generiC Superluminal Lorentz transformation (without rotations) - is studied. As a sim ­
p1ifyingtool~ wemake reCOurse also to the Ulight - cone coordinates II and to Udilation-invar 
iant ll coordinat es . 
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1, - INTRODUCTION 

Re cently the Generalized Lorents transformations(l) (GLT) [both sublurninal (LT) and 

Superluminal (SLTO have been rewritten in a form satisfying the requested group-theoretical 

properties(2) I su c h a ne w form reducing to the previous one by Mignani and Recami in the paE 

ti cul ar case or collinear boosts . 

Namely, in Refs . (2,]) it has been shown that 

(1) 
s ~ in 

so that the group (!; of all subluminal and S'lperluminal Lorentz transformations results to be 

«;; = 5!'J H@ (4) 

~ ( 4 ) ot ~/l} ~ t + 1, -1, +i, -I} 
(2) 

where ,!ft represents the ordinary (proper, orthochronou s) Lorentz group , The group G has , 
+ 

in pa t~ ~ icular , the properties(1 - 3) 

and of course 

det «;; = + J 

Gt«;; ~ - G<i«;; , 

GttGi- ~ iGb~G; , l,f r; t (G~ 

(:ja ) 

(3b) 

(3c) 

!-i'rom l~( lS . (1) it follows that S is the ntranscendent rl SLT (i. e,. it corresponds to U -+ roL 

Within the formalization adopted in Refs, (2 , 1), the four-position xlk is supposed to be 

a vedor even with respect to (Gt (i. e, J to be a G-fourve~tor), so tha t the quadratic form 

dx,udx.,u is a ~ cabr under LT's and a pseudo-s c al~-.!: under SLT ' s {in particular. under the 

transcendent transformation S' . In other words, the GLT 's a r e unimodular and special , and 

such that the LT's are ~tlOgonal whilst the SLT 's ar e anti-orthogonal: 

(4a ) 

(Superlumin al case: u 2 > c 2). ( 41) ) 

Let us notice that G is nOIl-c:)mpact, non-connected and with discontinuities on th e light 

cone; moreover, its ce ntral elements are 

CC:. (+D, -D , +;1, -in) , 

t The new group C of the GLT ' s is the following extension of the group !R+: 

(5) 
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(G; = E(YJ. CPT. S) • (2 ') 

since the operation - n has been shown(4, 1-3) to be equivalent to the ordinary CPT(l-4) 

-n_PT =CPT. 

Notice that our !1newtt GLT's, eqs. (1), do agree with our Refs. (1-4), but slightly dis­

agree with the form adopted in Refs . (5). 

In the particular case of boosts along x , the SLT's take the simple form (in natural 

units: c=l): 

t' ~ i t -ux + i x - Vt - ---
~ ~ 

r ~",'"m,"~ ""l 
x' = :- i 

x - ut 
; -+ i 

t - Vx 
I U2> l' u 2 or:::. 1 . ----

~ ~ 
: ' , 

Lv ;l/ u 

y' = ~iy; z' = : iz ; 

(6) 

the problem of interpreting eqs. (6) has been exploited in R~fs. (2 ,6). In Refs. (2) we alBo ju,! 

tified why we call Utra~'1sformationsn the eqs , (6). Here, let us only recall that in the 2-di ­

mensional case the reinterpretation is straightforward, since the transcendent operation 

S ::. 3~ _ (~ ~) goes into (~ ~ ) through the similarity transformation 

(
i 0) (Ol)Tt 
o i =T 10 (7) 

wher~ T is a unitary transforma tion, 

~ . . - THE GLT's BY DIS<;'RET8 SCALE TRANSFOR~TIONS 

What precedes can be rewritten in a more compact form by following the philosop!:ty au.! 

lined in Refs. (7), i. e. by making recour~e to the language of the discrete (real or imaginary) 

scale-transformations(?) : 

(8) 

For instanc~. the GLT's can be of course rewritten as follows: 

(2 ") 

where !j is the discrete group of the dilations D: x' = fiX with n - + 1 +i J.t 'I( p.; 'I( - - • - • 
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More formally . let us introduce the new. scale-invariant (or dilatation-invariant) coor 

dinates 

(9) 

where k is the intrinsic scale-factor of the considered object(7. 8). 

Notice that , under a dilation D , it is 11~ = '11-1-' with '1~ ;:: krX~; while k ' = Q-1k. 

