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ABSTRACT. - We present a phenomenological analysis of the pion-proton elastic scattering, at 
intermediate energies, based on the theory of surface waves. These are excited at the edge of 
the interaction region and propagate along it, being damped in the direction of propagation. Sin 
ce a t the energies, where we are working, the black-body limit is not yet reached, the surface 
waves can also take one or more shortcuts inside the interaction region. This fact explains the 
enhancement of the c r oss - section at backwards. Many points of the theory can be phenomenol~ 
gically checked, and the interaction radius, in the pion-proton elastic collision, can be num eri 
cally derived .. 

RIASSUNTO. - Presentiamo un'analisi fenomenologica della collisione elastica pione-protone, 
ad energie intermedie, basata sulla teoria delle onde superficiali. Queste ultime sana eccitate 
al bordo della regione d'interazione e si propagano attorno ad essa, attenuandosi nella direzio 
ne di propagazione. Alle energie a cui lavo riamo, possiamo assumere che 1a regione d 'intera 
zione non sia tota1mente assorbente ; quindi alcune onde superficiali possono penetrare all'inter 
no e percorrere dei1e II scorciatoie II. Cio permette di spiegare l 'innalzamento della sezione di
urto a grandi angoli. Molti punti della teo ria possono essere verificati fenomenologicamente . 
Inoltre si puo dedurre numericamente il raggio d'interazione nell'urto elastico pione -protone. 

1. - INTRODUCTION . 

We consider the elastic scattering of positive pions from an unpolarized proton target in 
the momt. l.l t u m range 3 - 7 GeV/c . Following Schrempp(l), we assume that the pion-proton coll i 
sion in the centre of mass system (c. m. s.) may be redu ced to the scattering of a plane wave -
from a body, which has the shape and the dim e nsions of the interaction region, identifying the 
wave number k with the c. In. s. momentum of the colliding particles. We make the hypothesis 
that the interaction region is a sphere of radius R , centered in the centre of mass. 

In the momentum range considered, the small wavelength approximation can be applied; 
moreover we assume that there is a strong absorption at small impact parameters, but not at 
large ones. Therefore one can associate with the l-th partial wave an impact parameter bl = 
= (1 + 1(2)(k and roughly say that the partial waves with b l < R are absorbed. More precisely 
the so called "localization prinCiple" leads to a subdivision of the partial wave series into three 
domalns(2) : 

(0 O~l~l_ = p- c pl (3; (ii) 1_"'-l.SI+ = p+ cp l (3 ; (iii) 1+:S1 
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where f1 = kR and c is a quantity of order unity. Parti~l waves in the domain (i) are absorbed; 
those in the domain (iii) are damped by the centrifugal barrier and give a negligible contribution. 
Finally the waves , belonging to the domain (ii), correspond to incident particles passing close to 
edge of the target and give rise to surface waves , which propagat e along the surface of the body. 

The scattering process that we analyze can be described using a complex valued potential 
suc h that the real part has a s harp edge and the imaginary part has a radius smaller than the real 
one. In other words there is a transparent shell at the periphery of the interaction region. This 
shell disappears towards l arger energies, when the "black_body " limit i s reached(l). Therefore 
the grazing rays may describe simply an a r c of geodesic around the body or also ta ke one or m~ 
re s ho rtcuts before emerging tangentially at the s u rface. The process i s quite involved and it is 
convenient to use the ray tra cin g technique, which has been originally introduced in optics. Then 
we shall speak of a complex va lued "refraction index lt instead of a potential, and we shall use the 
concepts and methods of geometrical theory of diffraction in the sense of Keller( 3). Indeed the wa 
ve funct ion of the n +- p system satisfies the stationary Klein-Gordon equation(l) , which is for
mally identi cal to the stationary wave equation, so that, in the l jrnit of large k, the methods of 
Keller's theory can be extended to our case. Therefore, hereafter, we shall use words typical of 
optics, like diffraction, reflection, refraction and so on, which shall refer . in this case, to pa..!: 
tic1e traj ectories rather than to light rays. 

