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ABSTRACT. -

The storage ring operation of a free electron laser can be improved by a prebunching of the
electron beam, We sludy in this paper a layout working as a Transverse Optical Klystron, The
enhancement of the single pass gain and the consequent reduction of the wiggler length in the TOK
compared with the FEL suggest that the first device is more suitable for a storage ring as Adone,
where the straight sections are about two meters. The figures of the TOKA are carried out using
as much as possible the hardware of the FEL experiment which is in progress at Adone (LELA
experiment).

1. - INTRODUCTION

Just after the first free electron laser (FEL) operation“’ 2

, it was pointed out that the sto
rage rings (SR) are well suited for FEL operation in the short wavelength region. This for the
good quality of the beam, the high peak current and the high efficiency due to the possibility to
re-accelerate the electrons after their deceleration owing to the emission(?’).

A great deal of papers have been produced so far about the installation of a FEL device in
a sr'4),

At Frascati INFN Laboratories, Barbini and Vignola have proposed a FEL experiment for
Adone (I..ELA)(5J and it will soon operate,

With the aim to enhance the oscillator gain we have studied a variation of the FEL genera-
tor, The idea is to prebunch the beam before the interaction with the wiggler and the optical wa-
ve(e' 7‘8). Since in this way the principle of operation of the device is the same as the microwave

klystron, it has been called transverse optical klystron (TOK)(T).

(x) - Permanent address: Istituto di Fisica dell'Universita, Lecce.



In this paper we shortly review the theory presented in refs. (6, 7, 8) with more attention on
the transverse beam motion,

The figures of the TOK for Adone are presented, These have been calculated using the pa-
rameters of the LELA experiment,

Here we want to say that our calculations, having considered the transverse motion of the

electrons, give the same bunching coefficient of the beam as ref. (9).

2. - THE TOKA,

The schematic of the device is shown in Fig. 1.
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FIG. 1 - Schematic of the TOKA : the 20 periods of the wiggler are rear

ranged in a section Ly = 84, for the buncher, Lg= 54y for the disper-

sive drift region and a section Ly = TA,, for the radiator,
The LELA wiggler is divided in three parts in order to have a section, the buncher, for the ene’E
gy modulation of the beam, a section, the dispersive drift space, for the transformation of this
modulation into a density modulation and ultimately the radiator for the coherent interaction of the

bunched electron beam with the input wave for the emission.

3. - BUNCHING THEORY.

The evolution of the beam from the homogeneous distribution in space (along the z-axis) to
a bunched one is studied with the one-dimensional collisionless Vlasov equation (avoiding the pro
blem of the finite beam emittance at first stage) as done by Hopf et al. in ref, (10). The beam is
taken with an initial gaussian energy distribution, We are used to treat the problem in the elec-
tron beam system (EBS) since in this reference frame in the buncher we have a static potential

pattern which obviously brings out the energy modulation,



3.1, - The buncher,

In the buncher the Vlasov equation reads

00, , 09y o .00,
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3, b3z, = budP, (1)

where the index b refers to quantities in the (EBS),, which travels with the mean velocity along
the horizontal axis,

To find ib and Py, we start with the Hamiltonian of the system

- — 1/2
H = c[(Pb - el )2 + m2c2] / (2)
b
since them
. 0H ] 0H
o = =, P _ =- : (3)
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We notice that in refs, (6,7,8) we have considered only the case of non-relativistic electrons
in the (EBS)b, that is the case with low static magnetic field By. In the present experiment B, =
= 4,5 KG, which means a B~ 1.2 MeV thus the above approximation is no more good,

If we let the Lorentz factor of the (EBS}b relative to the LAB Y}, considering the energy

transformation between the two systems it is easy to find that

- 2
H =m,yc (4)
with
y‘.: A (1 +h2)1/2 (5)
"y

- 2 (x)
being h = eB,/1.414 mc  THE

The term mgy can be thought as the effective electron mass in the buncher,

8,10)

With the well known considerations on the Hamiltonian! we get

- -
P Py = - ed&; +consgt. (6)

bz Pbz’
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However {p,> =0 as < A;Y = 0 and besides p, and A, have always opposite directions, when

'i::_ = 0 (at the maximum of the magnetic field) A, is zero too, thus the constant must be zero.