The important characteristic of the present formalism is that, under all the GLT's of 

the group (Gi, the quadratic fo rm da 2 :: d1}p..d1]fL is invariant(x): 

( 10) 

Notice mOt'~over that, under a generic proper orthochronous Lorentz transformation 

L t::2'1. it holds TJ'/.L = ~"., 11 

It follows that - when going back from the coordinates 1]1-'-, k to the ordinary coordinates 

xJ1. - the generic GLT = G can be expressed as (Xl = Gx) 

-I G=k'Lk, _1 +·1 
( ll) 

As it must be, the sublum in al Lorentz transformations are the LT = ,!L and the Superluminal 

ones the SLT =~ iI .... . In other words(7). bradyons (antibradyon~,) correspond to k =+l ( k = -1). 

whilst tachyons and antitachyons corresponds to k = ~ i. 

I .. - GENERALIZED (SUB- A!W SUPER-LUMINAL) BOOSTS B IN THE "LIGHT -CONE 

COORDINA TES " 

Tl is already known(9) that the ordinary subluminal boosts along x can be rewritten in a 

more symmetrics compact form ill terms of the coordinates 

s,t-x; y; z, (12) 

where t he first two coordinates rerel' to two new axes which are obtained from the axes t . x 

by means of an Euclidean, anti-clockwise 45 0 -rotation (See Fig. 1). We shall call S, ~ "light 

-cone coordinates tl (even if they are somp.times, rather incorrectly. named "infinite-moment·.lrn-

-frame c oordinates"). Namely, a proper orthochronous boost along x, with relative (subluminal) 

speed 1I, can be written 

y' = y ; (0 < a < +(0) (13) 

(x) - Its sign included. 



FIG. 1 - The ~ ' light-cone coordinates H 

S ~ t - x and ~ =- t + x correspond to two 
axes 5, ~ which are obtained from the 
axes t, x through an Euclidean.. anti­
-clockwise 45°-rotation. 
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-1 
u- u 

a + a-I 
u 

2 
u < 1 • 

where parameter . a is any real, positive number a, 

t 

(13') 

It is interesting to notice that in the present formalism the Lorentz boosts along x cor:­

respond just to a dilation of the coordinates S. ~ (by the factor a and a-I, respectively). In 

particular. the identity-transformation (u = 0) corresponds to a = + 1 ; the boosts along the p~ 

si tive x-direction correspond to 1 <.a .( + OJ; and the boosts along the n egative x-direct ion co£. 

respond to 0 < a < 1. For a -+ +00 we have u -+ 1-; and for a _ 0+ we have u -+ -(1 -). It is 

apparent tha t 
R a = e ( 14) 

where R is the "rapidity", 

By using this formalism. it is immediat.e to recognize that the proper antichronous 

(= non-orthochronous) subluminal Lorentz boosts along x will correspond to the negative 

(real) a - valUt~s: - CD < a '. 0 ; together with y r ;:: _ y; 'z r ;:: - z. Of course, the relative speed u 

will run again within tlIe same range: -1.( u < + 1. even in correspondence with the new (ne­

gative) values of a. 

Similarly. the Superlurninal boosts along x will corresponds - now - to the imaginary 

a-values; together with y' = ~iy; z';:: ~iz . 

More precisely. eqs, (13) can be extended 'to express in synthetic form all Generalized 

(both sub- and Super-luminal) Lorentz boosts along x. by means of the discrete scale para­

meter e. as follows(+): 

t, 
> y' = flY; Zl = QZ ; 

(O<a<+oo; 
(15) 

(+) - In this Section. for convenience. we shall represent by u the boost relative speeds both 
in the sub- and in the Super-luminal cases. 
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where it should be noticed that a is :1:1Y real, positive number. Such eqs . (15) represent the 

Generalized boosts(2) before their reintel'pretaUon; that is to say, they are equivalent in the 

Superluminal ·-: ase to eqs, (6). Eqs. (13') must I)e generalized as follows: 

u 
a _ a-I 

a + a-I 

a ~ ga 

(15') 

where u represents here the (relative) speed both of sub- :1nd of Super-luminal boosts. Eq. 

(lS') redu ces of course to eq. (13') in the subluminal-boost case, In the Superluminal-boost 

cases, howeve r, eq, (15') can be derived only after the reinterpretation of the first couple of 

eqs . (15) (i. e, after t.he interpretation of the meaning::lf Q = ~i to'l the first couple of eqs. (15». 

For' Sitch ."1 ,ldicate question, see Ref." (21; s oon we ::;\1a11 touch again this point. Hece, let us 

anticipate that the reinterpretation procf!dure of the first couple of eq<;;. ( 15) - as given in Refs . 

(2) - is equivalent to rewci~e them as follows: 

s' = Qa S 
(15 bis) 

a ;. ~ pa; 06(0, +(0) 

wh erefrom eqs. (1.~)I) can be straighforwardly deriv e d. See the following (eqs. (22» . 

