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ABSTRACT,

The First Part is just a large introduction, containing also various digressions - mainly
from an anusual point of view - about projective and conformal Relativities.

We come to our main point in the Second Part, Namely, by postulating the covariance of
physical laws under dilations, we describe gravitational and strong interactions in a unified
way, In terms of the new (discrete) dilational degree of freedom, our cosmos and hadrons (=
strong micro-cosmoses) can be regarded as finite, gimilar systems. Actually, a discrete
hierarchy of finite "universes" can be defined, which are governed by fields with strength in-
versally proportional to their radii; and in each universe an Equivalence Principle holds, so
that the relevant field can be geometrized there,

"Scaled down" Einstein equations (with cosmological term) are assumed to hold inside
hadrons, and they yleld in a natural way classical confinement - as well as "asymptotic free-
dom" - of the hadron constituents. In other words, applying the methods of General Relativity
to subnuclear particle physics allows to avoid recourse to phenomenological models so as the
"M.I.T. bag" model (which results to be advantageously substituted by the association of strong
micro-universes of Friedmann type to the hadrons). Inside hadrons we have essentially to deal
with a tensorial field (= "strong gravity"), and hadron constituents are supposed to exchange
spin-2 "gluons",

Our approach allows also writing down a (tensorial, bi-scale) field theory of hadron-
hadron interactions, by suggesting (modified) Einstein-type equations for strong interactions
in our cosmos. We obtain in particular: (i) the correct Yukawian behaviour of the strong
(scalar) potential for r=> 1 fm and at the static limit; (ii) the value of the hadron radii in
strong interactions.

As a by-product, we derive a whole "numerology" connecting our cosmos with the strong
micro-cosmoses,

Finally, a structure of the "micro-universe" type seems to be characteristic also of
leptons (P, Caldircla) ; a hope for the future is therefore including also weak interactions in our
(classical) wnification of the fundamental forces,

{x) Work supported in part by Fondazione Somaini (Como, [taly), and by C.N.R.



FIRST PART : INTRODUCTION AND DIGRESSIONS.

1, - INTRODUCTION,

The thought that each microscopic "particle" of matter might be something like a whole
"cosmos" - extremely reduced in size - has probably old origins, For instance, it appears in
the papers (ca, 400 B, C.) by Democritus of Abdera, Namely, Democritus(l) - by reversing
the analogy - spoke about giant atoms which could reach the size of our cosmos; and - in or-
der to be clear - he added: if one of such super-atoms (that consituted super-cosmoses) would
leave its "giant cosmos" and fall on our world, our world would be destroyed.

That thought is connected with the meditations - very common as well(2) - on the effects

of dilations and contractions on the physical objects, or even on the "world".

Within the scientific arena, let us reca11(3) the old idea of a "hierarchy of cosmoses",
corresponding to very different scaie factors and possibly organized so as a series of "Russian
dolls", We can say that in the microscopic analysis of matter one met - roughly speaking - a
series of "Chinese boxes" ; and something analogous might happen also when investigating the
universe, i.e. in the direction of the macro, besides of the micro, "Hierarchical" theories
weré formulated'3) e, g. by J.H, Lambert (1761) and later by Chalier (1909-1922) and Selety
(1922), followed in more recent times by physicists so as O, Klein, H, Alfvén, J, E. Charon(4),
K. P, Sinha and C, Sivaram(5), and M. A, Markov(s), D. D.Ivanenko(m and some other Russian
authors, till the papers by P. Caldirola, P. Castorina, G.D. Maccarrone, M. Pav&i¢ and the
present author(7), by A, Salam and coworker‘s(m, by P. Roman and collaborators(g), by H. J.
Treder, etc.

In this article we shall essentially refer to the line followed by us (cf, Refs. (7)). Our
approach starts [rom the wellknown empirical observation that the ratio -15{-/;‘ between the

fubble radius R = 102%m of our cosmos ("gravitational cosmos") and the characteristic ra-

dius T % 10-19m of subnuclear particles equals grosso modo the ratio S/s of the strength S
of the nuclear (or strong) field over the strength s of the gravitational field(x). It will be
tempting to think of a similitude between the macro-cosmos and hadrons (now conceived as

"strong micro-universes"), We shall therefore assume cosmos and hadrons - both regarded
(+)

as finite(7) objects - to be simiiar systems, in a geometrico-physical sense: i.e,, to be

systems governed by similar laws, differing only for a scale-transformation which carries

(x) For the definitions of S, s see the following,

(+) For the moment, to fix our ideas, let us assume the naive model of a "Newtonian hall" -
in 3-dimensional space - for both our cosmos and hadrons., More sensible models(7) (of
Friedmann type) will be considered later.



R into T and the gravitational field into the strong field (both fields being a priori tensorial, in
our theory)., Namely, mere dimensional evaluations will tell us that: by "contracting" the cos-
mos by the factor e-1 = R/T ¥ 1041 (i,e., by transforming it into a hadronic micro-cosmos),
the associated field-strength increases(”) in the same ratio (passing from gravitational to
strong).

Moreover, since the typical duration of a decay process is inversally proportional to the
interaction strength, we shall analogously be able to explain why the typical life-time of our gra
vitational cosmos (e, g. equal to the duration of a complete expansion/recontraction cycle, in the
case of the cyclic big-bang theory & 1018 g) is multiple of the typical life-time of hadrons (7 %
~10-23 s) by the same factor p-1 = ﬁ/— a_S/s w1041, At last, we shall explain, always in a
simple way, the fact (itself already empirically known, too) that the cosmos-mass M equals

0-2 times the typical mass m of the reference hadron considered. And so on,

Before reachiné the core of our arguments, however, let us start from the distance, spend
ing some words about the mathematical "environment" useful to throw light on our initial motiva
tions(¥), _

Moreover, since we are going to consider (besides usual transformations) also space-time
dilations and contractions, let us at this point recall a passage from the last scientific writing of

Einste:‘.n(m): n

... From the field equations one can immediately derive what follows : if gik(x) is
a solution of the field equations, then also gik(x/a) is a solution, where @ is a positive constant
("similar solutions"). Let us for instance suppose system g;, to represent a finte-size crystal
embedded in a flat space, We could then have a second "universe" with another crystal, exactly
gimilar to the previous one, but dilated by the factor a. As far as we confine ourselves to a
universe containing nothing but a unique crystal, we do not meet any difficulties. We realize that
the size of such a crystal ("standard of length") is not fixed by the field equations ... n(f) This
passage is part of the "Preface" to Ref, (10), written by Einstein at Princeton on Aprii 4, 1955
(two weeks before dying).

