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ABSTRACT 

The gain curve of the Transverse Optical Klystron in the small signal regime is found following the beam 

evolution through the device. Our results are in agreement with those deduced from the Madey's theorem. 

In our previous work sO ,2) the emission mechanism in a Tranverse Optical Klystron (TOK) has been studied. 

This paper is devoted to examine more closely the gain curve and its characteristics with respect to that of 

the FEL for a beam having an initial gaussian energy distribution. To our knowledge this is the first paper where 

the TOK gain curve is calculated through the electron beam evolution and a free drift space is compared with a 

dispervive one. These calculations illuminate about the relation between the energy spread of the beam, the drift 

le ngth and the gain width, reaching the result that the gain width depends only on the beam quality. 

The TOK is described as a multi-particles process by means of the collisionless one-dimensional Vlasov 

equation. Then the properties of the device are derived following the evolution of the e lectron beam having an 

initial e nergy spread within the three sections of the device (bundler, drift-space and radiator, Fig. 1). 

(x) This work has been partially supported by CNR -CT n' 80-0245802. 
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FIG. 1 - Sketch of a TOK configuration. The drift space length 
is Ld" 5).w· 

We are considering the case of buncher and radiator enough short as the density evolution inside is 

negligible. 

In order to reproduce the physical situation of a microwave klystron we choose to study the bunching in a 

system which moves with the average electron beam velocity in the buncher (EBS), where the interference of the 

wiggler and the laser field leads to a static potential pattern. In this frame the z-component of the electron 

velocity is non-relativistic. On the contrary the gain calculations are performed in the LAB frame where the 

physics is immediate. We repeat briefly the calculations performed in refs. (1) and (2) for easy reference. 

In the buncher and radiator the interference of the laser (L) and wiggler (W) fields in the system (EBS) 

travelling with the electron average velocity ~bc, brings about a potential pattern 

(I) 

where kb+:;: k~L)+k~w), being k~L) and k~w) the laser and the wiggler field wavenumber respectively in the EBS. 

In the buncher the evolution of the electron beam reads 

Dgb • 
-- + P 
iJzb bz 

where Pbz is deduced from Eq. (I). 

The initial condition On the LAB) is 

Q(Z,E,O) = 
00 i (f-fo)2}. 

exp - -22 
V2ii of f 2~ EO 

By choosing the more convenient parameters 

Eqs. (2) and (J) become in the .EBS 

(3) 

(4) 
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OQb oQb , oQb 
--+q-- +Sln~ --= 0 

0.. 0 ~ 0 q 
2 

Q bo (q-qO) } 
Q (~. q. 0) = -- exp ---2-

b ~, o 20 

(5) 

(6) 

Eq. (5) can be exactly solved with the standard method of characteristics in terms of Jacobi elliptic 

functions{). However, in many cases, the dimensionless interaction time is very short (-r « 1), therefore a 

solution of Eq. (5) can be found in terms of a Fourier-Taylor series. We restrict our analysis to this case. 

At the end of the bundler section the electron beam distribution function is given by 

aJ 

Q b(~·q· "b) = Qb (S. q. O),! r Dr (~. q),,~ 
° 

(7) 

where the coefficients Dr are periodic function of ~ • After the integration over all the momenta it can be shown 

that the first Fourier coefficient is negligible, instead with the integration over ~ the beam results energy 

modulated. 

The spatial bunching occurs then essentially in the drift region. If the drift is a free space the distribution 

function is found solving the Vlasovequation 

(8) 

with the initial condition (}d(~' q, 0) given by the distribution (7) at the exit of the bundler section. The solution 

of Eq. (8) is trivial. After the integration over all the momenta, the final spatial electron density can be 

expressed as 

(9) 

The bunching coefficients Am depend on the interaction times in the buncher and in the drift space 't" b' 't" d' The 

first, AI' reads 

/

' 02 2 J 

exp -T't"d J (10) 

The maximum of the bunching, reached for o't"d=l, is 

01 ) 