In conclusion, if B reprt!sents a generic boost along x, then all Generalized (sub- 3.nd 

Sup0r -Iuminal) boosts can take the form (15) with (2+:: !I!: U !R}; a;::. pa; 0 < a..;: +00); 

B <o!f~ O..(,a<+oo -Q +1 } 2 2 
( 16a) 

(u = u < 1 \ 
B <0 !fl -oo<a<O <=> - 1 

x 
(1Gb) 

+ 
Q 

B E::i2'+ - .. (u 2 2 
(J 6e) a;;. i a; -0> a , , u, Q _ 1 ~ U ., 1) 

~ 

Tn pa1"ticular, it is immediate to check that in the case of Superluminal boosts (e = '! i) from 

eq. (15 I) it actually follows: 

u 
a + a- 1 
-----:r , 1 . ( p = ~ i; 0 < a.( + 00) ( 17) 
a-3 

Of CClIP' L~, all Generalized x-boosts (eqa. (15» preserve the quadratic form, except for 

its sign: 

2 2 2 2 
z' = Q (s' - y - z ) . (18) 

Let us briefly come back tt> the p roblem of deriving eq. (15 1) in the case of Superluminal 

boc)!jts, by observing that the change of the quadratic-form sign c an be obtained either by wr~ 

ing down eqs. (15) and (18) with p = ~i., so as we did before, or by writing (instead of eq.s. (15), 
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and :>nly for the case of Superlurninal boosts) : 

s' = as ; y ' = - iy ; z' ::: -iz; (u 2 = u 2 
> 1· 0 <a < +col (19) 

x ' 

where th e real a ~(O, +(0); or rat:ter - in more complete form(l) -: 

y' = - i I~ I y; ZI ::: 
2 2 N 

(u =u ">1; -00 <. a <..+oo){19 1
) 

x 

now with real a~( - 00, +00), Eqs. (19 1) are the transcription of eqs, (6) in terms of the coordi­

nates given by eqs . (12). It follows that in particular 

1 ~ v -1) t r =-{a-a t 
2 

1 .... .... - 1 
"2(a+a )x; 

80 that for the relative boost-speed one obtains: 

dx I a+a- 1 
u::: - ::: . dt __ -1 ' 

dx'=Q a-a 

2 
u >1 (20) 

where eq. (20) should be compared with eq. (13'). Notice explicitly that the procedure expres~ 

ed hy these eqs. (19) - (20) does correspond to our reinterpretation of the first couple of eqs. (15) 

given in Refs. (2) (i. e . • eqs. (19') coincide with eqs . (15 bis) for the Superluminal case). 

To ~orma1iz(~ the whole matter (i. e. the previous reinterpretation-problem) let us t.ake 

advantage - at this point - of the (discrete) scale -transformation language introduced in Sect. 2. 

Tha t is to say, by substituting the dilation-invariant coordinates '1]P-:::. kXP- for xJ.L (and t hus by 

Itgeneralizing l1 definitions (12)). let us eventually define the following scale-invariant IIUght­

-cone coordinates 11 : 

'12; (21) 

In terms of coordinates (21) , the trans:ormations (15) can be written 

'P' aCf; 'ii' = a- 11jJ '1,2 = '12; '1,3 : '1 3 
; 

(lu I -:1;u=ux ) 
k' Q-1k a ~ pa; Q ' t 1, ! i; a <:'(0, +(0) ; 

(22) 

where , as usual, Q=! 1 yields the subluminal, and Q = -!i. the S'Jperluminal x - boosts . Now, 

ell Generalized boosts (eqs . (22)) preserve the quadratic form, its sign included: 

(23) 

It is important to emphasize that eqs . (22) in the Superluminal case yield just eqs. (19'), 

that is to say they automatically include the reinterpretation of the first couple of eqs. (15) or 

(16), as given in Refs. (2). In particular , in the Superluminal-boost cases, eqs. (22) have the 
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advantage over eqs. (] 5) of yielding the correct So.lperluminal relative speed without any need 

of rcint-erpretation; actually. from eqs. (22) one derives exactly eq. (15 1), for both s u blum inal 

and SU;lerlurninai boosts (without any explicit need of reinterpretation). 

The more difficult problem of the generic velocity - composition-law will be considered 

in Sect. 6. 

We want here to observe that our coordinates f}' . 1Jl (or 5, ~) are so defined that u is 

sublu minal whenever in eqs . (22) the quant ities a and a - I have the same sign : s i gn( a- 1) 

sign(a); and u is Superluminal whenever a and a- I possess opposite signs: sign(a-1) 

- sign(a). 

