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Abstract. Starting from :finite temperature we study, in the. zero temperature 

limit, the interquark force for the pure SU(2) gauge theory in the (3+1) 

dimens.ional ·:ontinuum in function of the relative distance R.. We find that 

the instantons induce a sharp rise of the confining force, we compute the 

magnitude of the effect and we discuss the pict~re and the possible 

extrapolation for t~. 
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A growing evidence that confinement is the only phase of the non-

abelian gauge theories without Higgs fields in (3+1) dimensions is now 

accumulating. Quantitative results within thelatti~e formulation of the 

. theory have been obtained by the beautiful numerical studies of ref. (1) , 

(2) and (3) which show a continuous but very sharp transition between 

the strong and weak coupling regime. This picture appears in agreement 

wi th approximation schelUes where eJftrapolations on the behaviour of the 

a-function are performed starting e ither from the strong couplin~ 

regime (4) or from the weak coupling one. In this last case the Princeton 

group(S) indicates that the instatons trigger the tLanbition to the 

strong coupling regime. 

Here we study further the question of the transition from weak to 

strong coupling by adopting a different approach, i.e. by considering 

the theory always in the continuum and by computing directly the force 

(called the 'string tension) between a heavy quark and an ~a.~ at a 

relative distance R., .rather than the a-function. The method which we 

follow, based on the device of first considering the system at finite 

temperature T and then taking T+Q, allows us to put into evidence the 

effect of the semiclassical configurations, and in particular of the 

(6) 
instantons,on·the string tension. In this method, proposed by Polyakov 

some 'years ago and discussed by us for various field theory models in 

ref. (7), the Euclidean time variable T is compactified to a finite 

range 0 ~ T ~ a, with periodic boundary conditions. It is then possible, 

by performing every other functional integration in the A =0 gauge , to 
o 

formulate the theory in terms of the variable Q (r) =Pexp:i ' fa dTA (T, -;) , 
<b . 0 

a usual path ordered integral of .the matrix valued gauge field A (due 
~ 

to the compactification of T the path is closed) . The gauge is 
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completely specified with an additional requirement at T=O=S, which 

corresponds to T = co in the zero temperature limi-t. We then remain 

with an effective theory in a 3-dimensional space which is only 

. globally symmetric. We can then put the confinement test of a static 

quark-antiqu.ark pair at space positions 1a and tb in the form af an 

ordinary correlation function of a theory in a 3-dimensional space: 

.... n (r) 
. n ro - a 

a a 
I 
.... · .... 

> ~ exp(-k r -r I) a b . • 

Here n indicates some suitable components of the matrix n . For 
nm 

(1) 

instance the usual Wilson loop in the gauge A\(r,T=o=S)= 0 would read 

1+ -+ -f- ... -+ -+ 
TrW (rb ) n (r

a
) for ra-rbPointingin the space direction np 

Polyakov (6) ·also proposed the choice The r.h.s. of 

eq. (1) is what is expected if confinement holds. ·In the zero temperature 

limi t S .... ., the quantity \( is foreseen to become. proportional to S, 

i.e. K ~ Sa, and a is the string tension. 

In our analisys we will discuss the contribu·tion of the semi-

classical configurations to the correlation function of eq. (1) and try 

to understand a possible mechanism for obtaining . a finite correlation 

lenght. In particular, an instanton at . the origin gives, for the SU(2) 

gauge theory and in the limit S .... ." n. (iC)= exp(ilI;·1:(1/lp2 + r 2-1/r» 
1nst 

.... 
( we assume n (r) .... 1 for r .... ." and the instanton is here at the origin). 

This corresponds to a negative value of Trn for r<p/13 and .a positive 

value for r>p/h. Notice that at . the origin and at infinity n. t takes 
l.ns 

the value of the elements of Z2 and this change of sign could not be 
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observed if the quarks were in a' representation, like the adjoint one, 

where the elements of Z2 are mapped into the indentity. We can therefore 

imagine a mechanism for destroying correlations like in the ISing model, 

in which the instantons play the role of blobs of negative values in a 

sea 'of positive values. In order to test this picture we will consider 

actually the correlation function <UU) for the variable U = Trn/lTrnl 

assuming that for n uncorrelated instantons U factorizes into 
n 

U()=TIU .• 
'! r 1. 