In these hypothesis we have

2
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(x) - We notice that our parameter h corresponds in the FEL literature to parameter K ; the
gsymbol change has been made to avoid misleading,



and eq, (1) reads
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being Ay = Ay + Ay, and wa and Ay the vector potentials relative to the wiggler and laser

fields respectiyely.

As we have shown in our previous work, when the synchronism condition is met (in LAB)

1 A
2 mmes Wi ols (9)
b
a static potential pattern is built up
Vb = Vbo cos ( kb-!- 2y, +q) (10)

which causes the energy modulation of the beam,

With the force derived from that potential the electron motion is periodic with a frequency

k (11)

and the maximum bunching with a buncher long enough would occur approximately at

t, A

b L (12)

=
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o

Recalling that
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it is easy to calculate the bunching time in LAB frame
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EG is the laser field,

3.2, - Drift region,

When the beam is energy modulated with the wavelength ls (since the potential pattern pe-
riod is A4 & ls} the two beam sections, (15/2) long, belonging to each wavelength tend to super
impose owing to their energy gap., Inthe (EBS)4 the two sections travel one against the other (see
Fig. 2).

The maximum bunching length can be assessed with the following elementary argument,

From Fig. 2 we see that the crest particles must drift for a time

Ag
24V (14)



FIG. 2 - Computer simulation showing the phase space beam modulation in the drift
space, in the reference system running with the beam : (1) initial distribution,
(2) bunched distribution,

with AV the diﬂerence in velocity between the two particles,

The free drift length Ly, if the particles have the velocity v, is

Ld = 3t ; (15)
With the (14) and observing that
dv 1 AE _ Aw 2 "
T EE 15-2?2(1+h), AE 2 2(0,E + 4W) (16)

0, being the initial energy spread, AW the modulation induced by the interaction within the



buncher, and noticing besides that
Og E > AW (17)

we get for the bunching length
J.w (1 +h?)
L,»

d 8(AE/B) (18)

The limit of this calculation is that we have neglected the tails of the gaussian distribution. Never
theless with eq, (18) we have a good assessment, The actual length (see Appendix B) analitically

and numerically calculated is given by

A1+ 1P
e 18'
I"d dma, ik
With the typical fractional ehergy
E %
0 = —‘%— ~ 1074 (19)

of the SR the free drift space reaches easily several hundreds of meters. Therefore a dispersive
drift space is needed,

The beam density evolution is again calculated.throught the Vlasov equation.

This calculation is made in (EBS)y, both for analytical and numerical calculations
simplification,

The Lorentz factor of (EBS)y with respect to the LAB is Y4 (yd = 7). In that system the
particles can be considered nonrelativistic.

By the way we observe that in the passage from the buncher to the drift space the electron
perpendicular velocity (due to the transverse wiggler field) is changed into parallel velocity and
besides the positive crest value of the longitudinal oscillatory motion contributes to the z-axis
beam velocity in the drift space,

In the phase space (zd, pdz) and for a free drift space the Vlasov equation reads

d04 o Pdz 00y

— _ = =0 3 (20)
Btd m Bzd

o
The initial condition gd(O) is the distribution at the exit of the buncher,
Now we remember that in a dispersive region, particles with different velocities follow dif

ferent trajectories go that the {otal time spread is given by

o P L. .8 (21)

due to the additional effect of both the trajectory and velocity spread. The right hand side of eq.
(11)

(21) can be expressed in terms of the momentum spread

4s _ 4 éi,_l_App_ (22)
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therefore
at 1., 4p
—— = . == (23)
t Q ?,2 p
where the drift region "momentum compaction" a, is vanishing for a free space. In this last ca

se we recall that

A od 58 (24)
For this we can define an effective Lorentz factor
1 |

s - R (25)

Yetf P2, ©

so that eq. (23) can be written

g iy

Yest P

and our dispersive drift space can be considered as a free space for particles having a Lorentz
factor Yarg:
The momentum compaction @, for the particular case of TOKA is calculated in Appendix A,
Ahout the bunching length z we have to observe that in free space the particle trajectory

lengthening Az and the momentum spread are related by

Az | 4p

1
z ?_2 ] (27)