2. - ON "PROJECTIVE RELATIVITY",

Special Relativity (in both its ordinary and "extended"(11) forms) refers to a pseudo-Eucli
dean chronotopous which is flat and infinite. One immediately realizes that such a 4-dimension-
al background constitutes a very risqué extrapolatidn of the local properties of our space and
time, and does not adapt itself to the description of our cosmos, It is for instance difficult to

believe that physical laws are covariant also under time-translations of thousand millions years

(x) At the first reading, one might jump to Sect. 3.

(+) Our translation from German,



(in their ordinary form, at least); and so on,

An interesting step towards a space-time (s-t) that a priori is suitable to cosmological
studies is the following one. Let us observe that the Galilei group G can be obtained (through
a "contraction") from the Poincaré one P as the "limiting case" when ¢ —=» . We can wonder
whether the Poincaré group can be in its turn a "limiting case" of another, new group. Remain
ing in a four-dimensional space (only considering 10-parameter groups), in 1954 Fantappié
showed that a unique new group exists, depending with continuity on a parameter R, which is
reduced to Poincaré's for R =+ o and which cannot be any more the "limit" of any other
group. Such a new group, F, happens to be that one of the motions into itself of a de Sitter
space-time(]z). Now, the de Sitter s-t is representable as a hypersurface with equation

2 2 2 2 2
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el (1)

embedded in a flat 5-dimensional space (here and in what follows we shall admit that some co-
ordinates can be immaginary). From that point of view, then, the group F becomes the group
of rotations in a flat, five-dimensional space; and this clearly shows that F generalizes the
Poincaré group (whose homogeneous - Lorentz - part, as wellknown, is isomorphic from the
"complex" point of view to the group of rotations in a flat four-dimensional (1, 3) space).

A useful, important physical interpretation of the de Sitter group F has been put forth in

1959 by Arcidiacono(13), who distinguished the de Sitter s-t from the "relative" s-t of each
observer living in it. He took into account the fact that every observer would perceive the
events as though they happened in a flat s-t, any geodesic appearing to the observer as a
straight line. In other words, each "relative" space time is a geodesic representation of de
Sitter s-t on a tangent hyperplane. Thus, the de Sitter group becomes represented by the pro
jections from the center of quadric (1) and sections with the tangent hyperplane, Or, rather, F

becomes the group of projectivities which transform into itself the quadric

2 2 9L 0 5 .
X1+X2+X3+X4+R =0 (2)
that is to say
R2=x2+y2+z2—c2t2. (2%)
; ; ; ; 2 2
When introducing homogeneous coordinates, by setting Xi - in/XS’ eq. (2) writes xy Xy ks

2
Xq + xi + xg = 0. In conclusion, from the projective point of view, the ordinary "physical" spa

ce-time is the region external to the Kayley-Klein "absolute" with equation (2). But the projec-
tive space defined as the region external to the quadric (2) is nothing but the Castelnuovo space-

time(M)

, and only in this space the mathematical expressions receive a physical interpretation,
A "(Special) Projective Relativity" follows“s], which reduces to the ordinary Relativity only

when R —» oo,



Here, let us add only the following, As wellknown, Einstein build up his General Relativi
ty in such a way to include Special Relativity as a particular case. Subsequently, to build up
"unitary theéories", they tried to enlarge the Riemannian geometry of General Relativity (GR), That
isto say, before enlargingthe GR, theydidnot tryto "bringtoperfection" the Special Relativity.
A.ccording to Ref. (13), the ordinary unitary theories result to be unsatisfactory also because
all theories build up by enlarging the Riemannian geometry (or by passing to 5- or 6-dimensio
nal manifolds) are still "based" on Special Relativity (SR) - set up in the Minkowski s-t - and on
the Poincaré group. Such a group is not "simple"uz) and therefore splits in the chronotopical
(6 parameters) rotations and (4 parameters) translations, This leads to the partition of ordina
ry SR in two independent parts (Mechanics - of continuous media -, and Electromagnetism),
where a sharp distinction exists between "matter" properties and "electricity" properties, In
Projective Relativity(m' 13), on the contrary, rotations and translations merge together into
the rotations of (a 5-dimensional hypersphere) 85 via the new fundamental lenght R; as a
consequence, a link is found between "matter" and "electricity", while remaining - neverthe-
less - inside the realm of the clagsical theories directly founded upon groups ("Erlangen Pro-

gram" for physical theories).

If, afterwards, one wants to erect a "general relativity" starting from Projective Relati-
4 W g g

vity (which is based on the de Sitter-Fantappié group), one expects that the new "projective ge-
neral relativity" extends Einstein's gravitational theory on a cosmological scale, and therefore
is particularly suited for astrophysical problems.

In order to blend the conceptions of those who prefer to rely directly upon the ds? and of
those who on the contrary strictly appeal to the "path of groups" (step-by-step), we can take
advantage of the unifying point of view by Cartan: who, by generalizing the idea of space, inser
ted the very Riemannian geometry in a group-context, In fact, following Cartan(m), a Rieman-
nian variety v can be regarded as constituted of infinite many - e. g. Euclidean - spaces tan-
gent to it at each of its points, each one of those spaces having a geometry (in Klein's sense)
grounded on the roto-translations group; such a geometry was called holonomous by Cartan,
Those infinite many, Euclidean space-elementé are then l,inked together through a certain