This is necessary in order to make use of the dilute gas description of 

the n instantons configurations, which is unavoidable in the lack of 

a better ' treatment; in particular the variable we use must have lu l=l, 

otherwise instance for lul<1 the replacement U(n)+ITU
i 

could give an 

irrgifl.cially low value for Iu (n' 1 and at the , end produce an artificial' 

enhancement of the confining effect. 

We have also considered, as a complementary test, the correlation 

function for the variable u=eiw = Tr (1,+03)n IITr (1+03)(l I; we;) is an 

azimuthal angle of the four dimensional sphere into which the SU(2) 

(7) 
element Q can be mapped. In this case L~e instanton corresponds to 

~. ~ ~ ~ 
a vortex line for vCr) = Vw(r) on a circle which f or the particular 

position and orientatiop above specified is described by Z = 0 and 
""+ 

I~ i r.: x ~.-y = plY), 
. . + dq 3++ 
1..e. rot v = 2TIfdsds Ii (r-q(s» where q(s) is a parametric 

representation of the circle. The mechanism is now like the one by the 

which the vortices induce a short range corr'elation in the XY model. 

We will compute for n instantons , U = UU - e iEwi ~here we add in n 1 i - , 

the exponent the contribution of the n vortices computing each of them 
+ 

from rot 
-+ dq 3 -+- , ~ 
vi, = 2TIfdsds iii (r-qi), div disregarding spin 

waves contributions, in the language of the X Y model, which are not 

typical of the instanton, like a possible other part 
~,-+O -+ -+, 
V ,Vw = v+v with 

-4-



+ + + 
rot v' = 0 div v' ~ o. The resulting contribution to, say, w(ra ) of one 

+ 
instanton centered at r' is one half of ~be solid angle spanned by the .. 

+ 
corresponding vortex loop as seen from rae This is the same, modulo 2IT, 

as the flux of an · electric field of a pointlike charge of value 2IT 

+ 
staying at the position ra through the surface enclosed by the vortex 

loop. Therefore the instantons, he:r;.e represented by the vortex loops, 

appear to interact with the elec.tric field of the quark like magnetic 

dipoles ·in a- magnetic field; this picture looks similar to the one 

described by the Princeton group in ref. (8). 

Of course in both cases the instanton just represents a particularly 

regular and, for small coupling, important configuration of a class of 

topologically equivalent objects which have the same effect. For larger 

cou~ling, i.e. for larger scale, we expect the instaton picture to 

become inadequate and presumably fade into a picture of configurations 

of higher entropy. Proceeding now with the dilute gas approximation we 

get for both cases 

Here, Uj means the contril5ution of one instanton, the factor 2 takes 

into account the antiinstanton·, the integral over the T position gives 

the factor a, the integral over dnn/4IT averages over the space 

orientation (a global gauge rotation is here the same ·as a space rotation, 

irrelevant for the first case but relevant for the vortex orientation) , 

+ ~ 
r' is the space position of the instanton, p is the size, D(p) is · the 

usual determinant from the functional integration over the fluctuations 

(in a traditional notation D(p) = ~(p)/p5). 
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Concerning t he integration over p we make the following observations. 

First of all, one expects that configurations of scale much l arger than 

R..=Y;a -;b l cannot destr oy "the cor relation between ;a and ;b. More precise1y 

let us indicate wi th (SL) a state of t he system, where S refers to the 

instantons of size sm a l ler t han R.. a nd J, to those of size larger than R.. . 