In dispersive space, that is for particles having an effective Lorentz factor Yot the dispersive

drift length Zoff corresponding to the same momentum modulation and bunching amplitude is

ﬂ = 21 A_p p (28)
Zoff verr P
From eqgs. (27), (28) and (29) for the length in dispersive space we obtain
At Ty
“eff i g (29)
- acl’
) 2
Since a.V >»1
Z R (with regard to sign) . (29')
effl " ?,2 . .
c

For very short interaction time the evolution eq. (8) can be solved analytically with the

(6)

method of Fourier analysis'”/. The obtained solution is then used as initial condition for eq. (20).
The electron density at the output of the bunching section is found after the integration over all
the momenta of the distribution function g (zd, Pyg? td). Here ty is the transit time in the drift

space.



At the end the electron beam density has the form (in LAB)
™
p(z,t) = Em Am(tl,tz)cos[m (k,z -m+t)] B (30)

The coefficients Am depend on the time interaction within the buncher tl, and the time interac-
tion within the drift space ts,

The analb;tical expression of the first two-three harmonics can be found (in Appendix B the
first harmonic calculation is made). For the maximum value of the first real harmonic coeffi-

cient the result is

(b) . (b)
BV E
~ 0.61 e 0 0
E e b1 Mb B

g2 3
mor c o, kw
the superscript index b remembers the buncher parameters.
For the corresponding dispersive drift length it is found

4(b)

. (1+0%)

) . (32)
4mxcy 0,
To obtain the first harmonic amplitude at any time the formula (B. 12) of Appendix B must be used.
The evolution eqs. (8) and (20) have been solved numerically with the method of finite diffe-
rences(12) in order to find all the harmonic coefficients A, at any time of interaction,
To find these coefficients we can alternatively use the exact solution of the evolution equa-

tions given in ref, (13),

4. - EMITTED POWER FROM A BUNCHED BEA M,

During the interaction within the radiator for the coherent emission, the beam will be con-
sidered "frozen". This assumption is shurely true because of the ultrarelativistic electron
energy““. The high velocity allows us to neglect, in first approximation, the coulomb interac-
tion in spite of the high electron density usual in storage rings.

Two cases will be considered: the first one refers to the spontaneous coherent emission
from a bunched electron beam within a radiator, the second one refers to the stimulated emis-
sion, that is to the emission occurring when an input electromagnetic wave runs with the electron
bunches in the radiator,

In the optical klystron or converter this is simply realized by adding two mirrors to the

radiator,

4,1, - Spontaneous coherent radiation,

In this case the emitted power can be calculated with the classical electrodynamics method
of retarded potentiala(15).

The electron wave current is given by
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B(z) = Bbcosk.zy + §.2 . (34)

With some complicated mathematics, the emitted power per unit solid angle in the forward

direction and on the m-th harmonic can be expressed as(s}

dP dP 2
m_ _s B 1 As,,2
a0 "o T QMg g oligg Vg (35)
& Pr
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dP 2 B
§ _ce 2 w3
o - e Y o) Nekrfeos (36)

This last is t he spontaneous emitted power per unit solid angle in the forward direction
from an unbunched beam,

The parameter b = eBgr)/krp gives the sine of the maximum deflexion angle of the electron
trajectory with respect to the magnet axis and k., N, are respectively the wave-number and the
number of periods of the radiator., Finally 0, is the initial (unmodulated) electron beam density.

The power (35) is due to the coherent emission of the particles packed in a quarter wave-

length

(37)

Here L. is the radiator length and ‘}'r the effective Lorentz factor associated with the average
velocity of the particles along the z-direction within the radiator ﬁrc.