"connection" law (in this case called Euclidean by Cartan), which allows deducing both curva-

ture and torsion (local properties) of v by using infinitesimal closed cycles on the variety,

and the "holonomy group" (global properties) of v by using finite closed cycles on v4, Vice
versa, once the holonomy group is known, the connection law can be univocally determined(12, 13!
Of course, what precedes can be at once extended to the cases when the tangent spaces possess

a non-Euclidean geometry, based on a group G¥ with r parameters (still in the sense of the
"Erlangen Pr?gram"). Likewise, given any holonomous (= founded upon a group) geometry,
anholonomous geometries can be constructed corresponding to it, For instance: in Minkowski

s-t the holonomy group is obviously the identity, and such space-time is holonomous ; on the

contrary, the Riemannian s-t of General Relativity is no more holonomous : however it admits



(it being devoid of torsion) as holonomy group the Lorentz one, i.e. the group of rotations in S4
space,

Let us summarize!13): (i) For going beyond SR, Einstein jumped from a theoi:y founded
upon the rotations group Ry (Lorentz group) to theories which rather utilize Riemannian mani
folds V4, Vs, Vﬁ, ... and in such a way he skipped, in a sense, the direct (step-by-step) path
of groups(m); (ii) In the "theory of the universes" by Fantappié -Arcidiacono, on the contrary,
the models of cosmoses (or of "universes") are build up on the basis of the rotations groups Ry,
Ry, Rg, ..., thus establishing a link among physical laws(lz), group, and geometrical model of
the cosmos or universe. In fact, the chosen group acquires in that way the geometrical tagk of
representing the motions into itself of the corresponding "universe-model", and - from the phy
sical point of view - of expressing in mathematical form a "principle of relativity". Physics,
for instance, can be build up by using the "topological group", i.e. n(n-1)/2 dimensional mani
folds which possess both geometrical and group structures(12) (this is comparable(13) with what
Lagrange did in his analytic mechanics, when he described a mechanical system in terms of its
"Lagrangian parameters") ; (iii) In order to reconcile the points of view of Einstein and of Fan
tappié-Arcidiacono, we can make use of the link established by Cartan between group theory

and differential geometry. From this "third" point of view(ls)

, we can set up a series of "spe-
cial relativities", based on the rotation groups R,, and than associate with each of them a
"general relativity" by making recourse to an "anholonomous" geometry (that admits R, as its
holbnomy group, and therefore is a Riemannian geometry),
In Appendix A we show, for example, how to build up a "general relativity" when startin
p g 0 g

from Projective (Special) Relativity,

2.1, - An Alternative Approach,

Wanted we strictly to follow the "Erlangen Program" in physics, the following alternative

approaches would be available(l 3, 17).

The investigation of de Sitter universe - projective rela-
tivity - and of the corresponding, generalized Maxwell equations(w) confirms the usefulness
(besides of a straighforward group-theoretical foundation of physics) of resorting to the rota-
tions groups R, of n-dimensional spaces. We saw that in such a way a succession of "universe
models" is obtained, represented by the hyperspheres s"-1 embedded in n-dimensional spaces
E", (n=4,5,...); and the problem arose of developing a "Relativity" just based upon the group
R, of the motions into itself of the hyperspheres sn-1, [incidentally, in the groups R, (n>3),
with their projective coordinates x4 (i=1,..., n), there appear n-3 universal constants, neces-
sary for adding square lengths to the squares of the new coordinates (which come after the first
three ones, x, y, z) without violating the requirement of dimensional homogeneity(ls)].

If we set - so as in projective relativity - n-4 normalization conditions, we take back
the "n-dimensional Relativity" to a 4-dimensional formulation (in terms of the space-time co-

(13)

ordinates) At the limit for R —» o, besides, every hypersphere sh-1 is reduced to a flat



space En'l, and its n projective coordinate become n-1 Cartesian coordinates ; consequently,
the group R, (with n(n-1)/2 parameters) decomposes into the product of rotations R, _; and
translations . (having (n-1)(n-2)/2 and (n-1) parameters, respectively), while the norma
lization conditions become n-5 independent equations with n-1 unknowns(ls). For instance,
for n=5 we get the projective transformations (projective geometry) ; for n=6 the conformal
transformations (conformal geometry) ; for n>6 the Cremona-type transformations: In such
a way, one succeeds in applying the algebraic geometry to physics.

At this point, the new alternative approach comes in, Let us notice, in fact, that within
the aforesaid group-theoretical conception of physics a particular r8le is played by the genera-
lized "Maxwell equations" of the various hyperspherical universes S“'l, which are covariant
under the group R,. If we call Hj, = -Hyy (i,k=1,2,...,n) the generalized "electromagnetic
field", possessing n(n-1)/2 distinct components, the generalized Maxwell equations then

write(ls)

=J,

a (1 61 = 1,2, ..., A) (3)

Curl H, DivH,A =1
i i

k k "k’

where ‘Tikl and Ik are the field "sources", and Curl, Div are understood to operate in n di-
mensions,

A relation has been uncovered between enlarging the basic group of physics and the pos-
sibility of unifying the various physical interaction-fields, such a synthesis being performed by
the very algebraic structure of the various rotations groups.

Particularly interesting appears to be the extension from the group Ry (projective relati
vity) to the group Rg (conformal relativity), the latter comprehending also the uniform accele-
rations. In Refs, (13) it has been shown, in this connection, that the corresponding generalized
Maxwell equations yield a unified theory of matter (gravitation plus "hydrodynamics" of conti-
nua) and of electromagnetism, In particular, for R — o, one is taken back to a flat space E5
and the abovementioned generalized Maxwell equations split, on one hand, in Corben's equa-
tions(”) (of the unified gravitational -electromagnetic field) and, on the other hand, in the me-
chanical equations of the generalized "hydrodynamical" field(13), By using such a "Conformal
Relativity" (n=6), therefore, there is no need of passing - as done on the contrary in General
Relativity - to "anholonomous" manifolds, but one succeeds iﬁ describing even gravitation with

out departing from a strict group-theoretical formulation of physics,

3. - ABOUT "CONFORMAL" RELATIVITY,

Historically, when they took due account of the electromagnetic phenomena, besides of the
mechanical ones, it was necessary to abandon - as well known - Galilean relativity in favour of
Einstein's. We could now wonder whether, once arrived at investigating also the nuclear and
subnuclear forces, a further extension towards a new Relativity should be necessary. Actually,