Up to now, as far as we know, only the case of high frequency scattering by a transparent 
sphere(2) (or a wholly opaque sphere(4, 5» has been considered in detail. The mathematical me..! 
hods in use are so in volved that it appears hopeless, at the moment , to extend these procedu res 
to the realistic case of a rrrefraction index It str ongly absorbin g at the centre and with a transpa
rent shell at the periphery. We prefer to follow a more practical att itude, which consists in pr~ 
posing suitable conjectu r es to be supported by the phenomenological analysis . Our main conjec 
ture is the following one: we suppose that, while the waves in the domain (i) are absorbed by the 
opaque core of the target , the wave s in the domain (ii) give rise, precisely . to the same pheno
m ena as in the case of a wholly transparent sphe r e. This conjecture is the oretically reasonable 
in virtue of the I! locali zation prinCiple II which we have illustrated above . Indeed, thanks to this 
principle, we can assume that the phenomena which occur at the peripher y (1. e. in the transpa
rent shell), are essentially independent of the inner structure of t h e refraction index. 

The paper is or ganized as follows: in Sectfon 2 we sketch an outline of the theory; Section 3 
is devoted to the phenomenological analysis. 

2. - OUTLINE OF THE THEORY. 

The n+ -p system is described by a wave fun ction satisfying the stationary Klein - Gordon 
equat~on(l) : 

(V2 +N 2 k 2 )1/1 0, r~ R ( Ia) 

(V 2 +k 2 )1J! 0 r >R ( I b) 

where k is the wave number in the c . m . s. and N is the !lrefract ion index" . Here we neglect the 
effects of the spin of the proton . This approximation is a cceptable since the t arget is unpolarized . 
Moreover we shall verify phenomenologically that the spin-flip amplitude is negligible with r espect 
to the non· spin - flip one. 

Let us observe that the equation (1) is formally identical to the wave equation describing a 
monochromatic beam of light hitting an obstacle. Since ~ = kR» I, we can use the same appro 
ximation methods as in the optics of the short wavelengths. Therefore translating the methods 
and terminology of geometrical diffraction theory into the domain of particle dynamics, we can 
distinguish the followin g phenomena: 

a) reflection at the surface of the sphere; 

b) refraction; 

c) difft'action of grazing rays; these describe an arc of geodesic arou nd the obstacle and may also 
shed into limiting refracted rays. 
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Now the refracted rays cannot cross the opaque core. However we assume that the trans
parent shell is large enough to allow the critically refracted rays to cross it without being absar 
bed. Therefore, in evaluating the scattering amplitude we have to take into account the direct re 
flection, the diffr-action and the critical refraction. Moreover we must distinguish between the
rays which describe an arc of geodesic around the target and shall be called "surface raysll, and 
those which, being critically refracted, give only a geometrical contribution. In oreer to be mo
re precise on this point, let us consider a ray which is critically refracted at the point of inciden 
ce and takes a shortcut: it may undergo a second critical refraction and emerge in the direction
ti = tit' where 't1-t is the amplitude of the arc corresponding to the shortcut; or alternatively, it 
may be internally reflected 1,2, ..... , p-1 times and emerge, after a final critical refraction, in 
the directions # = 2#t, # = 3#t, ..... , # = pt'l), without describing any arc of geodesic. For the 
moment we do not consider this type of geometrical contribution. Therefore we treat only the re 
flected· and diffracted rays; then the scattering amplitude f( p, #) is given by: -

(2) 

where f (P, #) and fd ( P, #) denote respectively the reflection and the diffraction amplitudes . 
Here, f6llowing Nussenzveig(2), we use dimensionless scattering amplitudes; therefore, in or
der to evaluate the differential cross -sections, we must multiply the modulus squared of f by 
the factor R 2 . 

As far as reflection is concerned, we assume that the reflected wave (and therefore the re 
flection amplitude) depends only on the properties of the obstacle at the point of reflection and on 
the angle of incidence. As a consequence, we can use the same formula that was found for a whol 
ly transparent sphere(2) : 

VN 2 _ cos2 'ff.+ sin 'ff. 
2 2 

(3) 

where N is the (real) refraction index in the transparent shell. This formula fails when 
{}:5 p -1 / 3, i. e. in a region including the diffractive peak, where reflection at the critical angle 
occurs; this particular situation will be examined later on. Finally, formula (3) is strictly va
lid if we assume a sharp edge at the surface of the sphere. In the next Section we shall see how 
this formula can be modified under more general conditions. 

Now let us consider the term fd(P,fi). This has to be further decomposed into different 
contributions, 1. e. 

(4) 

(0) . () 
where fd (P,i}) refers to the surface waves which travel only on the surface, while ft (p,{}). 
for p ~ 1, takes into account the contribution of those rays which have limiting refraction and 
take p shortcuts. 