This number represent a very small fraction of the total electrons contained in the radia-
tor. This can be understood with an heuristic argument,

In order to assess the number of the particles which are coherently emitting, we look at
this problem in a system (EBS),, which moves with the average velocity ﬁrc along the radiator
z-axis, In that frame the electrons are at rest or slowly moving., However the radiator moves in
the negative z-direction, then the particles which at the time t. cooperate to the coherent emis-
sion are those ones contained in the Lorentz contracted radiator length Lr/ Yy, and their number
is e,.L,/?. Furthermore for the Lorentz expansion of the beam length the particles density is
lowered by a factor ?r: Qr = Qo/ }’r. At the end the number of ;electrons which are coherently
emitting will be: N, % QOLF/ }'1?. This number is of course the same in the laboratory frame,

In the literature N, is the well known "cooperation number".

The general relation joining the radiator and buncher periods for small deflexion angles

(B, ¥ B, ¥ 1) is given by

A, = Ay/m (38)
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and if m# 1 the device works as a frequency up-converter,

It can be shown that the most part of the radiation is concentrated in a solid angle(ls)
2
+

49 - o (39)

2N

where the power has approximately the peak value of the first harmonic. In eq. (39)
h=eB™ 2 /2.838m c (40)
(6] g 0 *

For relativistic electrons the incoherent power on the peak of the first harmonic is obtained

from the formula (36) (in MKS units)

dpP e hZ 2

~ S 1
Ps-(m)d.ﬂ & r

Y
itz 0 | st (41)
o (1+n2)? A
where 1 is the beam current,

Therefore the coherent spontaneous power on the m-th harmonic emitted in the same angle

A9, ® AQ/m, from (35) and (41) is given by

2
2 A

T h 2 m
- N 1o -2 (42)

m 2c th 4 m

and =
P (watts) & —2% h? N_12 Ai’ =[’-‘ —hz—-—N ifﬂ] 012 . (43)
m 8e£0 (1+h2) r m B q4p2 T m o .

In eq. (43) U is the vacuum impedence. From the last equation we deduce that the radiator "im-
pedence" on the m-th harmonic is dependent on the harmonic amplitude and on the periods num-
ber N ; the parameter h gives the dependence on the wiggler period and magnetic field,

It is worthwile to remark that from the formula of the spontaneous coherent power, for in-
stance emitted on the first harmonic, we can get out the relative requirements on the beam quality

and buncher parameters. In fact from eq, (42) we have

aQ (‘EQS_) L]o 4 NrA] = (44)

This coherent emission has a significant value compared with the spontaneous one only if

15 2
o =T N AT 1 (45)
or in other terms
2 02
Ef)b) Bf)b) Lf)Lr}fAfv 0, " A
> HA%10° [es]) (46)
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The coherence properties of the emitted radiation impose an upper bound for the radiator
periods number, as matter of fact the electrons in a bunch have an energy spread. This is sub-
stantially the initial energy spread (see (17)). Because of this emitted wavelength will have the
fractional width

ATAZ %rZaE. (47)

(17)

From considerations on the coherence length we deduce the upper limit

P
r 20,

(48)

It corresponds to an impressive long wiggler.

4,2, - Stimulated emission.

If an input wave is introduced into the radiator and the frequency of the wave is resonant
with the radiator periodic magnetic field (synchronism condition), we will have in the radiator a

potential pattern running with about the same velocity of the electron bunches. The potential depth

t (r) o2 E(or)Bgr)
Vo ’ 2myc krks (49)

where r refers to the radiator,

If the initial condition is choosen so that the bunches are on the negative peak of the pondero
motive force, the electrons are decelarated and so they are stimulated to give the maximum amount
of energy to the radiation field.

To evaluate the stimulated emitted power we can assume, for short radiator, that the decrea
se of the electron average velocity and consenquently the slippage between the potential and the
el ectron bunches is negligible. Furthermore we do not take into account the electron oscillatory
motion along the z-axis.

We want to stress that the beam does not evolve appreciably within the radiator, since all
the bunches are on the crests of the sinusoidal force and, in first approximation, each electron is
acted upon by the same force, beyond the fact that the electrons are ultrarelativistic (see Fig. 3).