‘at the beginning of Sect. 2, we considered - roughly speaking - the following "chain" of groups:



Glc>m; R =+m) €= Plc; R »>m) €= F(c; R) , (4)

where the final, de Sitter group "contains"(13) two universal constants (a fundamental length, R,
and the light-speed in vacuum, ¢). But, in order to plan in a dimensionally correct way even on
ly a mechanical (dynamical) theory, three universal constants are needed(18), To lengthen the
chain (4) one has however to leave the 10-parameter groups (i.e., the 4-dimensional Minkowski
space“3)}. It is then easy to reach the conformal group C, with 15 parameters, which can be
shown to be locally isomorphic to the rotations of a 6-dimensional space. That group will allow
setting up(lz) the new "Conformal (Special) Relativity", a generalization of the Projective one
and a theory having as universe-model a 5-dimensional hypersphere (embedded in a flat 6-di-
mensional space), In such a Conformal Relativity, now, three independent universal constants
¢, R, h will enter, where the third constant, h, ought a priori to depend on a Mass (besides on

a Length and '!‘1me)(13’ 19). Let us recall at this point also what we wrote in Sect, 2.1,

SECOND PART : SUBNUCLEAR PARTICLES AS MICRO-UNIVERSES.

4, -,A HIERARCHY OF "UNIVERSES".

We can also start from a different point of view (although within a more limited frame-
work, in a sense) for generalizing the Special Relativity according to the spirit of the begin-
ning of Sect. 3. In the following, we shall essentially refer to work done by the present author
in collaboration with P. Caldirola and M. Pavsic, as it appears from.the references. Let us, na
mely, observe that the symmetries of Maxwell equations have not been fully exploited by SR, In
fact, Maxwell equations are known to be covariant - besides under Poincaré transformations -
even under conformal transformations(20) and, in particular, under dilations(¥), Moreover,
we have already recalled that Iinstein gravitational equations too are covariant under dila-
tions(0) ,  Then, let us fix our attention in particular on the (space-time) global dilations
{#=0,1,2,3):

Xy, = 0%, (5)

and postulatem) that physical laws are covariant also under the global dilations (5), where only

(x) In the general case when charges are present, such covariance exists provided that also
charges are suitably "scaled".

(o) When in presence of matter and of a cosmological term, such covariance is preserved -as
we shall see - provided that also the gravitational charge (= mass) and the cosmological
constant are suitably scaled.



discrete values of ¢ are supposed to have in nature a physical counterpart. (Such discrete va-
lues might be derived e. g. by imposing suitable boundary conditions in five-dimensional spa-
ces(zn: but we leave this problem open here),

At this point, let us recall that natural objects seem essgentially to interact via (at least)
fdur fundamental forces: the gravitational, the "weak", the electromagnetic, and the "strong"
one, here listed according to decreasing strength. For instance, the strength of the electroma-
gnetic force is measured by the dimensionless coefficient (43‘5&‘0)-1 ez/‘ﬁc. In general, the strength
of an interaction can be measured by the dimensionless square of the corresponding "coupling

constant", Here we are interested in particular in the strength of the gravitational interaction:

sz 40
& a
¥ 1.3x10 (6)
and of the strong one:
2 & 3
fig Ty, & i

where: (i) G and N are the gravitational and strong universal constants in vacuum, respecti-

velly; (ii) quantities m and g represent the gravitational-charge (= mass) and the strong-char

ge (see the following) of one and the same hadron(7)

, e.g. of a nucleon or a pion-me=on, The
value in eq. (6) is calculated for the pion mass, m=mg;in eq. (6') the first number typically cor
responds to the value of the @ coupling-constant square(zz) (whilst the second number repre
sents, more generally, the value of the pps coupling-constant square).

With regard to the above expression "strong-charge of a hadron", let us regard the quarks{x)
as the actual sources of the strong field, i. e. the real carriers of strong-charge, and let us call
"color" the sign s of quark strong-char-gesw’; more precisely, the hadrons can be considered
as endowed with zero total strong-charge, each quark possessing a strong-charge g; = s;|g'|
where Eisi = 0. The ordinary strong-interactions among hadrons should, in a sense, originate
from Van-der-Waals-type forces(?), In correspondence to quantity m of eq. (6), in eq.(6') the
quantity g & ng, will enter, quantity g, beingthe average magnitude of the constituent-quark
charges and n being the quark number.

Let us put ~ _41
Erl—z’__,__v-élxll) \’10_41

0
Ng? T~ wo.9x10-4l—7

[

(7)

(x) Let us recall, incidentally, that the hadron constituents (2 for mesons and 3 for baryons)
have been named "quarks" by M, Gell-Mann, The Anglo-Saxon word quark is usually en-
nobled by literary citations (e. g., Gell-Mann got inspiration - as wellknown - from J.
Joyce's "Finnegans Wake" (1939)). Let us here quote that Goethe properly used such a
word in "Faust", verse 292, where Mephistopheles referring to mankind exclaims: "In
jeden Quark begribt er seine Nase",



o

and notice that, if we conventionally choose m = g, then the "strong universal constant" N be-

comes

-1 41 he

N=0"G»10 G« 5 ot

* 7x10°° mkgle?; ‘ (8)

m
conversely, if we choose units such that [N] = [G] and moreover N=G=1, then we get:

33 aafithe
P A

&b 10T

m = -5
g = = cm ¥ 3x107Y g = Planck-mass , (9)
Je

where we eventually chose in eqs, (') and (7) the upper value. Eq. (9) tells us, by the way, that
the "Planck-mass" m = m \/Q“_] is nothing but the typical hadron (or, perhaps, quark)
"strong charge", in suitable units, We do not expect, therefore, existence of further, new small
black-holes - as predicted by other Authors - with a mass of the order of the Planck-mass, sih
ce we already met hadrons (or, perhaps, quarks) with strong charges of the order of Planck-
mass (in suitable units),

The most important observation is, however, the following one, Let us regard both ha-
drons ("typically" the pions, or the nucleons), and our cosmos as finite objects, Then, relation
(7) and the fact that, when calling R(U) = R the Hubble radius of our cosmos!?) and r(h) = r the
hadron (pion) radius in strong interactions, one gets

, rth) _ 10719 m -41

= > 10 =
R(U) 1026 . .