To evaluate each term of the sum (4), we give a detailed description of the ray tracing of 
the grazing rays which emerge in a direction i}(O ~ *~n), after taking 0, I, 2, ...•.. , P 
shortcuts inside the transparent sheil of the sphere. In particular let us consider, for each va 
lue of p, the ray tracing for the surface rays, in a way similar to Chen(6) and Nussenzveig(2f." 
When p = 0, a grazing ray describes an arc of amplitude: 

+ 
~ = #+2mn 

O,m 
m =0,1,2, ..... (5a) 

or 

2" - # + 2 mn , m = 0, 1,2, ..... (5b) 
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where ~6. m is the arc descr ibed by the counterclockwise travelling surface w:=tve, while ~O, m 
is the arc described by the clockwise travelling one (see Fig. 1). When p = 1, the grazing ray may 

a) b) 

T2 

F IG. 1 - Diffracted rays in the direc tion 1} . a) p = 0; b) P = 1. 

undergo a critical refraction, take a shortcut and reemerge at the critical angle , describing an 
arc of amplitude : 

where 

+ 
~i,m 

+ 
~ - + 2 mn , 

1 

+ ; 1 = ~ 1} - 1}t (mod 2,,) , 

m =0, 1,2, . .... (6a) 

(6b) 

+ 
However, the grazing ray may also describe an ar1-0f amplitude t:p (O ~ fP·~ ~i. mL then take a 
shortcut and lastly describe an arc of amplitude ~ 1- - cp . We have a different ray for any va ,m -
lue of fIJ, so that we must take all these infinite possibilities into ac count. 

For p ::: 2 the surface rays take two shortcuts , so that the arcs of geodesics have, in all. an 
amplitude: 

+ 
~2 m 

where 

~! = :: {I- 21}t (mod 2"), 

m=0,l,2, . . . .. 

+ 
(O<~2 :!; 2"). 

In this case we must consider two different kinds of rays: 
+ 

(7a) 

(7b) 

i) the rays that describe an arc rp at the surface (0 ~ ~ ~ ~ 2, m)' then take two shortcuts conse-
cutivelyand, lastly, describe an arc of amplitude ~2 m - rp • We have a different ray for any 
value of cP, ' 

+ 
u) the rays that describ;. an arc CPt (0 ~ CPt ~ ~2, m)' then take a shortcut, reemerge describing 

a~ arc CP2 (0 <; CP2 :S 2, m - CPI ) and, after another shortcut, describe an arc of amplitude 

~2- - cP t - cP 2 ; we have a different ray for each value of CPt and CP2 ' ,m 

Consequently the type (i) rays can be traced in a simply infinite number of ways, while the 
type (ii) can take place in a doubly infinite number of ways. 
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For a general value of P . a ray, before emerging in a direction {}, has to describe arcs of 
amplitudes 9'j such that: 

where 

2, gJ. 
j J 

+ 
~~,m m=O.1.2, ..... 

+ 
(0« ~-:!i 2"') 

P 

(8a) 

(8b) 

We must consider p different kinds of rays •. according as they have 0.1, ..... J p-l internal reflee 
tions. In this connection it is useful to distinguish between type (i) and type (ii) vertices: we dena 
minate type (i) vertices those at which an internal reflection takes place, type (ii) vertices those 
at which two critical refractions occur (see Fig. 2). In the simplest case the ray describee an 
arc 'P. then it has p-l internal reflections 
(i. e, (p-l) type (i) vertices) !Uld lastly de-

+ 
scribes an arc ~ P, m - fJI. Another class of 
rays can be obtained by substituting one ty
pe (0 by one type (ii) vertex . Similarly. all 
the possible classes of. rays are obtained by 
substituting 2,3, .. , .. type (i) vertices by 
2,3" .... type (ii) vertices . 

In order to compute the contributions 
of the rays to the scattering amplitude, we 
must distinguish among the different ninter 

, actions II of the ray with the surface. More 
precisely, we may regard as an' "interac
tion-vertex" a!1y point at which diffraction, 
critical refraction or internal reflection t~ 

FIG. 2 - Two types of vertices. a) One interrfal 
reflection (type (i) vertex); b) Two critical re
fractions (type (ii) vertex). 

kes place. Consequently, we may define a proper "coupling constant" for any type of interac
tion. They are: 

a) the diffraction coefficient Dn; 

b) D12 and D21 foz: the rays which have a critical refraction entering into , or emerging from the 
sphere; 

c) R22 for the internal reflection . 

Note that we assume these coefficients to be dimensionless. Moreover, the lirie joining two 
lI vertices n can be regarded as a "propagator". We must distinguish between two cases, which are 
the fol~owing ones: 

a) the "propagator II for a shortcut is given by 

where 2 VN 2 - 1 R is the optical path length of the shortcut; 

b) for a surface ray describing an arc of amplitude p. the npropagator!! takes the form 
J 

where An =' P + ian' an being the decay exponents of the surface waves. 