In what follows we shall touch the question of interpreting the second couple of eqs. (1S), 

or (6), or (22), following Refs. (6). The problem of geometrico-physically interpreting in the 

Superluminal case the second couple of eqs. (6), (15), (15 bis), (19'), (22) has been exploited in 

Refs . (6). but only for the case of Superluminal boosts a long a space-axis (let us call it x): 

Cf. Fig. 2, and Refs. (6). Below. we shall extend those results. 

y y' 
y" 

111111 x x' 

(, ) ( b) ( c ) 

FIG. 2 - Let us consider a particle which is intrinsically spherical, i. e. that is a sphere 
in its rest - frame (Fig. a). Under a subluminal x-boost it appears - of course - as ellip­
soi dal (Fig. b). Under a Superlumi nal x-boost it will appear as in Fig. d. Fig, c refers 
to the limiting case when the boost relative speed u - c. (It is understood that these fiK 
ures refer to the solid objects got by rotating them Elround their axes of abscissas), Cf. 
also Refs. (6) and the text. 

Another problem we shall deal with is generalizing eqs, (l5'). (l7) . (20) for the case when 

the Superluminal velocity is composed with a non- ze ro initial velocity. 

We are going to consider also some appli cations of the previous formalism. 

4. - A SIMPLE APPLICATION 

A first example to show the power of the present formalism is finding out how(9) a 4-di 

rnensional (space -tima) sphere 

t
2 2 2 2 

+x +y rz (24) 
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that is to say 

(24 ') 

deforms under a Lore!ltz transformation. Let us first consider a subluminal boost (eqs. (13)), 

Since the first two coordinates result to be merely scaled by the factor a ~(O~ 00). we immedi 

aUy get that eq. (24') in terms of the new (primed) coordinates rewrites: 

(subluminal casei a€(O. +00» (25a) 

which in the new frame is a 4-dimensional ellipsoid. 

In the case of a Superlurninal boost ~qs. (19'). (15 bisil, eq. (24') can be rewritten - in 

terms of the new, primed coordinates - as 

I -2.,2+ I 2,,2 ,2 ,2 _ A2 '2 8 ':l '28'!) -y -z - , (Superluminal case; a E(O. + 00)) (25b) 

which in the new frame is a 4 -dimensional hyperboloid. 

Notice explicitly that this example (i. e., transforming under GLT's a 4-dimensional 

set of events) has nothing to do with what one performs usually (in fact, ordinarily. one con 

siders a world-tube and then cuts it with different 3-dimensional hyperplanes). 

5. - ON THE PHYSICAL INTERPRETATION OF SLT's 

We would like to extend the whole reinterpretation-procedure(2, 6) (of the whole set of 

four equations constituting a SLT) to the case of Superluminal Lorentz transformation with ­

ou~ rotations, i. e , of a Superluminal boost L(U) along a generic motion-line t, Let us first 

realize such an aim in terms of the ordinary coordinates x I-L. A Superluminal Lorentz trans­

formation (without rotations) L(U). according to eqs. (1), as a 4x4 matrix will write (u//U; 
u • I / U) : 

(26) 

2 -1 / 2 
y.(j-u) ; (26') 

where L(~) is the dual (subluminal) boost along the same (generic) direction t, Quantity n 
is the unit-vector characteri zin g the boost motion-line l: nrnr = - 1 = - \ ri 2 \. The unit-vector 

n points in the (conventionally) positive direction along t. Notice that u, U may be both pos­

itive and negative, and that uns = us' -Let us observe that eq, (26) expresses L(U) in its "original II form, not yet reinterpre.!. 

ed, Of course. L{U; ~I-L) can be considered as obtained from the corresponding Superluminal 



- 10 -

boost Lo(x, U) • B(x) along x through suitable rotations [Lo(X' U) = iLo(x, ul]: 

1 0 0 0 

0 nx n n 
-- I" 1 Y z 

L(U;x ) = R- B(x)R; R ~ 
2 

0 - ny 1 - An -A~nz y 

(27) 

0 -Anynz 1 - An 
2 

- n z z 

-1 
A = (1+11) , 

x 
(27 ') 

where B(x) is given by eqs. (6). 

It is important to underline that in Refs. (2~ 6) we have been able to reinterpret the SLT's, 

eqs. (1), only in the case of SLlperluminal boosts along an axis (so as assumed in Sect. 3). Now, 

to reinteriret also the Superiuminal transformation L (D; xli in eq. (26), let us compare L(U) 

with L(U): 

(28) 

where B(x) is now the (partially) reinterpreted version(2, 1) of eqs. (6) for the Superluminal 

ease(1, 2, 6): 

t' 
+ x - ut t - Ux 

~ 
+ 

,J1T1 

x' + t -ux x - ut (Superluminal case (6 bis) j; _ u 2 
+ N-1 u 2 ,< 1· U2., 1 ; U I / u) -

y ' :: ~ iy ; z' -~ .~ iz. 