-+ -+ 
Then in general a correlation functio n '" i ll b e <G (r a ':t;b) > = l: G (SL) P (SL) , 

where P (SL) is lli e probability of the tate (SL). Now we can write 

G (SO) . G'SL) ' where (SO) is 't he state characterized by the instan-

tons of small scale only; G( SL) will be a s lowly varying function of Sand 

t herefore G' (SL) ,ci G (OL)' Notice that G (SO) has a widely fluctuating phase, 

while G(OL) has always a small phase except when it is small in absolute 

v a lue. In our scheme , w~ average over the large phase fluctuations of G (SO) 

b y dealing witl1 the normalized variable U. Since also P(SL)~P(SO)' P(OL) we 

have l: G (SL) , P (SL) = LS G (SO) P (SO ) . LL G (01. ) P (OL)' The dilute gas approxi-

mation , which has seen implies a factorization like 0 (n) ~ 
n 
nu. , 
1 1 

can only be 

adequate f o r the firs t factor, i.e. the (SO) contribution, and leads t o the 

exponentiation as in eq. ,(2), whereas the second factor is a · slowly varying 

function of £ which can be disregarded for our purposes. We will therefore 

restrict the integration in eq. (2) from 0 to p i , where p is a number ~ 1 

on which the magnitude of our results depe nds rather weakly; we have actually 

taken p =2, a higher value, say p =4, would increase the results of a few 

percent (.taking F -+ 00 would erroneously give " an infinite tension). Notice 

that this concerns the correla tion a nd no t the expectation values like <U>: 

here llie upper limit for p would be the dimensi on of the system. 

We f i nd numerically that wi lli a satisfactory approximation for our 

purposes we can parametrize for both c;ases, in the r elevant region, 

(3 ) 
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with A ranging between 1.8 and 3.1 and q between 1.7 and 1. We have 

taken for b&th A' = 2.2 and q = 1.5, which we have seen to be a good 

compromise. (In the second case to simplify the computation we have 

considered rectangular rather than circular vortex lines and checked the 

result with another approximation). The string tension is then 

(4 ) 

(9) '" For SU(2) we have D(p) = 4/n2exp(-a
1

) l/pS with 

22/3 R,n(p.\l), i.e. the one loop formula, and \l '1.s the 

Pauli-Villars scale which, in our case ·of no quarks, is related to 

the more conventional scale If we 

consider for inst;ance the first term at the r,h.s. of eq. (3) and change 

integration variables in eq. (4) to x=R,n(\lp), we find a contribution 

to cr expressed as the integral in the interval tn(R,\l/q),tn(pt\l) of a 

function F(x) which has a peak for x = xr. = - 4/(22/3 - 2) with a width 

r =- Ixp l , goes to zero for x = - "" and x = 0 and then exponentially 

increases for x > o. We will then find a rise of cr when tn(ft\l) 

crosses followed by an almost constant value (until for 

the divergent behaviour of F(x) would induce'a rise of cr). The results 

of the numerical evaluation of eq. (4) are reported in Fig. (1) • 

As we said we take here to = 2, the plateau value of cr depending very 

weakly on p , but of course the value of R, for which the string tension 

appears depends linearly on the poorly known parameter r -l. OUr result 

for the instanton contribution to the string tensioh is the plateau . 

al r 4AMOM . , v ' ue ,cr. =. 1.e . a s1zable fraction, of the value obtained l.nst 
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in the Creutz computer experiment(l) ra = (1.33 ± ,21)AMOM (perhaps we 
c 

have been \ too strict in cutting down spurious effec.ts as we explained 

before; for instance, repeating the computation for the Wilson loop 

ra inst a. factor 2 higher than 

the previous one). This would indicate that the ins tan tons play a role in 

the confinement but also other more irregular configurations are important. 
0. 