(9) 

(10) 

Furthermore, due to the geometry of the obstacle , the diffracted rays form an axial cau
stic, which is the straight line parallel to the incident beam and passing through the centre of the 
sphere. On the caustic the ray approximation is no longer valid; however we take into account 
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the foc using effect with th e factor (sin f) ) - 1/2, provided that we are sufEciently far from the ca~ 
sUe itself. 

Next we do two simplifying assumptions: 

a) we do not take into account the rays for which m >- 1 ; 

b) we consider only that surface wave for which Rea n is the lowest one , i. e . n:: 1. This latter 
approximation does not hold in the transition re gion s , which will be defined subsequently . 

Finally it is convenient to split f~P)( p, *) into the contributions of the counte rclockwise and 
clockwise rays, i. e. 

(11) 

Indeed we must take into account a phase-shift of -1</2 between f~) - ( ~,,'}) and f~)+(~, ,'}1. since 
the clockwise rays cross the focal points once more than the counterclockwise ones. _Therefore in 
the expressions of rr)+ and rt) - we shall introduce two phase factors inp and inp respectiv~ 
ly. such that oj;:: n1J - 1. 

Let us begin with p = O. The surface waves are excited at T1 and T2 , and are reconverted 
at 8 1 and 82 into tangentially emerging rays (see Fig, 1), The contribution to the scattering am 
plitude is given by: 

f~O)+(~, ,'}) - i 
0] 

ii· l ,'} 

. 1/ 2 e °1 
(8m,'}) 

f~O)-(~,,'}) = - I 

°1 

;J'1(2TC- ,'}) 

( . ,'})1 /2 e °1 
Sln 

Next let us consider the contribution for p:: 1 ; we have: 

+ 
nl 

i 
. 172 (sm ,'}) 

( 12a) 

( 12b) 

(! 3a) 

We have carried out the integration over rp in order to consider all the possible ways in which a 
ray with p -= 1 can be traced. 

Similarl y we get: 

~ -
] ~

I 
(13b) 

Now we can generalize this procedure to any value of p. Besides the focusing factor, we 
have the common factor D~ D12 D 21 , due to initial and final dHfractic:lI1 and critical refraction . 

Moreover we have to consider p I1propagators" of type (9), i. e. e2ipp VN2 - 1, and a number of 
I1 propagat.orsl1 of type (10), i. e . 

i).l rp. i).l J:..rp. ne J=e JJ (14) 
j 
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Lastly we must take into account all the possible ways in which the intermediate interactions take 
place. In the case of (p - l) internal reflections (i. e, when all the vertices are of type (i» we have 
a contribution of 

+ 

(R )(p- l) J~p dCP 0 (R )(p-l) ~-: 
22 22 P . 

o 

(15) 

Next we can substitute one type (i) by one type (ii) vertex in (p-l) different ways; the contribu tion 
is: 

(16) 

(p-l)(p-2) 
The substitution ot two type (i) by two type (ii) vertices can be done in 2! different ways. 
We get a contribution: + + 

~~ ~; -CPl ~ --g; I -CP2 
!E.:..JJ(p-2) (R )(p - 3) (D D )2 J P dcp f dcp / P dCP3 

2! 22 12 21 1 . 2 
o 0 0 

(~~)3 
o (p-l)(p-2) (R )(p-3) (D D )2 ~ 

2! 22 122131 

Taking all the possible contributions into account, the p-th term gives: 

where n = n + - 1. 
p P 

+ 

( ) 

(~ _)m 
~ p-l (R )(p - m) (D D )(m - l) _:,,-P,--

m=l m-l 22 12 21 m! 

(17) 

(18) 

At this pOint, in order to pass from the kinematical description, like that given by the ray 
tracing. to a dynamical theory. one must do precise statements on the "coupling constants!! and 
on the surface wave Itpropagators", In virtue of the !!localization principle" (see the Introduction). 
we can conjecture that the grazing rays under go the same type of lIinteractions II as in the case of 
a wholly transparent sphere , More precisely, we make the following assumptions: 

a) The total reflection takes place, i. e, 

(19) 

b) The transmission coefficient\ like the reflection coefficient, depends merely on the properties 
of the sphere at the point of l\efraction and on the angle of incidence; therefore we assume for 
the IIcoupling constants" D12 and D2l the same values which have been obtained in the case of 
a wholly tra.nsparent sphere{~) and of a wholly transparent cylinder(S), i. e . 

