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l. - INTRODUCTION

Strong correlations between the constituent nucleons of 6Li are responsible for some of its interesting

(1)

features like stability, charge radius and structure of low excited states' '. Due to the significance of these
correlations, it is possible to study this nucleus as a two (a +d, p+5He, n+5Li, 3He+3H) or three (o +p+n) body
problem, rather than as a problem with six independent nucleons: the advantage (with respect to a "true" three-
nucleons system) is that 6Li offers a rich structure from the point of view of resonances.

Investigations of deuteron-alpha elastic scattering have provided in the past experimental information

6Li(2—8) (6-3)

concerning the low lying excited of . Glueber and collaborators'~ - performed the most extensive

experiments using gaseous aHe targets, measuring both differential cross sections and vector and tensor
analysing powers. The phase-shift analysis of their scattering data are in disagreement with the analysis by
Senhouse and TombrelloU), in particular for the 1=1" mixing parameter of s and d waves; moreover their single-
level R-matrix analysis did not confirm the existence of three p-levels as found in Ref. (3). Some difficulty in
reproducing the data of the I’ resonance was attributed by the authors to the limits of the single-level

(8)

approximation .

(9,10)

From a theoretical point of view, several works have pointed out the importance of low energy q+d

reaction in the framework of three hodv problems. The simplicity of the problem is related to the hypothesis



that at low cnergies the <« itatior 2f 150 w1z ooy e osately neglected (the binding energy is 22 MeV).
[1,07) i .
Whereas this hypothesis har hee o goe tior &0 7 invoking three body forces with 2T exchange and a -

- e wne ¢

.iduced deuteron breakup), a more recent analysis(lj) of breakup
s no compelling need for three body forces with a-excitation. On the other

,JiCUlatanS(g’IO)

y with two body potentials, show evident disagreement with the
_xperiments. In particular this is verified in the angular distributions for backward and
sies in the em system and in the phase-shifts in the low energy region (e.g. the ones related to the 1°

Jnance).
Due to these interesting features of low energy a+d elastic scattering, we performed a D (a,a)D
experiment concerning the 61.1 excitation spectrum between 3.45 and 6.13 MeV. The main purposes of this

experiment were:

- to collect accurate measurements of the angular distributions of differential cross sections, in smaller
energy steps than in previous works;

- to perform a phase-shift analysis of the scattering data (tested by calculating vector and tensor analysing
powers and total reaction cross sections);

- to compare the results with the predictions of theoretical three-body calculations;

- to interpret the phase shifts in terms of R-matrix theory, with the aim of getting further information on the
level parameters of the T=0 resonances of 6Li, essentially 2" and 1*: the former recently(n quoted at 4.7 MeV

(1)

(excitation energy) with respect to the previous 4.31 MeV value''’, the latter which gives an indication of the

tensor force contributing to the interaction, through the mixing parameter of s and d waves.
Special attention was paid to the problem arising in the fitting procedure; in particular:

a) the dependence of the level parameters on the boundary condition;
b) the possibility of improving the quality of the fits by a multichannel multilevel R-matrix approach.

The experimental details are given in Sect. 2.; Sect. 3. deals with the phase shift analysis and the
comparison wiht the theoretical predictions; the R-matrix analysis is presented and discussed in Sect. 4.

2. - EXPERIMENT

Measurements were made at 40 incident energies (E;') between 5.962 MeV and 13.911 MeV, using the *ret*
beam of the 7 MV Van de Graaif accelerator of the Laboratori Nazionali di Legnaro (Padova).

High counting rates, good angular and energy resolutions were achieved by using solid deuterated
polystyrene targets of good stability and mechanical resistance. They were prepared by a method already
desc:ribed“ .

The thickness of the polystyrene layer was determined by measuring the energy loss of 5.477 MeV a-

particles from a G

Am source; targets of 20 to 50 ug/cmz were obtained and consequently the deuteron
naximum energy losses were of about 40 keV.

Fig. 1 shows a simplified scheme of the experimental apparatus and of the associated electronis. A
sllimation system (2 mm in diameter) was used at the entrance of the scattering chamber. Both the elastically
~attered a-particles and the recoiling deuterons were detected in coincidence, by means of surface barrier
J00 um thick) detectors. Four d-detectors (D1, D2, D3, D4), suitably collimated, were mounted on a rotating

tform to allow measurements at different angles simultaneously; a large area a-detector was positioned,
».0site with respect to the beam, on another rotating platform, in order to detect all the m-particles in

o neidence with DI, D2, D3 and D4 at the same time.