From the condition of maximum, the free drift length L
f 

in the LAB frame (L
b 

is the length of the buncher) 

results 

e B(w) 
(K = __ -,0,--_ for plane wiggler) 

"/Tmo C kw 
(12) 

where .de/e is the beam energy modulation within the buncher. The length (12) in practical cases reaches easily 

several hundreds of meters, so the drift space must be dispersive. It can be realized connecting suitably some 

wiggler poles so that a compensated system of three larger poles <} By(Y, z) . dz = 0) is obtained (see Fig. 1). This 
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dispersive system can be thought as a free drift space if we assign to particles the new Lorentz factor 

(13) 

Here the dispersive properties of the system are determined by the "momentum compaction" a
c 

defined as the 

ratio of the relative particle path lengthening L1 sIs to the relative momentum spread .d pip, i.e. 

ac=(/J sIs/Cd pIp). In this way the effective bunching length is strongly reduced and is 

(14) 

In the last section of the device (radiator) the bundler condition are reproduced and in the hypothesis 't'r « 
a negligible density evolution of the electron beam occurs. 

Small signal gain: We perform the gain calculations in the LAB frame. 

In the radiator we have the travelling potential wave obtained by the Lorentz transformation of Eq. 0) 

Y (z, t) = Y exp I j(k Z - w t.<1 ~ )} 0++ 
(15) 

And the electronic wave 

Q (z, t) = Q ); A (t
b

, t
d

) exp ( j m (k z - w t) .1 
omm t + +f (16) 

where tb and td are the interaction times within the buncher and drift space respectively. The phase shift ..1 fJ is 

essent ially due to the different velocities of the two waves in the drift since the phase lag in the radiator and 

buncher can be considered negligible (short interaction time), 

Between the two waves occurs an energy exchange whose rate is calculated from the relation 

J 
+Lr/2 

~~ = - ~ F. j d\ 
-Lr / 2 

(17) 

where 

[

F-- flY • 
- tlz L. 

j = e C Q(z, t) ~ (z) 
(L 8) 

The energy lost by the electron beam within a radiator matched on the first harmonic is 

(19) 

V being the interaction volume. 

From this equation we see that for A. ~ = n/2 the electron beam is stimulated to give up the maximum 

amount of energy L1W max to the radiation field. In this condition together with a drift leading to the maximum 

bunching, the gain defined as the fractional increase of the radiation energy, is 

24w 
_---c.--'m"'a"'x'- :: 0.30 

f E2 V 
o 0 

(20) 
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having assumed for the electron and radiation beams the same transverse section S= l L • L /2. 
If we consider the gain of a FEL having a length Lw (4), the enhancement with the TOKWconfiguration results 

(21) 

Here N
b

, Nand N are the period number of the buncher, radiator and FEL respectively. 
r w 

From this last relation we deduce that the TOK gain exceeds the FEL one only for short wiggler and good 

beam quality. Eq. (21) can be obtained from the Madey's theorem(5). 

It is worth noting that technically it is not always possible to adjust the magnetic field in the drift space in 

order to reach the maximum bunching(6), thus in general Eq. (21) must be modified taking into consideration the 

e ffective bunching amplitude, i.e . 

Al effective 

Al maximum 
(22) 

To have a concrete idea we report in Fig. 2 the comparison between the maximum gain versus Of of the TOK 

and FEL e xperiment in progress at the Frascati Storage Ring(6). The main differences are the length of the 

flatness and the rate of the falling off. 
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FIG. 2 - Maximum gain versus electron beam energy spread for a TOX (full line) 
and a FEL (dashed line). 

We recall that Eq. (22) has been stated in the case .d f) = n/2. The effective phase difference between the 

electronic and potential wave can be calculated hypothizing (owing to the continuity relation between buncher 

and radiator) that the potential pattern covers also the drift region. Thus, we have a potential wavt! which runs 

with a velocity ~bc = Ct.I/k+ throughout the device. On the contrary,the electronic wave sees a different 
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"refractive index" in the three sections of the TOK and so has different velocities in the buncher, drift and 

radiator. The phase lag between the two waves is due to the drift space, since they run with different speed in 

the drift section, while they have practically the same velocity within the buncher and radiator, and moreover, 

these last are very short. 