) (10)

suggest that our cosmos and hadrons can be considered as (finite) similar systems(x) governed
by similar laws that differ only in the scale-factor @ (which carries R into r and the gravita-
tional field into the strong one). Roughly speaking, we can imagine that - by shrinking the cos-
mos by the factor @2 10~*! - we can get the hadrons (see the following, and Refs. (7)), that is
to say that, by dilating a hadron by the factor @=1 = 1041, we can get a cosmos. In Refs. (7),
indeed, after having called "universe" any almost-isolated system, governed by one of the fun-
damental forces, we have analogously introduced a "hierarchy of universes"(s), which can be ob

tained through a series of suitable discrete dilations (or contractions).

Drawing our inspiration, as said above, from the hypothesis that physical laws are co-

variant under (discrete) dilations, we are led to assume, briefly, that('” g

(x) Just to fix our ideas, let us think here in terms of "Newtonian balls" both for hadrons and
our cosmos, Later on, we shall adopt less naive models (namely, Friedmann models) for
both our cosmos and hadrons, consistently with General Relativity.
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A) inside our cosmos (gravitational case) the Einstein equations, with attractive cosmological
constant(®) A, hold (G =1) :

Zg, RS - 48, - -1 (11)

= py o4 Wy

wv ~ 2 Buw

B) inside hadrons ("strong" casge) the "scaled down" Einstein equations hold (N = G = 1)

~ 1~ w~p ~ 5 8

RI-W' ng’RQ 'Hgm' G| S;w : (12)
Simple dimensional evaluations immediately tell us that (within our "dilation covariant" relati-
vity)”} :

H=0"24 |, m. = pm (13)
where m =h¥2A/c and mg 3h 2H/c are the average mass - small, but finite - of the
"external" gravitons and the average mass of the "external" strong-quanta, respectively; cfr,
Refs, (7) and Sect. 6. Moreover, the strong-charge tensor Sy is essentially Suw = -1 TPW i
where TF-"’ is a priori the ordinary matter-tensor (containing e. g. the Dirac spinorial func-

tions, etc.). For example, if we require (also) the "external" gravitational interactions (see

Refs, (7)) to have a range of the order of R = R(U) = 1026m, then we obtain at once(r” :
mG‘irl(J'68 Kg ; Aw 10758 cm~2 : mS"mu , (13"
as well as:
!z 02471 ~ 10725 ¢m? % 0.1 barn . (14)

The present, elementary theory”) allows proving in a systematic way all the empiric re-
lations (which connect macro - with micro- cosmoses) heuristically discovered by Weyl, Edding

(23); although our own numerology(7) connects the gravitational interactions with

ton, Dirac, etc,
the strong ones E.hat are -like the former - always attractive, non-linear, and eventually asso-
ciable with non-Abelian gauge theories: these Sections propose, indeed, an ante litteram geo-
‘metrical interpretation of those theories], and not with the electromagnetic ones (as suggested,
on the contrary, by Dirac). For instance, it is straightforward to prove from our "dilation-co
variant Relativity" that the mass M of our cosmos and the mass m of the pion are linked to-
gether as follows :

M=02me10%Kg; m=oM~10-28 kg, (15)
The numerology derived by our theory, moreover, deos not predict any dependence of G on ti-
me : see Ref, (22),
Before going on, let us specify that we shall confine the models to be adopted (for both
our cosmos and hadrons) within the realm of Friedmann models. In particular, we shall take
advantage of the fact that the Friedmann models are compatible with Mach Principle(24), and

.are embeddable in five dimensionstzs).
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Moreover, always consistently with eqs, (11), for the spatial part of our cosmos we can
choose the simple model of the 3-dimensional hypersurface of a hypersphere, Analogously we
can proceed for hadrons (strong universes), so as to be able to extend e. g. the Mach Principle
for them: in the sense that the inertia of every hadron-constituent (parton) will coincide with
its strong-charge (and not with its gravitational charge!), In such a way, we shall be able to
consider an "Equivalence Principle" as locally valid even inside hadrons, so as to justify from
the point of view of General Relativity the present geometrization of the strong field (first of
all inside hadrons, and then - as we shall see - even in their surroundings). It is apparent that

also the other fundamental fields could a priori be geometrized in the same way,

5. - INSIDE A "UNIVERSE", QUARK CONFINEMENT,

Let us now find out an exact solution of egs. (12) - inside a hadron - for a spherically-
symmetric distribution g' of strong-charge, The geodesic equation for a (small) test-consti-

tuent with strong-charge g" in the vacuum (i,j=1,2,3; N =1):

d’xt ot i
dtz 2 00, ]
yvields in the radial case:
, dzr- [ 2g' Hy 2g' 2Hr
= - o — 4+ —_— =
2 5 (1 5 3 ) e 3 ) [ (N = 1) (186)

The spherically-symmetric distribution g' can be identified e. g. with a quark; on the contrary,
g" must be a (small) test-particle,. When g" is another quark, eq. (16) holds only approximately
and merely furnishes an idea about the radial behaviour of g" in the field of g'. Nevertheless,
eq. (16) yields the so-called "asymptotic freedom" of quarks (or, rather, "small constituents")
for small distances r, as well as the quark (constituent} "confinement" for large values of r,
Let us examine the case of small values of r, when the attractive term oc - 1/r2 domi-
nates (so as in the gravitational case). (Notice that the repulsive term o= 1/r3 effectively
works only at extremely small values of r, so that the radial acceleration in the gravitational
case would vanish only for r= ZGm/czl). However, if we attribute an angular momentum J
with respect to g' to the considered constituent g", i,e. if we add the "kinetic-energy term" to
the radial potential corresponding to eq. (16), then - with the choice (8) for the measure units -

we can write for small r (r<<r(h); r<<l fm):

v o /g e (B s e % . —Cz-H g B o DE |+—-——--—(J/g")2 16'
) ‘ (16")
o2 g A d 3 3 2

We see that g" will tend to stabilize dynamically itself at a distance r, from g' where the (to

tal) interaction-potential vanishes. This result seems to render simply reason of the asymptotic
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freedom of hadron constituents,
In the case of two quarks, some approximate considerations do even allow to write down
a Regge-like relation{?) between J and the hadron mass.