We adopt eqs. (6 bis) even if only the first couple of them appears as actually It r einterpreted 1l 

in real terms, since in Refs. (6) we already showed how to interpret the imaginary units ap­

pearing in the last couple of eqs. (6 bis) (at least in some relevant cases) ; we shall take ac .. 

count of that in the following. 

In connection with the (partially reinterpreted) eqs. (6bis), let us recaU(l. 6) - incide~ 

tally - that the Generalized Lorentz boosts, both sub- and Super-luminal, can be wrItten down 

in a compact form and in terms of a continuous parameter Q .e [0. 2nJ as follows: 

x' .Qr(x-ttgQ); t' .Qro(t -xtgQ); 
0 2 

(u ~I 1 ; 0~Q~2n) 
y' - .Qdy ; z' - .Q6z, 

with 

tg Q ; .Q = .Q(Q) "-
cos g 

6
2

; 6 +~ u ~ 

leos QI • h -ti QI 

Yo - + ( 11 _ tg2 Q I ) -1 / 2 ; O!,:g~2n; 
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such a formO) of the GLT's shows explicitly how the various (positive or negative) signs in 

front of x' and t' and the various (real or imaginary, positive or negative) II s igns" of y' and 

z' do succeed one anotherO, 6) as functions of U , or rather of Q, (Notice that in this last pa­

ragraph u 2 ~ 1). 

From eqs. (28) and (6 bis) we get for the Superluminal transformation L: 

L(U;x'1 = :: (_u r 

rnr 
(u2 < I; r, S = 1,2,3) (29a) 

where r is defined in eq. (26 ' ), with I u 1< 1. Eq, (29a) can however be written also as follows 

+ (U ;.I/u; (29b) 

where now r. (U 2 _ 1),1/2, with U ~ I/u; u 2 <..1; U 2> I. Notice explicitly that, even if the 

SLT's in their original mathematical form are always purely imaginary, the SLT's in their 

lI(partially) reinterpreted II form appears to contain on the contrary complex quantities: But 

this is not a problem, because the origin of those ucornplex quantities!! is evident and we know 

- of course - how to interpret them. 

We have just to compare the matrices (29a) or (29b) with the matrix in eq. (26). includ­

ing in it its imaginary coeffiCient, in order to get an interpretation of eq. (26) analogous to the 

one forwarded in Refs. (1, 2,6) for the Superluminal boosts along x. Namely. the reinterpre­

tation will procede - as usual - in two steps: The first step consists (cf. also Sect. 3) in re­

interpreting the space-coordinate along the motion-line t and the time-coordinate; the second 

step consists in interpreting(6) the imaginaries entering the transverse space-coordinates. 

For instance, let us compare eq. (26) with eq, (29a) , apart from their double signs: 

t' = iyt+iyunc;;xS ; (26) 

t' '(29a) 

First Step - To reinterpret (in terms of real quantities only) the time-coordinate and the 

space -coordinate along the motion-line, one has to adopt the following recipe (notice that 

r = -r"'n = -n x S ) ' 
II - S' 

You can eliminate the imaginary unit in all addend~_~~i_nin~ _ r. _~.s . ~ !!!u~!fEl.!~r:, 

provided that you substitute t for: rl\ :. - nsxs and - nsxs for t. 

Let us emphasize (following Refs_ (2» that - when dealing with a chain of GLT's - such a rein 
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terpretation- rule has to be applied~ if necessary, only at the end of the chain(+), 

Second Step _ In the second ones of eqs. (26) and (29a), if we put r "X " (x, y, z) and • r' _ 

-+ _..... ...,:. .~ -:;. .... -..;. - (- -)-::. x' .;: (x t. Y t, z'), we can write r = ru + r1 J where ru c (rll)n and r1 ;:. r - r l ! n ;;. r - r' n n. 

Then, eq, (29a). e. g. , can be written: 

(29c) 

After having applied the "first-step Recipe ll
, we are left only with the following relation 

-r' 
~ 

( 30) 

to be reinterpreted yet, i. e. only with the imaginary terms (not containing y as a multiplier): 

'(_ )r 1 r1 
(30') 

which enter only x ,r Of course, rl. is a space - vector lying on the plane orthogonal to the 

boost motion-line, and therefore corresponds to two further coordinates only. 