In the radiator matched on the m-th harmonic of the electronic wave (lrm flr/m), the

average energy.lost by each electron during the trip is

Lr/-BrC

- =D
AWE_ s F- v dt. (50)
0
Remembering that

= (r) A
F = krl-VD cos(kr_ Z - w+t+¢3)z )
<
v = ﬁrcg+c \E}:h cos krz§ ¥ (51)
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FIG. 3 - First harmonic evolution for a) E,= 0.08 MV/m continuous line ;

b) Eg= 0,18 MV/m dashed line; ¢) E_= 1 MV/m dotted line,

and the synchronism conditions

T R I (52)

the integral (50) reads

AW = ke, Vi,r)l*r. cos ( kr+ z,+9) . (53)

If now we consider the density modulated electron beam given by (30), the energy exchange bet-

ween the electrons and the ponderomotive force, if they are correctly phased, is

2 1
e Hp o (1) ()
e moct kr EO BO OOAmV (54)

AW =
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where V is the volume of the beam interacting with the electronic wave and k. = k‘rm/m' In fact
it is reasonable to extend the result of a line beam to a beam with a very small section S.
The small signal gain (G) on the first harmonic defined as the fractional increase of the
radiation energy will be
24W

G=—2. (55)
¢ EOV
o o

If we now assume that the electron beam section and the radiation waist coincide, we can write

2 i
g0 ecS (56)
and L'r.
S = 2 5 (57)
In (57) 1 is the electron beam current,
The ss-gain reads
r)
G = e Bf) A I (58)
£ m Cz}’ E(r)K A ol
00 (6] jog - |

Recalling the maximum amplitude of the first harmonic coefficient (31) the ss-gain for the first

harmonic, that is the single pass gain of the TOK, is

e3 Lb Bi
GTOK=O'38 55,9 12,3 I (59)
R we's

having assumed the same fields for the buncher and the radiator.
In order to compare this gain with the FEL gain we remember that this latter at the maxi-

mum is (see ref, (18), the gain has been divided by a factor two since our wiggler is plane“g))

2
G o108 e Bo 2 téo)
FEL 4me, mg},cs (1 +n2) FEL

The ratio between the two maximum gains, observing that in a SR we can reasonably write
2Lb~ I“FEL’ reads

Srok 107"
Ais ¥ TN : el
FEL e FEL

We want to emphasise that this result is obtained with the maximum gains, dividing the FEL
length in two equal parts. In ref. (9) the authors have taken into consideration the case of equal
length for the radiator and FEL. Eq,(61) says that the TOK gain exceeds the FEL gain of 1-2

orders of magnitude with the usual parameters of SR accelerators. Maybe the ratio is a bit
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higher than the value of (61) since GFEL is calculated for a monochromatic beam, contrary to
Grok. The energy spread typical of a SR lowers the gain of FEL(20),
This enhancement of the gain per pass allows us to conclude that the threshold current for

the generation is lowered, In fact if @ is the mirror loss, the condition for generation

G 2 a (62)

sfates that the ‘Ehreshold current Im:-m in TOK goes down of the factor 4.
In addition, this current is further depressed by the consistent spontaneous coherent radia
tion given by eq. (44)(8,16)
For TOKA we obtain
A= 10,

5. - POSSIBLE EXPERIMENTAL LAYOUTS FOR ADONE,

In a circular machine as Adone (Fig, 4) two configurations for a Converter or a TOK ex-
periment seem feasible: in the first the buncher and the radiator are set in two next straight
sections of the machine and as dispersive drift region the bending magnet in between is used,
in the second both wigglers are set in the same straight section and a very short drift space is
interposed (Fig, 1),

Tlowever the first possibility cannot be taken into consideration because from eqs. (29) and
(32) the physical space containing the bending magnets and the quadrupoles is too long as disper
sive drift space,

In the second case the LELA wiggler used for the experiment of ref. (5) can accomplish
the double function of buncher and radiator if it is assembled as two wigglers separated by a
dispersive drift region,

For a correct realization of the drift space the condition

fo(y,z)dz =0 (63)

must be fulfilled separately in the three regions of the device(24), Consequently the minimum
drift length can be L= 34.8 em corresponding to three full wiggler periods.