MCA
SCA

FIG. | - Simplified scheme of the experimental apparatus and of the associated electronics. ¥,

F2' F.: collimators; T: target; D,, D
monitor telescope; PA: preamplifier;
SCA: single channel analyzer; FD:
identifier; MCA: multichannel analyzer.

fast discriminator;

» D4, D, : deuteron detectors; a:u-particle detector; z’\E,é:
%‘PX? rm_ts'(l

tiplexer; MA: main amplifier; I : sum amplifier;

CI_CZ: coincidence; PI: particle

The signals coming from the preamplifiers of the four deuteron detectors were fed into a multip]exer(] ('),

This unit provides a linear multiplexed output and logical address outputs; the first, suitably ampliflied, together

with the address signals, was fed into a multichannel analyzer.

In order to select only events coming
from the elastic reaction, this analyzer was
gated (CZ) by:

a) a coincidence (Cl) between signals com-
ing from the deutercn and the alpha channels;

b) a window analyzer selecting events with
total energy equal to the energy of the beam
within 1 MeV.

Typical energy spectra are shown in Fig.
2, without and with a-d coincidence. The
absence of spurious peaks in the lower part of
the figure and the large suppression of con-

tinuous background are clearly displayed,

For each beam energy a measurement of

cnun:s/’chsr.f'..sl (arbitrary units)

the angular distribution was performed, de-
tecting the recoiling deuterons at lab angles
gk

d

accuracy was better than [%.

7° + 69° in 2° steps: the statistical

Four excitation curve were also measur-
ed (GCM=66°, 98°, 130°, 150°), at the same
energies of the angular distributions. The

ylelds were corrected for the change in the

]
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FIG. 2 - Typical energy spectra of recoiling deuterons

(EL=9.559 MeV: 1.?-[':!3“]: a) without a-d coincidence:
b) with a-d coincidgnce.



number of deuterons in the target, due to the accumulated charge, by means of a monitoring 4E-E system,
which recorded the deuterons emitted at a fixed angle -L‘}E = 50°. In order to collect only deuterons on the
monitor multichannel analyzer, an ORTEC particle identifier was used.

Absolute cross sections were obtained normalizing to the value reported by Senhouse and 'Tombrello(j) for

CM_{50° and E[&:a.sass MeV.

U
' CM . b b . . (3,8)

In Fig. 3 the %~ "=150° excitation function is shown; very good agreement with other measurements
was obtained. It was then possible to match the angular distributions at different energies; the overall errors,
coming from the normalization procedure together with the statistical contributions, were of the order of 2%.

The angular distributions measured following this procedure have been already presanted“e’) (see also Fig. 4).

300}~

gk | e ° E. (LieVY) ]
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FIG. 3 - Excitation functi i 2
®) present wcrk.mn unction of D (e, a )D scattering at 4"'=150°; (+) Ref. (3)

do/dil (mb/ ar)

0., (degress)

F!G._ 4 - Angular distributions of the differential cross sections (left scales refer to
continuous lines, right scales to dashed ones). The experimental points are not reproduced
because they would be indistinguishable from the fitting curves.



3. - PHASE-SHIFT ANALYSIS

The centre of mass differential cross sections, for the a+d elastic scattering, may be written in terms of
i " i .
elements of the collision matrix U(2’3’l ) (see Appendix).

If no mixing between partial waves is allowed, only the diagonal elements of the collision matrix are
J

different from zero and can be expressed in terms of complex phase shift 62

U’ =-e ' (1)

In our analysis only the values of orbital angular momentum up to R’maxzu were considered.

Moreover, since in the scattering of a spin-zero from a spin-one particle, tensor interactions do not
conserve the orbital angular momentum £, one has to introduce off diagonal U-matrix elements which describe
scattering between states of the same total angular momentum J, but with orbital angular momenta 2 differing
by two units. We used the parametrization of Blatt and Biedenharn“g’w) (which retains the phase-shift
description).

