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Abstract. Starting from finite temperature we study, inrthe_zero temperature
limit, the interquark force for the pure SU(2) gauge theory in the (3+1)
dimensional zontinuum in function of the relative distance %. We find that
the instantons induce a sharp rise of the confining force, we compute the
magnitude of the effect and we discuss the picture and the possible

extrapolation for {3,
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A growing evidence that confinement is the only phase of the non-
abelian gauge theories without Higgs fields in (3+1) dimensions is now
accumulating. Quantitative results within the lattice formulation of the
" theory have been obtained by the beautiful numerical studies of ref. (1),
(2) and (3) which show a continuous but very sharp transition between
the strong and weak coupling regime. This picture appears in agreement
with approximation schemes where extrapolations on the behaviour of the
B-function are performed starting either from the strong coupling

(4)

regime or from the weak coupling one. In this last case the Princeton
group(S) indicates that the instatons trigger the tzanbition to the
strong coupling regime.

Here we study further the question of the transition from weak to
strong coupliing by adoﬁting a different approach, i.e. by conéidering
the theory always in the continuum and 5y computing directly the force
(called the 'string tension) between a heavy quark and an antiiguxayi: at a
rélative distance %, rather than the B-function. The method which we
follow, based on the device of first considering the system at finite
temperature T and then taking T+O, allows us to put into evidence the
effect of the semiclassical configurations,andlin particular of the :
instantons,on-the string tension. In this method, proposed by Polyakov(s)
some ‘years ago and discussed by us for various field theory models in
ref. (7), the Euclidean time variabie T is compactified to a finite
| rangé 0< 1< B, with periodic boundary conditions. It is then possible,
by performing every other functional integration in thé Ao=0 gauge, to
formulate the theory in terms of the variable ﬂ(?)zPexpﬁé{Btho(T,;),

a usual path ordered integral of the matrix valued gauge field Au (Que

to the compactification of T the pathjis closed) . The gauge is

i



completely specified with an additional requirement at T1=0=8, which
corresponds to T = ® in the zero temperature limit. We then remain
with an effective theory in a 3-dimensienal space which is only

"globally symmetric. We can then put the confinement test of a static

>
r

b in the form af an

guark-antiquark pair at space positions ?a and

ordinary correlation function of a theory in a 3-dimensional space:

5
< Q (-} & m_(—lta) > N exp(—kl; i

g (1)
nm "b" Yn_m ez |

Here Qnm indicates some suitable components of the matrix §§ . For

instance the usual Wilson loop in the gauge Al(;,T=O=B)= 0 would read
. .

b

(6)

e > + > . -
Tr(Q () 9 (ra)) for X -r pointing in the space direction n;;

b
Polyakov ‘also proposed the choice TrQ(;b)TrQ(;a) .. The r.h.s. of
eg. (1) is what is expected if confinement holds. 'In thé zero temperature
limit B + = the quantityi kK is foreseen to become proporticnal to B,
i.e. K v Bo, and 0 is the string tension.

In our analisys we will discuss the contribution of the semi-
classical configurations to the correlation function of eq. (1) and try
to understand a possible mechanism for obtaining. a finité correlation

lenght. In particular, an instanton at the origin gives, for the SU(2)

gauge thébry and in the limit B + o, (r)= exp(iﬂg-;(l/vpi-+r§—1/r))

Qinst
>

( we assume Q(r) +1 for r-+«, and the instanton is here at the origin).

This corxesﬁonds to a negative value of TrQ for r<p/Y3 and.a positive

value for r>p/v/3. Notice that at.the origin and at infinity Qinst takes

the value of the elements of Z; and this change of sign could not be



observed if the quarks wére in a representation, like the adjoint one,
where the elements of Z; are mapped into the indentity. We can therefore
imagine a mechanism for destroying correlations like in the Isiﬁg model,
in which the instantons play the role of blobs of negative values in a
sea of positive values. In order to test this picture we will consider
actually the correlation function {UU) for the variable U = TrQ/lTrﬂ]
assuming that for n uncorrelated instantons U factorizes into U(q)= E Ui'
This is necessary in order to make use of the dilute gas description of
the n instantons configurations, which is unavoidable in the lack of

a better treatment; in particular the variable we use must héve |U|=1,
otherwise instance for ]U|<1 the replacement U(n)-ﬂ'[ui could give an
&rfificially lowvalue for IU(n\Iamiatthelend produce an artificial‘
enhancement of the confining effect.