Of course we have a typical problem here, since the important 

contribution to the integral in eq. (4) comes from the previously said 

peak region where as = g2 /411 = 1.1, and therefore we have to consider 

our result as a hopeful extrapolation into a region where as is not 

small and the olle loop approximation loses sense. This is in part also 

a question on what we pave to call the instanton contribution. For this 

reason we have done the exercise of modifying the behaviour of 8112/g2 (p) 

'" inside the expression for D(p) according to what is observed in the 

computer experiment for the behaviour of th e here coupli ng constant go 

with ·the lattice spacing, Le. taking the one loop formula up to a ~.3, 
s 

which taking into accou~t the change of scale should correspond to 

go~2, and after that 811 2/ g 2 (p) = 811 2/(exp(p2cr )+a), in orde~ to match 
c 

the strong coupling regime cr c being the Creutz 

value for the string tension and a being fixed by continuity. Now, the 

previously said peak for F (x) becomes somehow higher and narrower and 

conseque~tly the rise of . cr
i nst 

is somehow ·steeper. The whole result on 

the plateau is fcj. t=O. 3 A MOM, of the same magnitude as the previous one. 
1ns 

Let us add a furthe r speculation on what one can expect on general 

grounds for the contribution t o the correlation function from 

topologically non trivial configurations of various shapes and sizes. 

Let us consider in particular the picture of the vortex lines. It is 

- 8-

T 

• 



possible to develop a second -quantization formalism (11 ,7) in which the 

path integration over 
-> 
q (s) describing the closed vortex lines is 

transformed in a standard way into the functional integration over a 

complex field 
-> 

~ (q) Consider the case in which a small constant 

external field is coupled to the vO.rtex lines, i. e. compute 
-> 

. fdS~dS -> <exp ~ Tl > where the vector potential 
-> 
Tl 

. . b ->-> 
~s g~ven y rot Tl = k. 

In the second quantization formalism 

. -t -> < exp(~fds q."Tl) > 

where V(~) weighes the field configurations and takes also care of the 

interactions among vortex lines. We can foresee two possibilities, namely 

<~> = 0 and the condensation case <~ > _ F 0 • If we take the second 

derivative in k at k = 0 we find a term diverging like the volume of 

of condensation. Suppose that we repeat the computation. for circular 

vortex lines in the dilute gas approximation and consider the density 

'" O(p) as an unknown: we will find 

which gives for the second derivative in k _ a term '" t3 "fL dp p4~(p) 
o 

Therefore <~ > F 0 corresponds ri'(p) ->c I p 3 
o 

for < ~ > =o 

can be seen to correspond to ri'(p) ~ e-p/Po ). This also agrees with the 

Ising like picture described above, which gives in the dilute gas 

approximation <U( ;» '" exp (-a!dp p30 (p» ,vanishing like the inverse 

exponent of the linear dimension L in the disorder phase. This behaviour 
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for )J~(p) gives a constant string tension, since in eq. (4) J(p,~)=p3f(~/p) 

for dimensional considerations, land then 1/~ J~Pdpi5 (p) J (p,~) =const /~Yf (l/y) • 
o ' 0 

We are therefore led to speculate that 'the divergence of ~(p) for p ~ 'w 

as given by the instanton determinant is a sig,nal of the confinement, 

giving a string tension which even divergently increases with the sepa-

ration, this divergence is possibly tamed to an equilibrium i configuration 

by the occur.l:!ence of a condensation regime, corresponding to a constant 

string tension. For instance, tiith the parametrization of eq. (3; we get 

• Just to see the order of 

magnitude, if we take for Co the value corresponding to the peak value 

of the previously introduced F(x), i.e. taking F(x) = F(x ) for x>x , 
p p 

we get a ra between 
MOM MCM 

O.9A and 1.2A ,for the values of p and the 

formulae for SII2/g2 (p) we have considered. 

Finally, we notice that the external quarks at distance t, introdu-

ced , in the correlation function of eq. (i), appear to ' feel the mediUm, 

1. e. "the instantons, over a volume of the order of t 3, as C'ln be seen 

eq. (3) for p of the 9rder of t. For instance, in the vortex picture 

this is the volume filled by the electric field of'the quarks. Therefore 

the perturbation introduced by the quarks does not appear to be confined 
, , 

in a tube of constant transverse dimensions, in agreement with recent 

. . (12 13) 
analysis ' • 
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Fig. 1; The square root of the string tension as a function of the logaritm of the interquark distance. 
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