For example, in the case J=1" (s-d coupling):

| |
UCIJO, = eZI 63 cosZel 4 eZIGB sin’e | (2a)
;2 e |
Ué,z = (flac 51n2 ei + 02168 c()s2 El (2b)
B ol
Up,p= Us g =7 sin (2€") {emc" . emﬂ] (2¢)
where 6;, éé are the (complex) eigen phase-shifts and el the {complex) mixing parameter. Similar expressions

were used for the J=2" (p-f coupling) case.
We note that:

- The mixing parameter EJ is chosen by convention to approach zero in the limit of zero incident energy. It
changes, as a rounded step function, from this value to about -m/2 at the resonance energy. For example (see

Eq. (2a) and (2b)) if el is near zero GL is mostly s-wave and 6?3 mostly d-wave; the opposite occurs for € . near

!
-w'2 (this "exchange of roles" prevents a crossing of the eigen phase—shifts)“}.
- The otf diagonal element Ué , is a product of two terms (see Eq. (2c)); thus the magnitude of the mixing can
1

1(3)
g

still be small, even fore = -n/4, if 6Lis very close to §

To determine the values of the free parameters (phase-shifts, eigen phase-shifts, mixing parameters) at
each energy, a minimization procedure was carried out by means of a computer code which included the routine
M[NUIT(ZO). It is welle know that, when the number of parameters involved is quite large, a dependence of the
results on the starting values used in the minimization routine can occur. As usual, to overcome this difficulty,
as a first step a continuity criterion was adopted, i.e. the best fit values at each energy were used as entry
values for the next energy. The set of the resulting parameters was then tested with a high number of trials,
coresponding to different starting values.

No problems arose below the inelastic (jHe,p) threshold, where the imaginary parts of the phase-shifts did
not play a significant role (and were then setted at zero) and the minima were unambiguously determined. The
errors were then computed by the routine MINOS of MINUIT, which takes into account the shape of the X"Z
surface without any approximation (these errors were generally larger than those obtained by a quadratic

approximation of the minimum).



Above that inelastic threshold the increasing weight of the imaginary parts doubles the number of
parameters and different results, depending on the starting values of the parameters, were obtained. When the
resulting values differed by a larger amount than the MINOS errors, the best set on the basis of the continuity
was chosen, and the errors were enlarged in order to include the other acceptable solutions,

The errors of the imaginary parts were particularly affected by such a procedure, and therefore the
imaginary parts were not used in the successive determination of the level parameters (R-matrix analysis).

The angular distributions related to the best sets of phase-shifts are shown in Fig. 4; the experimental
results are not displayed because they lie (with the errors) on the fitting curves.

In order to test, a posteriori, the reliability of our procedure, from the same phase-shifts we calculate:

- the total reaction cross sections which are presented in Fig. 5. They are in reasonable agreement with

: 7,8
previous ones( ! );
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- ;I_ . . FIG. 5 - Total reaction cross sections vs
Vi a -incident energy; (o) present work; (+)
+ “ ) L prediction of Faddeev type calculations.
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- the vector and tensor analyzing powers; there is a4 good agreemenl with the experimental values of

Schinelzbach et al.(e) (see Fig. 6).

0.0 Al 117 i - Y ] ?‘.) —
Lt = L gy 1 T e =
0.7 s ~. _ ¥ =
e ~ ~
- -0.7 T
- Q.2 4
~ <
-“‘-‘...__./‘ t | i
0.0 )= " L ’
1 ! | G- < t'n'2>
<1"0> T 1 &N
0.0- 4 oal / \ .
. gl P o i /f‘ k S
0.5 o I N st \ -
R / L
Kt IR (BN W et =
I | [ g L 1 : I )
L) ({18 150 50 wo 153

Fln‘:,, ((f“";‘in ',"'-‘) s:,":“ [;‘-':.r»'-‘_vr.i

FIG. 6 - Vector and tensor analysing powers evaluated from the phase-shifts of this work
{continuous line); the points are experimental values from Ref. (6). (EIJ = 4.81 MeV).

With the exception of the four parameters related to the 2+(6§) and 1 6(11, Gé, el) resonances, our phase-
shifts, presented in Fig. 7, in our energy range have a generally smooth behaviour, characteristic of hard-sphere

scattering. In particular this holds for the previously mentioned p-levels.
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FIG. 7 - Real (up) and imaginary (down) parts of the phase-shifts and mixing parameter obtained in
the present work as a function of the a,-incident energy. The continuous lines are the previsions of
Faddeev calculations (see text). The 53 is not presented in the Figure.