Since thos e terms (eq. (30')) refer to the space-coordinates orthogonal to the boost di­

rection, their imaginary "sign" has to be interpreted so as we did in Refs. (6) for the trans­

verse coordinates yr, z , in the case of Supeluminal x-boosts (Cf. Fig. 2), 

This means that, if the cOI1Ridered SLT is applied to a body P B initially at rest (B :: 

bradyonic :: slower-than-light; for simplicity, let it be spherical in its rest-frame). we shall 

finally obtain a body P T (T -:: tachyonic) moving along the boost motion-lin e c.. with Superlu­

minal speed V :: U, such a body P T - however - being no'more spherical or ellipsoidal in shape: 

The tachyon P T will appear. on the contrary, as occupying the spatial region confined between 

a two-sheeted hyperboloid and a double cone, both having as symmetry - axis the boost motion­

-line t. See Fig. 3 and Refs. (6). More precisely, let us consider the vector rl in eq, (30). 

once eliminated its imagil l:1ry "sign" (i. e., the vector r.l); since rJ.. lies on the pl ane ortho,S' 

onal to t. it can be described by the two c oordinates rl =. y, ri :: Z stich that 

Y' = i Y ; (30 ") 

and the coordinat es IY'I = Y' / i = Y and IZ'I z' / i :: Z express the fundamental sizes of the 

Itfundamental rectangles 11(6) which individuate the double-cone shape , 1. e, the fundamental 

asymptotes of the two-sheeted hyperboloid (see also the following). In other words, quantities 

Y' / i and Z' / i (together with quantity .4 X = V 1 V 2: cf. Fig. 3) allows us to determine the shape 

of the tachyon, Fig. 3 refers to the simple case when PB is intrinsically spherical: More in 

(+) - Let us recall also that, after the reinterpretation, the SLT's loose their group-theoret! 
cal propertles(2). 
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I 
f t 
r 1\ \l)..) 

x 

FIG. 3 - If we start again from a spherical particle P B as in Fig. 2a, then -
after a generic SLT without rotations. i. e, under a Superluminal b oost along 
a generic motion-line ~ - we get what represented in this figure. In this case. 
the tachyon P T occupies the spatial region confined between a two-sheeted hZ 
perboloid and a double cone, both having as symmetry-axis the boost motion­
- line t. Such a structure (the lItachyon shape ") travels of course along e with 
the speed V = U of the Superluminal ~-boost. Notice that. if P B is not intrin­
s ically spherical (but e , g . ellipsoidal. in its rest-frame), then the tachyon­
-shape axis will not coincide with t J and its position will depend on the spee d 
V of the tachyon itself. For the cases when the space-extension of the tachyon 
is finite, see Refs . (6) . 

general, the axis of the tachyon-shape will not coincide with x.. (but will depend on the ta chyon 

speed V = U). The double - cone semi-angl e a is given(6) in ou r present case by the relation 

tga = (V2 _ 1)- 1/2. 

To clarify the above (second) step of our r einterpretation, it is necessary to add some 

comments: (i) We do not aim to consider - and reinterpret - the GLT l s when they are applied 

to a va.:un m point: In fact, the main teaching of Special Relativ ity is that each observer has a 

right to conAider the vacuum (i. e . the space , or the ether if you like) as at rest with respect 

to hirnself(10); (ii) We do appl y - and reinte r pret - the GLT's (in par t i cul ar the SLT 1s) ,only 

to transform the space - time regions associated with physical objects ; where we assume the 

existing objects to be essentially extended (as required by the r elativistic theor ies( II ,' 6,4)), 

so to consider the point - like situation only as a limiting case; (iii) When considering an ex­

tended-type physical object, we adopt the symplifying convenction of referring the frame - ax es 

to its symmetry center. 
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We have finally to pass from coordinates xf..L to coordinates of the type (12). We defined 

eqs. (12) for the case of x-boosts. In the case of boosts along the generic motion -line t, let 

us generalize definition!'> (12) as follows: 

(31) 

where r u -; -;.. n; and 11 ;; --;. - (r. ni~ . Notice that I;;.: (£2 1 ~ 3) is a space -like vector charac ­

terizable by two components only, so as Ii. 
Tn terms of these new coordinates, eqs. (26) can be r ewr itten as (ae(O, +(0)) 

(32) 

eqs . (32) represent the SLT's (without rota t ions ) in the original, non-reinterpreted form. To 

rt!interpret t h e first couple of eqs. (32) it is enough to remember defs. (31) and apply the rule 

in the previous recipe, i. e, 

omit i ; and 

The consequences i n eqs. (32) are: 

• ,2,3 = + . ,2, 3 
'!J - l':i • (3~) 

where SrO. st] are now rclal but nevertheless correspond to Superluminal relative motion, 

due to the change of sign in ~ ,0 (see Sect. 3). 