For large distances, when r # r(h) 2 1 fm, one gets(ﬂ from eq. (16) a radial attractive

force (confining the constituents inside hadrons) which is proportional to -r (N=1; N = G ):
3

F=. ggl—'(czHr - 2H) = -g"czHr/S «.r , (r"/%%—’lfm) z (17)

In other words, by applying the methods of General Relativity to hadron structure, we get in a
very natural way also a confining potential Vo= r? for large values of r. For very large values

of r, attainable e.g. when the considered hadron starts to get deformed under a high-energy col

lision, we would getW) an even stronger confining force, proportional to - 3,
B 3 H
A i e (r>r(h) . (18)

In conclusion, through eq. (16), our unified (clagsical) approach to strong and gravitational
interactions yields a completely defined (radial) potential for constituent-constituent interaction

inside hadrons. Such interesting potential appears to deserve further attention. Another conclu-

sion is that the introduction of our micro-universes (for which, essentially, the theory of gene-
ral relativity can be used) can advantageously substitute models so as the "M. I.T. bag" model,
Let us notice that all our previous results must (and can) hold also inside our cosmos,

mutatis mutandis,

6. - IN THE SURROUNDINGS OF A "COSMOS",

We may regard the spatial parts of our cosmos and of hadrons (time aside) as embedded
in a 4-dimensional flat space E?. The problem of strong interactions between two hadrons (e, g.
two nucleons) requires considering‘what heuristically we can call the "intersections" of hadrons
‘with our cosmos: such intersections being 2-dimensional spherical surfaces, that we just call
"hadrons" tout court. Since (in our cosmos) two "hadronsg" interact strongly - e. g. via Van-der-
Waals-like forces - we need therefore to describe the (strong) interactions between the aforesaid
"intersections", To this end, when considering the motion of a hadronic test-particle - possess-
ing both strong and gravitational charges -, a "bi-scale" theory is required (inside our cosmos)
in the surroundings of hadrons and in presence of subnuclear interactions. In other words, we
need to modify the gravitational Einstein equations by introducing, in the micro-neighbourhood

of the abovementioned intersections (hadrons), a strong metric-deformation s affecting (only)

uv
the objects with strong charge (i.e. with scale-factor k = p = 10’41), and not affecting the ones

with gravitational-charge only (i, e. with scale-factor k=1), Around a hadron we can assume the

gravitational metric-tensor to be f (in suitable coordinates); and set

787 o Tyw
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g,u-v z fm, + Spy = nw + Suw (19}

where the components of the strong metric-tensor s, have to vanish for r>>1 fm. In Refs. (7),
we proposed the following field-equations (for test-objects having both gravitational and strong

charges, in the surroundings of a hadron, inside our cosmos):

o 87 1 0
Ryy +Hsyy = - F(Sm, =3 g'wsg) ; (20)
with S."" = NT“.,, ;s N=G 9'1 ; and where the "cosmological (strong) term" with the hadronic con

stant H takes care of the geometric properties of the strong field around the "source hadron".
Let us here verify that, at the static limit and for "weak" field (r 2 1 fm), we do correct
ly reduce ourselves to deal with a scalar field s, having the required Yukawian behaviour (of

course, with |s  J<<1 for r>>1 fm). Eq.(20) in suitable coordinates writes

~_ 8n 1 e '
Ryy +Hgyy = 1,,) - o4 (Spw - Zg[.wSQ) . (39%
which can also read
1 e = .811: '
" Ruy = 7 oo - HEyy = - = S),
]\ 2 (21)
x & 1 ap
Siw = Spw - 8,,H(nm, g Y "aagm’} )

where the last term has the meaning of interference between the two tensorial fields. Notice that
our strong-field tensor is precisely )

_1 1
Pyy/8 = g8 ® 7€y = My - (22)

By linearizing with respect to the flat metric, from eq. (20') we get the linearized equations

with "hadronic (cosmological) term" (r>1 fm) :

» ~ 167 1y, &0
ad ausaﬁ + 2”303 o (SGB - 2"70_389)
(23)
p_1 i,
8,5y =3 Oysy |spyle<t for r>>1fm.
Eq.(23) is a (relativistically covariant) equation for a massive tensorjal fie1d(26),
In the static limit (13;_.3:':l /8t = 0), when
s% = s, = NPy, (24)

quantity Ny being the density of strong-charge magnitude (and y the ordinary mass-density),

one gets for the scalar field Vgyg 2 % czsoo the equation
Ps_ -2Hs = ¥y (25)
00 00 4 '

C
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Finally, for a point-particle with strong charge g at rest in the origin, a spherically

)

symmetric solution of eq, (25) is (g, = 1 + -

2V
s !_ext =—i—§exp(-rv‘2H). (26)

0o 2

In the case of a nucleon, eq. (6') holds with the second value, Ngz/'ﬁc = 15. It is enough to iden
tify
Y2H = msc/*ﬁ % (27)

in order to get for the (external) field-mass(26) the value

mS=’hVﬁ/c=‘mn, (27")

In conclusion (for test-particle low speeds,and "weak" field) we actually obtained a scalar field

with the correct Yukawian behaviour:

Ve - % exp (- rrnﬂ.c/‘ﬁ) . (28)

7, - FURTHER REMARKS, AND SOME SPECULATIONS.

If, in our space (inside our cosmos), we want to associate with ordinary hadrons - {i. e.

with the aforesaid "intersections" (cf. Sect.6) - a spherically symmetric source of the strong
; ad

field QDWU/g' = 3 Sy
type equations (20). Remember that egs. (20), differently from egs.(12), are no more Einstein

we can try to solve the "Schwarzschild-type problem" for the Einstein-

equations {but they are modified Einstein equations)., In particular, we shall eventually be able
to calculate the "strong Schwarzschild-type radii" corresponding (in our cosmeos) to hadrons.
The results rs(s) that we shall obtain appear to yield actually the "effective radii" of hadrons
in strong interactions.