If the electronic wave velocity in the drift space 

buncher is n= P b' Pd and so the phase lag is 

A~=k(l_~b)L 
+ Pd 

is fJdc = (0 e/ke' the refractive index with respect to the 

(23) 

For a free drift space, f1d and L coincide respectively with fJ and Lft so an energy spread or Ir leads to a 

phase variation 

(24) 

The gain 

drift length 

curve width a can be deduced from Eq. (19) for a variation 1:5 (Jlf) = n and with the optimized 
g 

(25) 

For typical values of the energy spread a € the TOK gain width, for short wigglers, is narrower with respect 

to the FEL. Since in practical c~'ses the spread induced in the buncher ilE/E is much lower than as, we conclude 

that, unlike in the FEL, in the TOK the gain curve is determined by the beam energy spread. That is, in the TOK 

the inhomogeneous broadening factor is determinant for the gain OJrve shape. 

When the drift is dispersive its length is reduced of a factor 1- ac y2. Owing to this reduction do you expect 

an enlargment of the gain curve? No, we don't since the gain width depends on the phase of the non-resonant 

particles with respect to the resonant one, and the trajectory lengthening in a dispc:;rsive system of length Ld is 

tiL ----c- = 
d 

Then the phase variation between the two waves results 

~b Ld 
( A ~di s) = k. -3- -2-

Pelf Yeff 

(26) 

which is equal to that for a free space owing to Eq. (13) and (14). This is an expected result since the dispersive 

space reduces the total drift length, but not the space dispersion between particles with different velocities. 

From Eq. (27) we can establish the gain curve width for a drift space having a length Ld = Nd J. w' 

(28) 

being I a
c 
I y2» 1 and k+ ::: kLo This formula reduces to (24) when Ld (1- a c y2) is optimized to obtain the 

maximum bunching. 

We recall that the momentum compaction a depends on the field intensity and length of the drift space by c 



G 

- 7 -

where E is the electron energy. Thus we may say that in general the gain curve width becomes narrower with 

longer drift space. This is well illustrated in Fig. 3b where the gain curves of the TOK experiment of Frascati 

Storage Ring are reported. Therefore in practical cases when the field intensity in the drift is fixed, it could be a 

better choice to reduce the drift length to ensure an enlargement of the gain curve. About Fig. 3b we have to add 

that the decrease of the maximum depends on the beginning of the debunching of the beam. 
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FIG. 3 - a) TOK (fuil line) and FEL (dashed line) gain versus the detuning 
parameter q (Frascati experiment). The wiggler, is arranged with a drift 
space havingOa length Ld::3 A . The decrease of the maxima of the TOK gain 
with increasing q is dlrecteyY proportional to the decrease of the bunc hing 
first harmonic c~fficient due to the worse interaction in the bundler and 
thus a less energy modulation. The gains are calculated with a numerical 
solution of the evolution equation (2) since it is practically impossible to find 
A with our method of solution of the evolution equation when q 4= O. b) 
T6K gain ve rsus qo for three drift space lengths: (t) Ld=3)...v; (2) Ed=H 
(optim.ized drift l~"th for the 1ain amplitude); Ld::7 Aw' The gain curv~ 
Width" Llqo=(moc Vbo)·(dY/Y d' 

100 q. 
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Conclusions: The TOK theory shows that an enhacement of the gain with respect to the FEL configuration, for 

short wiggler and appropriate electron beams, can be achieved. 

Our theory based on the beam evolution yields for the gain the same shape derived from the Madey's 

theorem(7) (and generalized by Kroll(8\ which says that the gain is the derivative of the spontaneous spectrum. 

The most important section of the TOK is the drift space which determines all the gain characteristics. The 

dispersive drift, necessary to reach the electron bunching in a reasonable space length, behaves as the free space. 

The width of the TOK gain curve is much narrower than that of the FEL and reduces with longer drift space. 

It is proportional to the energy spread when the drift length is that requested for the maximum bunching. 
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