We note that:

a) below Erl;f-f' 9 MeV another solution for Re (El) was found, with comparable confidence level. A similar

(3)

trend was already observed by Senhouse and Tombrello'™" in the same energy range. This second solution has
been disregarded since it was difficult to handle in the R-matrix analysis and anyway would not sizeably affect
the parameters of the resonance ( which corresponds to E:;z 13 MeV, see Table Il);
b) at these low energies the fitting procedure lead to very small values of the mixing parameter 82, and the
simplest procedure of neglecting e? was followed.
In Fig. 7, together with our "experimental" phase-shifts we plot the results of theoretical Faddev

)

predictions

(21)

The calculation have been made by a computer program which allows to obtain the significant phase-

shifts. As we pointed out in the introduction the most important feature of this type of calculation was the

(9)

disagreement with experiment for the g complex at low energies'”’, This disagreement is clearly confirmed by
our eigen phase-shifts and mixing parameter and it is not substantially changed by modifying the two body
potentials as in Ref. (10).

We stress that this disagreement between theoretical previsions and experimental results indicates the need



of more sophisticated calculations, including Coulomb forces and allowing for a detailed scrutiny of off shell
effects (from an experirmental point of view the importance of Coulomb effects has been shown(zz) in the a-
induced deuteron breakup in the Epn=o situation). In addition the treatment of the effects due to the Pauli

principle may be most important.

4. - R-MATRIX- ANALYSIS

4.l. - General Discussion and Procedure

The level parameters of the 6Li resonances can be obtained from the phase-shift values by means of the R~

lt‘): (p, S'He) and (n, 5Li) were the only inelastic channels taken into account. The deuteron
s . . 23,24

breakup (a,p,n) was neglected assuming that the above rentioned processes predomlnate( A ); for each

matrix theory

channel only the lowest allowed angular momentum was considered (for the channel radii we take ac:l.45
a3, A;”) fm).
Following the notations of Ref. (17), the collision matrix U can be written in terms of R-matrix elements,

defined as:
Reo= B £ * Ree &

where Yy are the partial widths, E y the energies of the level A , and E is the centre of mass energy.

In principle the sum in Eq. (3) would have to be extended to the total spectrum of the A=6 system; in our
case a maximum of two levels for each phase parameter was considered. The constant elements Rgc‘ of a
background matrix were introduced, to simulate the effect of neglected levels; this matrix was considered to be
diagonal, assuming that the signs of the partial widths of the neglected levels are randomly distributed. The
choice of the boundary condition Bc may be important. In a formal R-matrix theory this quarl'ntity is energy
dependent. The choice IBC:SC(ER). where Sc is the shift factor and ER is the resonance energy, is very useful in
the one-level approximation; in this case, in fact, the calculations are simplified and the energy shift vanishes
at E:ER. Other possible choices, among the most frequently used, are: BC=O and E‘-Cz-ﬂ. (as in previous single-
level analyses of d+a scattering). In the present work all the above mentioned boundary conditions have been
used; their effect on the level parameters will be discussed in the following. A multichannel multilevel R-matrix

computer code was developed using, also at this stage, the minimization routine MINUIT(ZO)

to fit the phase-
shifts; the partial widths Y52 and the level energies EA were treated as free parameters, Neutron and proton
emission partial widths were not necessarily assumed to be equal, contrary to previous analyses. A difference
between y and y in the 1" and 2* states may be related to their possible interpretation in terms of threshold

states(zj’z‘l’5

. Only the real part of the phase-shifts were analyzed in terms of R-matrix for the reason pointed
out in Sect. 3.

The phase-shilts not related to the 2* and 1" resonances were fitted to check the absence of nearby levels.
The expected hard-sphere behaviour was fully confirmed by the results of the R-matrix analysis, and in

particular holds for the previously mentioned p-levels.