We have also considered, as a complementary test, the correlation
function for the variable U=eiw = Tr (1+03)Q /’Tr (1+03) 0 ]; w{?) is an
azimuthal angle of the four dimensional sphere into which the SU(2)
element @ can be mapped. In this case the instanton corresponds(7) to
a vortex line for éf;) = Vu(r) on a circle which f&r the particular
position and orientation above specified is described by Z = © and
Vx!'&y2= p//_.‘ i.e. rot 3;=2Hfdsg§ 63(;—5(5)) where d(s) is a parametric
representation of the'circle. The mechanism is now like the one by the
which the vortices induce.a short range correlation in the XY model.

We will compute for n instantons .Un = gUi = eiEmi, where we add in

the exponent the contribution of the n vortices computing each of them
-

from rot ¢i = 2Hfdsg%i-6%;;ai), div 31 = o, disregarding spin

waves contributions, in the language of the X Y model, which are not

! b )
typical of the instanton, like a possible other part v',Vw = v4v with

X



rot v o= o div V' # 0. The résulting contribution to, say, w(?a) of one
instanton centered at ;' is one half of the solid angle spanned by the .
corresponding vortex loop as seen from ;a- This is the same, modulo 2II,
as the flux of an electric field of a pointlike charge of value 2I
staying at the position ;a through the surface enclosed by the vortex
loop. Therefore the instantons, he;g represented by the vortex loops,
appear to interact with the electric field of the quark like magnetic
dipoles in a magnetic field; this picture looks similar to the one
described by the Princeton group in ref. (8).

Of course in both cases the instanton just represents a particularly
regular and, for small coupling,important configuration of a class of _
topologically equivalent objécts which have the same effect. For largér
coupling, i.e. for larger scale, we expect the instaton picture to
become inadeguate and presumably fade into a picture of configurations
of higher entropy. Procgeding now with the dilute gas approximation we

get for both cases

< u*(?b) u(?a) > = exp(-28 [dpD(p) a’r' aQx/4l (1-U7 (£,)U) () ) -(2)

Here, U; means the contribution of one instanton, the factor 2 takes

into account the antiinstanton, the integral over the T position gives
the factor B, the integral over dnﬁ/4H averages over the space
orientation (a global gauge rotation is here the same as a space rotation,
irrelevant for the-first case but relevant for the vortex orientation),

> L ) n
r' is the space position of the instanton, p is the size, D(p) is the
usual determinant from the functional integration over the fluctuations

Y
(in a traditional notation D(p) = D(p)/p>).
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Concerning the integration over p we make the following observations.

First of all, one expects that configurations of scale much larger than
-5
r

b More precisely

> - g -> >
R=kra- ] cannot destroy the correiation between r and r

b
let us indicate with (SL) a state cf the system, where § refers to the .

instantons of size smaller than & and I, to those of size larger than f.

A
: i i 3 ion will < > = p
Then in general a correlation tunCFlD! Wwill be G(ra'fb) P G(SL) (sL) ’

is the probability of the state (SL). Now we can write

.