Sue'] a reinterpretation can be easily formalized (i. e. "automatized ") by making re­

course to dilation-invariant light-con~ coordinates. and proceding in analogy to eqs. (21)-(22). 

As to the imaginary "signs II of 5,2,3. the interpretation procedure is just the same as 

for y'. z' above. 

G. - T TI E VELOCITY -COMPOSITION PROBLEM 

In Sect. 3 we left open the velocity-composition problem. 

F'irst of aU, let us observe that dxI-L1 ds does not represent a G-fourvector (since dx,u 

is a G-fourvector but ds
2 

is a pseudo-scalar under SLT's ); therefore, the four-velocity and 

the four - mome ntum. in order to be G - fourvectors, are to be defined; 

(34) 

for bOl"h tachyons and bradyons; where d't'o is the (G -invariant) proper -time element(1, 2). 

Now, from our SLT's in their original (not yet reinterpreted) from (26), it is immediate 

to obtain that, if uI-Lu,", = + 1, then 
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so that we expect a SLT t o t r ansform bradyons B into tachyons T, and vice-versa. However, 

since the velocity (in particular the 3-velocity) does refer to the already interpreted situation. 

it is better to start from the reinterpreted form (29) of the SLT's . (In any case. when starting 

from eqs. (20) one has soon after to apply the reinterpretation-rule contained in the "first-step 

recipe". Sect. 5). 

Let us for instance start from SLT's (without rotations) in their form (2gb), and apply 
, 2 2 

a SLT along a generic motion-line .I;, with Superluminal speed U :: l / u (U > 1; u < 1). to the 

case of bradyon P B with (initial) four-velocity ul-' and (initial) velocity V. For the purpose 

of generality. it is essential that v and U are not parallel. We get (r, s = 1,2,3)(*): 

2 2 
(U ~l / u; u > l;u < 1) 

(35) 

I - S . r_ r s r_ r r h - 1 h· 1 n W1ere u 11 "' - u ns ' uJ.. ;:.U + ... nsu ;:. ... - unn , were n is stil t e unIt vector a ong.{..o, and 

r::: (U2 _1)-1 / 2 so as in eq. (2gb). Let us ohserve t h at u ro is real, and that the second one of 

eqs. (35) rewrites: 

u
l1

- Uuo 

ju2-~ 1 
( 36) 

where "':1 is real too and only u1. is purely imaginary. Notice that u
1I

' ... t11 (u1.> uD are the 

longitudinal (transverse) components of the space-part of the object four-velocity, with re­

spect.to the boost motion-line t. 

At this point, let us define the 3 - velocity V' for tachyons in terms of their 4-velocity 

UIIL as follows(l, 2) : 

From eqs. (36), (37) it follows: 

V' 
II 

VI = i 
1 

1,2, 3) (37) 

ivl. J-;~ 
vn - u 

(38) 

2 
u <. 1; u ~ 1/ U) 

where once more II ami l mean parallel and orthogonal, respectively, to the boost motion­

-line t.. It should be noticed that 

V' 
1\ 

1 

v" 
V' 

J. 

v, 
i • (38 ' ) 

('t) - One should pay attention to not confuse the boost speeds u, U with the 4-velocity com­
pone nts u IL of t~e considered object. 
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N 

where v is the transform of V under the dual (subluminal) Lorentz transformation L(\!). with 

u ~ I /U ; ~/lU _ 

Again, VI; is real and V1 is pur.:!ly imaginary. However VIZ is always positive, so that 

1 V ' ! is real; actually, from eqs. (38') it follows: 

Mo.r~ Ll general. from eqs. (38) one derives for the magnitudes the lITerletsky relation": 

(J _ v 2\{1_ U 2 ) 
~ - 2 

(1-U-v) 
(39) 

whi'~h - in cidentally - has been fihown elsewhere(1, 2) to have general validity and to be G - co­

variant 0. e, to hold for any values, sub- or Super-luminal, of v, U, VI). 

It is worthwhile to recall explicitly that eqs. (35L (36) and (38L since they have been de 

rivedrromthe(par~1a.1ly) reinterpreted form of the SLT ' s. do..!lQ! possess any more(2 ) the i r 

group - theoretical properties. For instance , eqs. (38) ~ be applied when transforming (u~ 

der a SLT) a speed initially Superluminal(2). 

We rio no t pass here to the light- cone coordinates, since nothing would essentially change. 