In order to perform our task, we shall write eqgs. (20) as

i Q 1l a .. 8w ;
RM’V "3 gw,Rg = H(g#v,*“"?ﬂv -3 g Bnaﬁgylv) = - i Sg.w 4 (20M)

and then use the trick of transforming them into

1 e _ 8xm (strong)
Ruv = 3 8o = g Buo* tuw -7
e (29)
(strong) - c¢*H 1 g
ty,fu w 8 (g‘urp-l-ny,lp - 9 g Bnﬂﬁgﬂ‘l’) ’
with S NT,,: N=egla.

py © N ipe
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By setting:
- tron
Suv * Suw + ;fv R, ‘ (30)
we are left with the equations:
B = 1 0
[, -
Rpw = ot (SM’V 2 pwse) 3
(30")
‘ (strong l <1 for r>»1 fm .
For a spherically-symmetric distribution of hadronic charge
(strong) _ *oo L
too = mere(r) & g, - Hule), (31)

the structure of eqgs, (29) suggests(27' 7) to write - in analogy with what one does when in presen

ce of an electromagnetic field -

u(r) - lz[l'v’cplz |qs|} I:Iv(g -1)|2+'ﬁ2|g00-1|2:l, (31

8mg'

where we put

‘ & = qboo : Bz msc/‘h ¥ mec/h . (31m)

Egs. (31), and the following ones, are better dealt with by means of the choice (9), with N =1,
To solve our problem, we can thus adopt an iterative procedure. For the first iteration,

in the static 1imit, we can take for its zeroth-order approximation (r 1 fm):

—;-(goo- 1)‘I ® % * - Eexp(-rih) (26")
and get 9 2 X

u(r) ¥ ﬁ%&(r_lf 2y 0% (32)
We shall put as usual |:(1500/g' = ?la- 8o = %( = M= exp]_'u(r]:l

exp l—_v(t‘)]

exp[ﬂ.(r)] i
Sy Buy "y " ‘ 2 (33)

W

|
oo

- rzsinzﬁ

where ¥, A are functions still to be determined. Notice that we are looking for "strong black-

hole"-type solutions, inside our cosmos and in vacuum (and considering the spece outside the

horizon),
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By inserting eqs. (31) and (33) into egs. (29) one gets, among the others, the equation(7= 27),
sngz e Al )‘_I( TS dk(r)) 1 (34)
- lzzur -./exp[- =g vy S4s 2~ 5 b4
m' ¢ r r

where Nng'hc 2 15, and m' is the mass of the hadronic test-particle (we can choose e. g. m's
o m, = average quark-mass, the "test-quark" being considered a priori as situated initially out
side the horizon)., The exact solution of eq. (34) is

~

exp [—}.(r)] = L z?£+ (‘ur_k + ;l-{z- ) exp[- Zﬁr] s (35)

where 'k = g4/c4m'2, and where 4 = gzm/czm‘2 is an integration constant with the dimensions
of a length, quantity m being the hadron mass (e. g., the nucleon mass).
Obviously, in our Schwarzshild-type geometry, the strong "Schwarzschild-type radii" r'(ss)

will be calculated in .correspondence with :

exp[-}.(r):[ = 0. exp 'v(r)] ==g" . (386)

The first one of egs. (36) yields values of r(Ss) depending only slightly on ﬁ Almost the same

results are got, e.g., for ,ﬁz mnc/'ﬁ or ﬁﬁ 0. In the simpler case }150, the first one of egs.

(36) becomes

rs(s)z > ztrs(s) +k =0, (37)

that is to say

rs(s) by (377)

For the nucleon, e.g., we have the two approximate solutions:
(N) = (38)

While the larger value is in good agreement with the ordinary nucleon-radius in strong interac-
tions, many alternative interpretations might be suggested for the smaller value,

We have now to verify that on the Schwarzshild-type horizon also the second one of eqgs, (36)
holds, But the calculation of ¥(r) can be performed only at the price of further approximations,

We limit therefore ourselves only to verify that, in the present case, it is actually

2
"exp [#(r)] & -{exp [A(r)] }'1 %1 - ——22gi2 y (39)
rc m'
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It is finally worthwhile to notice that our "strong" metric
ds® = exp[v(r)] c?dt” - exp [J.(r)] dr? - r? (d0? + sin0 d@?) , : (33")

together with eqs. (35) and (39), has been shown by Mignani to be identifiable with 'tHooft mono-
pole-metric in curved space-times(zs).

In conclusion, ordinary hadrons can be considered in our cosmos as "strong black-hole"-
type objects, in the sense seen above. This is a very peculiar sense, since e, g. our "strong
black-holes" at the static limit are surrounded (for r >»1 fm) by a strong (scalar) field with Yu-
kawian behaviour, which has nothing to do of course with ordinary "strong black-holes". Howe
ver, if the usual physics, valid for ordinary (strong) black-holes, can be extended - partially at
least - to our peculiar "strong black-holes", then many stimulating questions would arise, which
have been mentioned elsawhere(ﬂ. In particular, our "strong horizon" might play - at a classi-
cal level - a réle similar to the one of the already mentioned "MIT bag", [Let us recall that
strong black-holes can be characterized (besides by mass, spin, electric charge and pseudo-
scalar charge) also by further quantum numbers or charges, since the ordinary "short range"
fields can be regarded as "long range" fields at their scale]. Moreover, let us add that the
"classical confinement" here obtained for hadron constituents can be violated by quantum effects
so as TTawking's, The "Hawking temperature" for a strong black-hole, e, g, ,results(7)to be of the
or'dfer of T=2x101! K, and corresponds a priori to an "evaporation time" of the order of At ¥

(1, 5). [In any

quantum theory, however, quarks may be again "totally confined" - if you want - by associating

x 10-23 s, unless we do impose some stability-conditions of the kind of Bohr's

with their classical Schwarzschild (strong) horizon a suitable barrier of strict "super-selection
rules" and of " conservation super-laws"].