L)’ where (S0) is the state characterized by the instan-

where P(SL)

= i3 1
Sy T %0y T Cis

tons of small scale only; G will be a slowly varying function of S and

(sL)

. Notice that G has a widely fluctuating phase,

. ;
therefore G (SL) = G(OL) (50) -

while G(OL) has always a small phase except when it is small in absolute

value. In our scheme we average over the large phase fluctuations of G(SO)

by dealing with the normalized variable U. Since also P we

(s) “Fs0) " P o)

have L G = I by The dilute gas approxi-

n
= ?Ui, can only be

s $s0fs0) "L %o on

mation, which has seen implies a factorization like U

(sL) e (SL)

(n)
adequate for the first factor,i.e. the (S0) contribution, and leads to the

exponentiationas in eq. (2), whereas the second factor is a slowly varying
functiecn of % which can be disregarded for our purpbses. We will therefore
reétrict the integration in eq. (2) from o to p&, where P is a number 21

on which themagnitude of our results depends rather weakly; we have actually
taken P =2, a higher value, say P =4, would increase the results of a few‘
percent (taking P -+ @ would erroneously give'an infinite tension). Notice
that this concerns the correlation and not the expectation values like <U>:

here the upper limit for p would be the dimension of the system.

We Tind numerically that with a satisfactory approximation for our
purposes we can parametrize for both gases, in the relevant region,
+ .
J(p,L) = fadze' d0,/4T (1-U1Uy) = Ap2% B8(p-8/q) + A%%'B(l/q—p) (3)



with A . ranging betweenll.B‘and 3.1 and g between 1.7 and 1. We have
taken for bdth A = 2.2 and g = 1.5, which we have seen to be a good
compromise. (In the second case to simplify the computation ﬁélhave
considered rectangular rather than circular vortex lines and checked the

" result with another approximation). The string tension is then

o = - 1/B% &n < U+(;£) U(;a) > =2/E_£P§p B(p) J(p,4) (4)

(9) 412 4 - 8n2/g2(p)
—) e
g2(p)

8n2/g%(p) = - 22/3 n(pu), i.e. the one loop formula, and u “is the

For SU(2) we have

g(p) = 4/H2exp(—u1) 1/p° ( with

Pauli-Villars scale which , in our case of no quarks, is related to

MOM by i = 2.75/7.7 M,  1fwe

the more conyentional scale A
coﬁsider for instance the first term at the r;h.s. of eg. (3) and change
integration variables in eg. (4) to x=n(up), we find a contribution‘
to o0 expressed as the integral in the intervai tn(fu/q) ,An(plu) of a

- function F(x) which has a peak for X =Xy = - 4/(25/3 - 2) with a width
r =|xp|, goes to zero for x = - = and x = o and then exponentially
increases for x > o. We will then find a rise of ¢ when n(pu)
crosses xP followed by an almost constant value (until for in(piu)>o
the divergent behaviour of F(x) would induce a rise of o). The results
of the numerical evaluation of éq. (4) are reported in Fig. (1),

As we said we take here P = 2, the plateau value of o0 depending very
weakly on P , but of course the value of £ for which the st?ing tension
appears depends liﬁearly on the poorly known parameter r;-l_ Our result
for the instanton céntribution to the string tension is the plateam.

. apMM 4

value Yo i =

HEE e. a sizable fraction of the value obtained



in the Creutz computer experiment(l) /Ec = (1.33 = ;21)AMOM (perhaps we
have been too strict in cutting down spurious effects as we explained
before; for instance, repeating the computation for the Wilson loop
<rr (e’ (2)0(x.))> t a value for Vo factor 2 higher th

r ry r_ ))>we get a value for 0, st @& factor 1igher than
the previous one). This would indicate that the instantons play a rdle in

the confinement but also other more irregular configurations are important.

Of course we have a typical problem here, since the important
contribution to the integral in eq. (4) comes from the previousl§ said
peak region where og = 92/4H = 1.1, and therefore we have to considefl
our result as a hopeful extrapolation into a reéion where o is not
small and the one loop approximation loses sense. This is in part also
a gquestion on what we have to call the instanton contribution. For this