To evaluate quantitatively the possibility of the experiment in Adone we start selecting the
external wavelength of the LELA (Argon laser A= 5145 1"\) for the buncher operation,

The electron beam energy and the wiggler characteristics (period and magnetic field) are
related to the input wavelength by the synchronisn conditions (9) (our calculations refer to a
plane polarized input wave and transverse undulator). The choice of the drift space is determi-
ned by its dispersive properties through the momentum compaction a,, eq.(32). This is in turn
established by the number of magnetic poles constituing the magnetic drift space and the magne-
tic field amplitude (Appendix A),

In the LELA wiggler it is not possible to enhance furtherly the magnetic field (as for in-

stance in the experiment of Novosibirsk where this can be done lowering the gap of the permanent
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FIG, 4 - Comprehensive view of Adone storage ring with the straight section holding
the LELA wiggler.

magnet(g)) thus the best configuration for TOKA is that having a drift length of 5 periods which
corresponds approximatelly to the maximum bunching length. Of the remaining 15 periods, 7
can be devoted to the buncher and 8 to the radiator or viceversa, since with a longer buncher
we have a more bunching and with a shorter buncher we have a longer interaction time in the
radiator and the two arrangements give clearly the same result,

Once choosen the magnetic set-up (see Table I) the last choice is the amplitude of the in-
put wave E_, and therefore the power of laser, The first obvious choice is the use of the avai-
lable 2 watts Argon laser of LELA experiment, With this laser and the beam section less than
1 mm? the input electric field is 0.08 MV/m.

We have also examined the figures of the device when the 10 watts Argon laser (commer-

cially available) is used, when these lasers are used in the mode-locked (see Table II),
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_TABLET

Electron beam energy (MeV) 610

Electron beam current (A) 0.1

Electron beam energy spread 2.3 x 10°4

Drift space momentum compaction 3.3 x 10-4

Wiggler period (cm) {176

Buncher length (em) 92.8

Drift length (cm) 58

Radiator length (cm) 81.2

Wiggler magnetic field (G) 4458

h parameter 3.42

o
Input laser wavelength (A) 5145
Enhancement of the gain
10
A(Gpok/ CGppL)
TABLE 11
Eo(MV/m) A, - — A, 2 B P

0.08 5.1x10°% | 6.5x10°4 | 2x10°7 | 5mW | 2.5uW | 3.4 mW
0.18 1.2x10°3 | 1,5 x10"3 10-6 5mW | 15 oW | 20 mW
| 6.4x10°% | 8,1x10°3 | 3x10°5 mw 4mW | 5.3 W
5 3.2x 1052 | 4,1x10-2 | 7.3x107% mW | 10 mW |13,3 W
5 0.10 0.12 6.5 x 1073 mW | 90 mW | 0,12 kW

peak electric field;

Ay m=th beam harmonic coefficient ;

spontaneous incoherent power on the first harmonic;

P spontaneous cobherent power on the first harmonic;

stimulated power on the first harmonic,




o 0 =

In Figs. 3 and 5 are shown the evolution of the beam harmonics with the four different elec
tricfields, The steep slope of the diagrams in the drift space, shows that this latter is decisive
for the longitudinal modulation of the beam, The calculated flatness of the curve in the radiator

confirms that the beam structure does not change during the interaction within the radiator.

1071

-

F

20,

FIG, 5 - Some harmonic evolution with E;= 5 MV/m continuous line, and
E,= 15 MV/m dashed line,

In Table III the harmonics amplitudes of the case with &= 600 MeV, Aw = 11.6 em, Al -
= 0.532 u and the electric field E, = 100 e 200 MV/m are reported, The input wavelength has

been changed because with the Argon laser it is not possible to achieve so high fields as instead
it is with Ne-YAG laser,
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TABLE III

a) £V - 100 MV/m

A lo.62(0.26|0.08] 0.02 | 4x107% | 6x10™% |7.5x107% |7x107% |7x10~7 |6x10-8

h) ES] = 200 MV/m

2

A |o.95]0.52 | 0.22]|7x10°2 | 1.5x1072 |3;5x103| 6x10"% |8x10-5 |2x10-5 |3x10-6

F =600 MeV, A, =05324, O =23x10"% A, =116 cm.