4.2, - Results and Discussion

4,2.1. - 2* Resonance

The real part of the Gg phase shift exhibits (see Fig. 8) a clear resonant behaviour, which is well fitted by a




strict one-level approximation and three channels with a
weighted variance (x2 per degree of freedom) of about
L.l

The addition of a background matrix R gives a more
realistic shape of the fitting curve, in particular in the
higher energy range (although the weighted variance is not
improved); this trend matches the behaviour at even
higher energies(7). No further improvement was achieved
by introducing a second level, thus we present in Table 1
the results in the one-level + R° hypothesis, for the three
considered boundary conditions.

The values of Table I confirm the expected de-
pendence of the level energy and the reduced widths on
the boundary conditions (in particular El ); whereas the
resonance energy ER(!) and total level width T' turn out
to be more stable.

Since, however, only in the case BC=SC(ER), Ey lies
within the width of the observed resonance, this boundary
condition seems to be the most adequate(”) to fit the
data in a single-level approximation.

The values of the reduced widths, independently on
the boundary conditions, are larger than those previously
obtained. This can be mainly due to a difference in the
anlysis, since our phase-shifts do not differ appreciably

from previous ones,

FIG. 8 - Real part of the 62 phase-shift. The

continuous

line

is

the fittlng curve corre-

sponding to the boundary condition B =S (E[ )
Very similar curves were obtained in the “other
conditions (see Table I).

TABLE I - Level parameters of o (T=0) resonance in 6Li.

=0 N I v e e e e B e e Mmoo ol
E* ER EX |YC.' 1]/2 v pl|/2 Iy n | r e Ref. Hpndary Analys.
MeV) (MeV) (MeV (MeV™"%) [ (MeV "7) | (MeV "7) | (MeV) |(fm) cond.
4.87 3.39 7.923 2.4 - - 3.5 (3) Bc=-z
4.6:0.1 = 6.2 1.3 1.1 . 6.3 | (B) B =~
[/ 3.2 6.0 1.3 I.1 - 0.2 (6) Bcz-ﬂ, h
%.3120.03 = s < - 15508 = (1) -
4.55%0.01 | 3.08%.01 | 3.08%0.01 | 3.41%0.04 [3.36%0.0u | 5.107*fs5. | L6l [4.13 Pffgfl:“ B=S(Eg)|
u.54t0.01 | 3.07%0.01 | -4.89%0.13 | 1.78%0.01 [3.45%0.01 | o0.1412, 1.61 |4.13 " B_=0 c
u.54%0.02 | 3.07%0.02 | 8.2¢%0.08 | 2.7520.06 |2.55%0.12 | 0.3¢20.18 | 1.58 [4.13 " B.=-2 c
4.55%0.01 |3.08%0.01 | 3.08%0.01 | 3.39%0.58 |3.34l0.70| 3.3820.70| 1.61 |4.13 " B.S(EQ)| d
4.54%0.02 | 3.07%0.02 | -3.02%0.29 | 1.86%0.04 |1.28%0.08 | 1.28%0.08| 1.61 |4.13 " B _=0 d
5.56%0.02 | 3.07%0.02 | 14.9%1.7 |2.79%0.17 |z.60%0.21 | 2.60%0.21| 1.58 |4.13 " B_=-2 d

a) One level, one channel
b) One level

c) One level + Rg
d) One level + R™; IYn IjlYpi'

(x) We define Ep as the energy where the resonant phase-shift is equal to n/2; T the energy interval in which

the resonant phase increases from m/4 to 37 /4.



~ 1 =

On the other hand, the results with the constraint R (as used in previous works) have comparable

p
confidence level as for Yn'é 'rp. This fact suggest that y plays a minor role in the fitting procedure. For the
case without constraint ¥n results much smaller than Y _. It is therefore not possible to give any definite
interpretation in terms of threshold states. Moreover the elastic reduced width is not drastically affected by

this constraint, except for BC:G.

4.,2.2. —J_:Resonang_e_:

The analysis of this resonance, performed in Ref. (8), within a strict single-level approximation, showed
that there is some inadequacy in reproducing the data, mainly in the energy region far from the resonance. For
this reason we have taken into account the contributions of a possible additional level and of a diagonal
background matrix. Moreover, as previously done in the g* case, we allowed for a flexibile parametrization of
the inelastic channels, leaving the corresponding reduced widths as independent parameters.

The most significant results of our fitting procedure, for various boundary conditions, are shown in Table I,
where also the corresponding values of previous references are given.