All what previously said, of course, can be "translated" so to hold for the case of "gravi-
tational universes" as our cosmos,

Let us add three speculations.

First, if our cosmos is similar to a hadron, it might e. g. be conceived - following the cal
culations in this Second Part - as a Super-pion, and therefore as constituted by one matter half-
cosmos (or "Meta-galaxy"(m) and by one antimatter half-cosmos (so as each pion consists of a
quark and an antiquark),

Second, left us assume that for ordinary neutrons (from the point of view of our peculiar
"strong black-holes") it can be extended the validity of the Second Law of black-hole thermody-
namics, saying that when two black-holes melt together the Schwarzschild area of the final
black-hole must be larger than the sum of the two initial Schwarzschild areas, Then, when neu-
trons would melt together (within the cyclic big-bang theory) at the end of an expansion/ recon-
traction cycle, the "Super-neutron" born out from the fusion of those 1080 neutrons ought even-

tually to possess - by extrapolation - a Schwarzschild horizon with area

S %> msﬁmi ) (r_ 10713 cm) (40)
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so that the melting process (= big-bang explosion!) should rebuild up a new object with radius

R >1027 cm . (40")

Third, if hadrons are similar to our cosmos, they too could perform successive cycles
of expansion and recontraction, with a period - however - of about A7z ¥ 1018/ 1041 g = 10_23 s,
We should thus gét that subnuclear particles can be regarded as pointlike only at certain succes
sive, discrete posgitions along their trajectory (associable with a fundamental chronon)., It is

interesting that Caldirola(29)

, with regard to this argument, started from a "finite difference"
equation for the electron motion and ended with the conclusion that leptons too can be considered
as pointlike objects moving on a 4-dimensional de Sitter micro-universe (to which, in our ordi-
nary space, a spherical object can be associated - by suitably projecting onto a tangent hyper-
plane, - such a sphere performing successive cycles of expansions and recontractions with a
period of about 10-23 s).

A gtructure of ‘the type of the "micro-universes" could therefore be characteristic of all

subnuclear particles(7), and show a classical path to unification also of weak interactions (to-

gether with the strong and gravitational ones),

8. - CONCLUSIONS.

We have shown that, when applying the methods of General Relativity to subnuclear par-
ticl e physics, one can advantageously substitute models so as the "MIT-bag" model with our

classical theory which considers hadrons to be (finite, "strong") micro-universes. According

to our unified (classical) approach to gravitational and strong interactions, inside hadrons there
is essentially a tensorial field (= "strong gravity"), and the constituents are supposed to exchan
ge spin-2 "gluons". In other words, "scaled down" Einstein equations - with "strong" cosmolo
gical term - hold for the hadron interior, and they yield in a natural way the confinement and
"agymptotic freedom" of the hadron constituents.

Our approach allows also writing down a (bi-scale, tensorial) field-theory of hadron-ha
dron interactions by suggesting (modified) Einstein-type equations for strong interactions, In
particular, we obtain in this way: the correct Yukawian behaviour of the strong potential (for
r »1 fm) at the static limit; and the value of hadron radii in strong interactions, In a sense,
we carry out the old idea by Riemann and later Clifford that the matter-particles were merely
the manifestation of a local strong curvature of space.

Our hope for the future is that the internal symmetries of the micro-cosmoses associated
with hadrons (for instance via a projection onto a tangeht hyperplane) can lead to some basic
elements of the theory of quantum-chromodynamics so as the "color SU(3)".

As a by-product, we derived a whole "numerology" connecting our gravitational cosmos

to the strong micro-cosmoses (hadrons). For further details, cf, Refs. (7).
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APPENDIX A

In this Appendix, let us - for example - hint at the construction of the "general relativity"
by starting from Projective Relativity, We have then to introduce(13) an anholonomous X% spa-
ce (in general, a variable-curvature Riemannian manifold) that admits the de Sitter group as its
holonomy group. Since that group is isomorphic to the one of s° rotations (where s" indicates -
let us repeat - the n-dimensional hyperspherical space), we have to resort to the geometry of a
Riemannian variety 72 (which just admits as holonomy group the one of the rotations of s9),
Such a geometry of V9 will have then to be interpreted in terms of projective differential geome
try of a four-dimensional manifold X%, It is known that the projective differential geometry of a
XD allows in fact a (n+1)-dimensional interpretation in terms of the Riemannian geometry of

Vl’l"’l

Following again Cartan, a space x4 with projective connection is a space having the cha-

racters of a projective space in the (infinitesimal) neighbourhood of each point P of its, and
endowed with a projective (homographic) connection-law between the neighbourhoods of two infi
nitely-close points of its. To such a purpose, it is necessary to provide a suitable field of qua
drics @, placed in the spaces tangent to the single points P of X4 (cf. Ref, (13)). Once fixed
the point P, the corresponding quadric Q(P) constitutes the "absolute" of the local, non-Eucli
dean metric, The parallel transport in a Riemannian v4 preserves the isotropous cones;
analogously, the projective connection must yield a projective transport law that preserves the
aforesaid field of quadrics Q. After having thus determined the projective connection“?’), one
can build up in the usual way the "curvature projective tensor" pﬂﬂ?d (a, BVl =1, ..., 59
whose vanishing is the necessary and sufficient condition for the given space to be "projectively
flat" (i, e., with constant curvature). In fact, the constant-curvature varieties are locally repre
sentable onto the Euclidean space with preservation of the geodesics,

The vanishing of the curvature Riemannian tensor leads, in GR, to get again the Minkow -
ski s-t; on the contrary, the vanishing of the curvature projective tensor Pq v leads back -
in projective general relativity - to the de Sitter s-t with constant curvature, Finally, the ten-
sor P&ﬂ'}'é has the important property of including the torsion tensor (so that Cartan called it
the "curvature-and-torsion-tensor"), Actually, at variance with what happens in the ordinary
spaces endowed with affine connection, now the curvature of a projective-curvature-space im-
plies a torsion: this is due to the fact that the de Sitter group (holonomy group of X4) decouples
- at the "relativistic" limit - in the rotations and translations of S4, to which the "rotation cur

vature" and the "translation curvature" (= torsion) correspond, respectively,
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