6. - POSSIBLE EFFECT OF THE ANGULAR SPREAD.

In order to have an idea of the angular spread effect on the gain, we have to see how it acts
on the bunching,
For a rough agsessment we use for the problem the picture of Fig. 6a. We consider two

particles in the center of the wavelength forming one another an angle . The particle one is a

i
! s
I
i
|
i

il oy

b d

b)

F1G, 6 - Diagram showing the path of two particles in the bunching section,
0 is the relative angle, for a) a free drift space, and b) the LELA wiggler
dispersive drift space,



o i a

synchronous particle. They will be yet bunched at the output of the drift space if they will be with
in Ay/8, that is

A
(Ly + L) - (Ly, + Ly cos0 % —= . (64)

We can write in first approximation with a free drift space

2

Ly +Lg ¥Ly . cos @ ﬁ‘l-% (65)

and thus
2 Ag
<

0" £ g (66)
Because the exact free drift length is given by (18') eq. (66) becomes

01963y (67)

This strong influence of the angular spread on the bunching with a free space is confirmed in
« ref.(22). -
When the space is dispersive as in Fig, 1, since the trajectory of the particle is (see Fig,

6b), for symmetry considerations

Lg Lg ]
ul 5 eff p » eff ;
g = 2R Etrcsm( iR + sin @) + arcsin ( 7 sin Q) (68)

with the approximations

<3
arcsin x ?-"x+-—6 R sin 0% 0
the path difference between the two part icles is
2
Lt

Az 2’5~s(0=0)'—‘-"—-—-§—-— ’ (69)

This means that with a dispersive drift space we have

2 A

~ S

] < —————
max 4(Lb+ Ldeff)

(70)
which for Adone parameters give a 0,,,. about two orders of magnitude higher than the corre-
sponding one with a free drift space (eq. (67)). Thus with a dispersive drift space the angular di-
vergence has not a strong effect,

May be it is worth noticing that we have extended the result of the two central particles to
all the particles inside a wavelength. This extension come out from the consideration that the
particles with an angle @ can be treated as slower particles thanthe synchronous one, Thus we
can guess that the right and left section of the beam with respect to the center particle counter-

balance their different behaviour.
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7. - CONCLUSIONS,

A Transverse Optical Klystron seems easily feasible in Adone making some modifications
on the LELA experimental set-up,

Its gain should be a factor 10 greather than the FEL gain, having asséssed the angular spread
effect,

The threeé components of the emitted radiation, the spontaneous incoherent, the spontaneous
coherent and the stimulated can be easily measured only when the electric field E, is more than
1 MV/m because in this case the spontaneous coherent radiation is high enough,

The measure of the coherent radiation would be important in order to chek the possibility of
the Converter,

The measure of the stimulated power can be programmed in order to verify the enhancement
of the TOK small signal gain compared with the FEL gain,

Another stimulating measure is that of the bunching throught the synchrotron radiation emit-
ted in a bending (non dispersive) magnet, For this measure the bending magnet successive to the
LELA wiggler, can be used, Because of its high momentum compaction, it needs to detect the ra
diation just after the first part of it, The FEL and TOK electron bunching comparison could be de
cisive to explain the possible difference in the gain,

We want to stress that the most important results have been obtained without taking into ac-
count the angular spread of the elactron beam, This assumption means that the beam can be con-
sidered one-dimensional and the involved Vlasov equation is in this case more simple both in the
analytical and numerical approach, Really the emittance of the electron seems to be unimpor-
tant for the evaluation of the bunching and the emitted radiation,

An exact formulation of the problem imposes the solution of the complete Vlasov equation in
the six dimensional phase space (xi, pi) with an evident both analytic and npmerical complication,

We must furthermore observe that our results refer to a single passage through the system;

the recirculated beam TOK is a necessary next step,
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APPENDIX A - Calculation of the drift space momentum compaction,

The trajectory length within the drift space is (see Fig. 3)
g = 4 SO (A- 1)
where s is the electron path within the drift region before the entrance into the reversed polarity

magnet,

From the figure we can see that

s, = 0@ (A, 2)
i.e.
g s g (A.3)
oB 5 :
Observing that
» . eB
@ = arcsin( Ld -g)
we have
- Ap . eB
8 B arcsin( Ly 4p) : (A.4)