As for 2" resonance El is very sensitive to the choice of the boundary condition and BC=SC(ER) in the
single-level approximation seems the most consistent. The results with and without the constraint Yo=Y p have
a comparahle confidence level. When the two reduced widths are independent there is a clear tendency to a
solution with Yp) : [ (the same effect observed for the 2" level), whereas the constraint y n:Yp leads to
results in a good agreement with previous ones.

We stress that the confidence level of the fit greatly improves in respect to Ref. (8) using a background
matrix R® (see Fig. 9); no similar effect arises when introducing additicnal levels. These good values for the
weighted variance (v [.5) are not only due to a more realistic evaluation of the phase-shifts errors but also to a
better agreement between fitting curves and our data. The imaginary part of El, predicted by R-matrix fit of
the real parts of the phase-shifts and mixing parameter, shows a qualitative agreement with the "experimental"

imaginary part, in particular as far as the sign is concerned.

120 i ! ‘ '
-"‘-'-.\ -
R_"
- 1 o Ty, 7
O T'-\"‘*— |
" Ll o
0 - RN PP
T L ¢
1| It 4ot
i + 1 L
- |a=F T N
7!
L
< 4
/'/:- i
el MR . h
& S B
L ( r-_—-.l-._'_q._;_"_:.:‘:'.‘..'_l...'__."_'._:_" L“r -
=i
&' \
FIG. 9 - Real part of the 5! and g eigen phase- -0 ;l
shifts and ¢ nixing parameter. The continuous W1
lines are the ([itting curves corresponding to the ; ‘ H l 1
boundary condition B =SC(E ). Very similar curves ' ‘\\,\J
were obtained in the Sthér conditions (see Table II). .za |- 25 () i,
N Lol f IJ
) - ' . \




X
E B
(MeV) (MeV)
6.24 7.16
8.4 5.720.1
5.7 4.26
5.655.01 4.16
5.6570.05 =
5.7720.02 | 4.30%0.02
5.88%0.02 | 4.41l0.02
5.88%0.02 | 4.41%0.02
5.80%0.01 | #%.33%0.01
5.88%0.02 | 4.41%0.02
5.8820.02 | 4.41%p.02

T

a) One level, one channel
b) One level
c) One level + R

d) One level + R?hn =] ¥

PI'

TABLE 1I - Level parameters of l*(T:O) resonance in 6Li.

“““““ T
£ L =0
(Mev) | (Mev!/?)
10.925 :
1.4 0.1
9.8 0.05
8.75%0.01 | 0.07%0.01
4.30%0.02 | 0.02%0.01
" 1.82%0.015 | 0.03%0.01
13.57%0.14 | 0.0320.01
4.33%0.01 | 0.0330.01
2.20%0.10 | 0.03%0.01
17.31%0.01 | 2.03%0.01

R A
g =2
(Mev!/2)

2.4
1.4
1.8
1.6
1.48%0.02
1.49%0.03
1.50%0.02
1.50%0.02
1.50%0.02
1.51%0.01

"p
(Mev!/?)

0.7
0.9
0.9

2.43%.78

2.6621.00

2.71°0.02

0.8920.77

0.8920.20

2.39%0.01

Yl‘l
(Mev!/2)

¢.107240.2
3.10™%.2
0.8920.77
0.89-0.20
2.39%0.01

=

T
(MeV)

1.0%07
1.71
1.8
1.81
1.74
1.81

1.81

e

.12

4.13
L3
.13
3
13
13

& & F FF

- -

Boundary

Ref. Analys.
cond.
(3) BC:-E a
(4) B=- 2 b
(6) B =-12 b
(8) B =-2 b
(1) - -
Present y
wark BC_SC(ER) €
u B =0 C
€
BC=-2 €
B =S (ER) d
n B =0 d
e
Bcz—.ﬂ. d

-]1-
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Finally we note that the ratio of s-wave to d-wave squared reduced widths is less than 4 x 10_4 (to be
compared to 2 x 107 found in Ref. (8)) suggesting that the effects of the tensor interaction are rather small in
this resonance. Indeed our data are consistent with smaller values for |Ué 2{ than those found in Ref. (8)
which were already lower than resonating group estimatesu” and theoretical i’addeev caIculations(ZZ) (see Fig.
10).