_reason we have done the exercise of modifying the behaviour of 812 /g2 (p)
inside the expression for B(p) according to what is observed in the
compﬁter experiment for the behaviour of the bare coupling constant 9,
with the lattice spacing, i.e. taking the one ioop formula up to 055.3,
which taking into account the change of scale should correspond to
g052, and after that an/gz(p)'= 8H2/(exp(p20c)+a); in order to match
the strong coupling regime in(g? (p)) = pzcc, o, being the Creutz
value for the string tension and a bheing fixed by continuity. Now, the
previously said peak for F(x) becomes somehow higher and narrower and

consequently the rise of. oi is somehow steeper. The whele result on

nst
g = MOM =
the plateau is oinst-0.3 A , of the same magnitude as the previous one.
Let us add a further speculation on what one can expect on general
grounds for the contribution to the correlation function from

topologically non trivial configurations of various shapes and sizes.

Let us consider inAparticular the picture of the vortex lines. It is

8-



(1M in which the

possible to develop a second quantization formalism
path integration over E(s) describing tﬁe closed vortex lines is
transformed in a standard way into the functional integration over a
complex field @(E) . Consider the case in which a small constant
external field ¥ is coupled to the vortex lines, i.e. compute

-
<exp i fdsgg ﬁ> where the vector potential ﬁ is given by rot3;= ﬁ.

In the second quantization formalism
2 ifae Eon - 3 2sivyvel2
exp(ifds g°n) > = N /D¢ exp(-Sfd°q (|(3+1n)¢| +V(d)) )

where v(§) weighes the field configurations and takes also care of the
interactions among vortex lines. We can foresee two possibilities, namely
<¢> = o and the condensation case <§> # o . If we take the second

derivative in k at k o we find a term diverging like the volume of

I

the system 13 for <¢> = o and a term <>2fa3qn2(q) ~ L5 in the case
of condensation. Suppose that we repeat the computation: for circular
vortex lines in the dilute gas approximation and consider the density

B(p) as an unknown: we will find

. > !
< exp(i/&-n) > = exp (-28L3/doD (o) (l-sin(gkpz)/(gkpz)) )

which gives for the second derivative in k a term « LaofL dp p“ﬁ(p) 5
Therefore <> # o corresponds g(p)+co/p3 for p » o . {Whereas <d>=0
can be seen to correspond to g(p)‘m e-p/po ). This also agrees with the
Ising 1ikelpicture described above, which gives in the dilute gas
approximation <uU/{ ?)> " exp (—aIdppsD(p)),vanishing like the invérse

exponent of the linear dimension L in the disorder phase. This behaviour



foryﬁ(p)gives a constant string tension, since in eq. (4) J(p,2)=p3£(L/p)
for dimensional considerations,’and then 1/% (,,;H'Pdps(p)J(p,ﬂ,)=const épayf(l/y) :
We are therefore led to speculate that-the divergeﬁce of g(p)'for p +im
as given by the instanton determinant is a signal of the confinement,
giving a string tension which even divergehtly incieaseslwith the sepa-
ration; this divergence is possibly taméd to an equiliﬁriumfconfiguration
by the occurrence of a condensatiéﬁ regime, corresponding to a constant
string.tension. For instaﬁce, with the parametrization of eq. (33 we get
0 = 2Aco(An(pq) + 1) . Where co=lim 938 . Just to see the order of
magnitude, if we take for Co the value corresponding to the peak value
of the previously introduced F(#), i.e. taking F(x) = F(xp) for x>x§,

we get a /g between O.Sh’\MOM and 1.2AMCM, for the values of p_ and the
formulae for 8H2/g2(p) we have considered.

- Finally, we notice that the external quarks at distance £, introdu-
qed‘in the correlation function of eq. (1), appear to feel the medium,
i.e. .the instantons, over a volume of éhe ordef of 23, as can be seen
eq. (3) for op Sf the order of %. For instance, in the vortex picture
this is the volume filled by tlie electric field of the quarks. Therefore
" the perturbation introduced by the quaris does not appear to be confined
in a tube of constant tfanSverse dimensions, in agreement with recen#

anal&sis{12’13).

=Ytk
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Fig. 1; The square root of the string tension as a function of the logaritm of the interquark distance.