Since the deflection angles are very small we can agsume

2
arcsin x & x(1 + x_ﬁ) .
Then eq. (A. 4) finally become
§ 202
s = Lg(+ LE =2, (A.5)
96 p
However the drift space momentum compaction has been defined as
- B g
®e s dp
(see eq.(22), and with a very good approximation in our case is s = L, thus
‘ , ,
L 2 L
.1 228 %o aly
& * -~ g5 ¢ B . -3¢ B 2 (A, 6)

With the parameters of tables we deduce finally

a, - 3.3x10°% . (A7)
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APPENDIX B - Calculations of the bunching first harmonic coeffient,

We define in the (EBS)} and (EBS)d the dimensionless parameters

= 8- (mo }’_ch) 2
;: kb+2 3 T = 'Qb+t i q-= (mo}“vaO) / Py » g = ——Vb—--— UE (B.1)
0
so that the Vlasov eq. (8) in the buncher reads
dep 99, o2y,
e el W —_— B.2
I B T sl

With LELA parameters and Eo = 0,08 MV/m the dimensionless interaction time within the
buncher of length L, = 92.8 cm is Ty ~5%10°3,

This means that the solution of the eq, (B, 2) can be expressed with a very good approxima-

tion as(s)
. 2
08100 = (8,0, 0) [1+ B (£, e + By({ae? ] (B.3)
where
0 (8,q,0) = %0 exp{-—gf-} (B, 4)
b (2“0)]J2 20

is the initial distribution function of the beam (o0 ¥ 1,7),

Substituting the solution (B. 3) in (B. 2) we obtain

2 2 2
; 1 ) 1 :
BI(ij,q)=gsm§ i Bz(g.q)=(;q;--4—a)-g—cosb- i:i-za)coszg. (B, 5}

oo

At the exit of the buncher region (¢ =7}) the beam distribution function will be given by
) . 2
0,80y = 0,(8,a,0[ 14,8 (8,0 + T2 B,(L,a] . (B. 6)

Within the drift space Vlasov equation simplifies

69d an
ol W
at a¢

=0 (B.7)
having a solution in terms of the initial condition

gd(t:,q,t) = gd(g—qt.q, ) . (B. 8)

Towever for =0 the initial condition is the distribution function at the exit of the buncher,

Qd( gl q, 0) = gb(gn q, 1-7b) (B 9)
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so that finally

08 %) = 0,(8, 0,0 [1+ B (¢ -an)g, + By(¢ -as, @17 | (. 10)

where B1(§-qr, q) and By({ - q7,q) can be directly obtained by (B. 5).

The density distribution function is carried out by integration over all the momenta eq, (B,10)

e,(5,7) = g (1+A, (7)cos {) (B.11)
where the first harmonic coefficient is given by
Ti 2_| o 2
Al(r)= —[b'v+—2-—(1-d'f:} exp(—-z-'_"'). (B.12)

The maximum of the bunching is reached for 013 =1 when

-1/2 §
By © %0 expi-1/2} . (B.13)
For LELA parameters this means Aqmax = 8.5x 1074,
The free drift space length to reach the maximum of the bunching can be calculated having
in mind that
T it hig Yy ek

‘L'b Y.L tb Y LW
where tj and t,, are the interaction time respectively in the (EBS)d and in the (EBS)b and L, is
the buncher length,

With the relations (B, 1) finally we get (kbr':.' ks”b)

2
L, ¥ 1°4 [2ma, . (B.14),

In our case Lf-‘t! 500 m,
If the drift is dispersive with @ momentum compaction Qo the length is reduced by a factor
2 =
g=(1 -ay ). If @, = 3.3x10 4 then Ly= Lf/gaal m,
However the LELA effective drift length is Legp = 58 cm so the effective first harmonic am
plitude at the end of the drift space is

% -4
Aleff > 20 S 10 (B, 15)

This is exactly the same result obtained solving the Vlasov equation by computer analysis,
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