T T T T T T T T T
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FIG., 10 - Absolute value of the off-diagonal matrix element for
the J=1  complex. Continuous line: evaluated from phase-shifts of
the PrEsent work; Dashed line: predictions of Faddeev calcu-
lations i ;};r_yhed dotted line: results from a resonating group
calculation'™ s Results from Ref. (8) (not represented here) lie
between continuous and dashed-dotted lines.

5. - CONCLUSIONS

We shortly summarize our main results:

- We performed a phase-shift analysis of a large amount of angular distributions at different energies. The
good confidence level of the phase-shifts was tested with the predictions for total reaction cross sections and
vector and tensor analyzing powers.

(6,8) (e.g. no evidence for p-wave levels near our energy range).

- Our phase-shifts agree with previous results
As a general trend the shapes of our phase-shifts are better determined since we have performed measurements
in much smaller energy steps.

- The comparison of the phase-shifts with three-body calculations, based on Faddeev equations, suggest that
the |* resonance has to be theoretically investigated with better microscopic inputs for the two body potentials,
e.g. for the strenght of the tensor force.

- A multichannel multilevel R-matrix analysis shows that the 2° resonance can be described by a strict single-
level approximation; in the parametrization of the 1" resonance, on the contrary, a background diagonal matrix
greatly improves the quality of the fits. The reduced widths, however, show a tendency to larger values than
those previously obtained. ‘

- The R-matrix analysis exibits a dependence of E)\ and Yy c " the boundary conditions, whereas Ep and T
are rather stable. In any case the values obtained for T support the use of Bczsc(ER) in the single-level

approximation.
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- The strength of the tensor interaction in the 1 complex is much weaker than theoretically estimated by

(27) (21).

resonating group method and by a Faddeev three-body approach
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APPENDIX
The centre of mass differential cross sections, for elastic scattering of spin-one by spin-zero particles, may

be written as in Ref. (2):

CM
S e A IR LIS IC LI B
dn 3k

1}(:M+|E|zssinl‘t &CM}

where k is the wave number associated with the relative motion and 15‘CM is the centre of mass scattering
angle. We report here, for completeness, the formal dependence of the quantities A, B, C, D, E on the elements
of the collision matrix; we remark the sign changes in the terms containing off diagonal elements of the
collision matrix, as assumed first in Ref. (3).

- -

3la 7la
2 2 Q,

AzRg+Zle mi){e 'B[ (;uz)u‘“1 H2e DUy e @D Uy g7 -2 en]
R. ?

’:’i% | tio 1
2 5 L+l 2-2 3 £+[
re B Lo [(@eD(2e2] TUy 00 ve P, o [22-1)] Uy g2
) e 221 -1
B=Ry+L(e /21)[e *p L [ Uy e U L H2een)] -
‘ %,
%io: tig
2.+1 2 - 2 7 l
g PQ‘ 2[(1+1)2;2)] IERL Py o[ 2 (2-1)] UE, ol
Hay % bl -1
¢ i (e T2 [e TR /a0e)] (042U o7 H2041Y, 2 -nu HE
9.+z 1 g+l Tioy 25 L L2
& b2 (@] ?uy 1o ve B 2[e/e0]Y, 1 75)
By g H Bl fely | %o o e
D:i (e /21)[8 P' EU 'Uﬁ.,i. ] te x[_(2+l)/ R,+2)J U
L W 1ot
-e B 2[1 /(2-1)] UM_2 }

1 Ii

1oy o PR, 241 R o-1
E=Z(e “/2/70 {[e "Py/r (1] [Q,(UR,L+ 2040y, Ge(ae)Uy 7]

tiog 5 . el 1% 2 i g-1
e TR 2] ’)PE 2%, 1ig tle /[1(9,-1)]’)PE 2Y oo

where:

J .
- UR, g s the element of the scattering matrix.
’

- R4 is the Rutherford amplitude, expressed by:

CM
1 2 19 . 2
Ry =-3n csc” =5 exp [ inln csc %—“:]
2
_ z,z,e a,
with n =_“ﬁ§?”" ; a0=o : —2—-farg T(l+2 +in)

- Py (cos 1? ), g, (cos 1? ), B (cos ﬁc ) are the Legendre polynomyals and their derivatives,
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