Eq. (39) shows that, under a Supe rluminal Lorentz transformation (U 2 > 1), a bradyonic 

speed v goes into a tachyonic speed V'. But we have still to discuss the presence of imaginary 

units in the components of the tachyon 3-velocity transverse to the SLT motion-line (cf. the 

second Oll t~ :)f eqs. (38)). To such a n aim , we have to remember what said in Sect. 5 for the 

trans vt:!rse coordinates, in conn~ctlon with the l1second stepl! of the reinterpretation procedure: 

See eq. (30") and the comments following it [w e are going to work under the same conditions 

(;) -(iii)]. 

Und er- those c ircumstances and conditions, we can interpL~et ViI and VI2 in analogy 

with Y', Z', or rather in analogy with p', p'. 
y z 

Namely: Let us conside.r, in its center-of -mass frame, an initial, spherical object \· 'ith 

center at 0 whose external surface expands h oweve r in time for- t ~ 0; that is to say, let us 

consider in the initial frame the following "sy mmetrically-exploding 'spherical bomb" : 

2 2 2 2 o f5. x + Y + z :'!; (R + vt) , (t. 0) (40) 

where the initial (t = 0) radius R of the "bambI! and the speed v of the "spherical explosion II 

are fixed, constant quantities . Let us now pass to a second observer, moving e . g. along the 

x-axis with S'.lperluminal relative speed - U. The first limiting-equality in ~q . (40) gives rise 

- as we already know - to a double cone with the x -axis as its symmatry-axis, and moving 

with speed V =U along the a :ds x.::x'. The second inequality in eq. (40), when express ing it in 

terms of the Superluminal-frame (pdmed) coordinates, transforms into 
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2 2 '-2- -- 2 2 2 
10 (V - I)R - 2t'Rv JV - 1 - (V - v It' _ (x' '> t'/V) 

y' 

, 
o 

FIG., __ ~ - Let us start from a spherically symmetric object P B whose radius, 
however. for t -:;. 0 changes with time: r = R + vt. In its rest-frame, P B re­
mains always spherically symmetric. Under a Superluminal x-boost we get 
a tachyon P

T 
with a complicated shape and time-evolution. This figure re­

fers to the case when vV < c 2, quantity V being the tachyon speed (i. e .• the 
relative speed of the Superluminal boost). It actually depicts the simple case 
when v <.<.c2; V. In all cases. however. the initial (bradyonic) "exploding 
bomb !! P B transforms into a ~inal (tachyonic) !!bombl! P

T 
which nexplodes l1 

in ,two jets that remain confined wHhin the double-cone. Notice that the liml 
tation x! ~- tl/V should be added to these pictures. The arrows in this figure 
indicate velocities that are slower-than-light with respect to 0' ; that is to 
say, the vertex 0' of the douhle-cone travels (of course) with the SuperlurnJ:. 
nal speed V, but the hyperboloid sheets move with subluminal speed with 
respect to 0'. 

(41 ) 

The same results may be obtained, more elegantly, expressing eq, (40) - or, rather, 

the equation of the "bomb" world-cone - in Lorentz-invariant form (for the subluminal ob­

servers) : 

(40') 

and then passing to the Superluminal observers just remembering that the SLT's invert the qu,:. 

dratic-form sign. Eqs. (40), (40') refer, actually, to a truncated "world-cone", In eq. (40'), 

quantity xJ.t:; (t, x, y, z) is the generic event - vector inside the world-cone, vector uf-t is the 
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fau _r-velocity of the "bomb" center-or-mass, a.nd b,u:= u~!v . 

When in eq. (41) it is 

vV .(.1, (41 ' ) 

the equality sign in eq. (41) corresponlis to a two-3heeted hyperboloid, whose position relativ­

ely to the double -cone - however - now changes with time. Tht~ distance between the two hype.!:, 

boloid vertices , for example. reads 

\ 121 

When i ,} eq, (41) it is on the contrary vV> 1, the geometrical situation is more co mpli-

cated. 

But, in any case, the "exploding bomb" is seen by the Snperluminal observers to nex_ 

pIode " always remaining confined within the double-cane(S, 12). 

Thi:; means the following: (0 as se!:!n by the subluminal observers, the (bradyonic) bomb 

explodes in all spaf.:e-directions, sending its Hconstituents" e. g. also along the y and z-axes, 

with speeds vy ' v z ' respectively; (ii) aR seen by the Superluminal observers, howe ·.Ter, the 

(tachyonic) bomb l ooks to explode in two I1jets" which remain confined within the double-cone, 

in such a way that.!!2. cont03t.ituents of its move along the y ' or z ' - axis: In other words, the 

speeds Vy' V; of the tachyonic bomb constituents "moving" along the y', z' axes, respectively, 

would result to be irnaginary(6,12). 
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