D D = 2 
12 21 ~ 

(20) 

c) The diffraction coefficients Dn and the decay exponents an (and therefore the "propagator" 
constants An = ~+ ian) depend only on the properties of the spherical surface. 
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This .i mplies that we can assume for these coefficients the same k-dependence as it was cal cula
ted for a wholly transparent sphere(2 ). Thus we h ave: 

(21) 

and 

(22a) 

(22b) 

Note t hat. in the case of a wholly transparent sphere, the terms ). n represent the locations, in 
the complex angular momentum plane , of those poles of the Debye expansion of the S-function, 
which lie in lhe first quadrant(2), 

1n conclus ion formula (18) can be rewritten as follows: 

+ 

d
2 n + 

p (P_l)( 2S: r f~P):( p,,'}) 

i P 
2ipP VN2 _1 ill S -

1 1 P 

m~1 m-l VN/l pl/6(Sin ,'})1 /2 
e e m! 

+ 

d
2 

n + i P e2ip~ Ml 
ill S -

L( -1) ( _ X~) 1 e P 
pl / 6(Sin ,'})1 /2 P 

(23) 

where XP -= + 
way(2): -

+ 
2 S

p and L~ 1) is a gene ralized Laguerre polynomial defined in t h e following 

-x xe 
p' 

P 
d (p-l x) -- x e 

dxP 

P 
1: 

m = 1 (
P- l) xm 
rn-1 In ! 

(24) 

The total diffraction amplitude is given by the sum (4). Should we extend to infinity th i s s um, the 
series would diverge. However , as pOinted out by Nussenzveig(2), each term (23) represents on 
ly the main contribution for a fixed p and p suffiCiently large , whereas we are interested in the 
asy mptotic behaviour for fixed p and increaSingly large p. Since, fo r increasing p, the nu m 
ber of negl ect.ed terms also increases, for p l arge enough, (23) no longer represents the domi
nant term. Nussenzveig(2) has given a . heuristic argument to show that the resultant effect . due 
to the correction terms, brings about an exponential damping factor for large p. Then the re
mainder of tile Slim (4) after P terms is negligible, where P is of the order of magnitude of 
p2 / 3. In conclusion we havf': 

~ 2ipp VN2_1 
.<. P e 
o 

S - } p 

(25) 

l ief lIS I"pmark that formula (25) does not hold within certain angular regions. Indeed at forwards 
and at backwards the diffracted rays from an axial caustic, so t.hat the approximation, which we 
assumed, fails in a neighborhood of {J : 0 and {} .., n . Moreover at the angles if = pift (p =l, 2, . .. ) 
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we must take into account the contributions of the It critically refracted II geometrical ra~s . Fur-
i). ~ 

thermore in neighborhoods of these angles, one cannot neglect exponentials like e n P with 
n ,.1 ; indeed, as one ca n see from fromula (22b). the simplifying assumption (b) is no longer 
suitable when 

(26) 

In other words in these angular regions, which will be called "transition regions l1 , all t h e surfa
ce waves contribute. 

It is worth illustrating this point in a mOre detailed way. For p = 0 the inequality (26) defi
nes a r egion which includes the forward diffraction peak. Here the surface waves give r i se to a 
diver gent contribution. On the other hand, near f} = D, the incident and reflected rays have near 
ly the same directions. From this it follows that also the geometrical contribution presents a dl 
vergence at forwards, which compensates the divergence of the surface waves(l). 

For {} = {}t the surface waves relative to the term p = 1 are excited. Therefore this angle 
is a transition point between two different regions, since here the surface wave contribution cha~ 
ges abruptly. Moreov~r we have also the geometrical contribution of the critically refracted rays . 
In conclusion we can say that a neighborhood of {} = i1't is a transition region. We have an analo
gous situation for,'}" P,'}t (P " 2, 3, ... ). 

As far as the backward direction is concerned we shall retu rn on this question later on. 

Now it is convenient to distinguish between two different angular regions. 

A) When n; -,'} is large, 
be approximated by : 

(p) -
the contribution from fd is negligible. Therefore formula (25) can 

+ 
n 

i P 

(27) 

+ . 
where 1J = ~ - ~. Then, neglectlOg the reflected ray contribution (we shall discuss this ap-

pr oximatlon s i~ the next Section), we have: 

where 

F(B,N,,'}) 

p 

Ip 
o 

e 
2 i P P VN 2 -I 

-21m AI,'} 
e --,-,;--_ 

sin {} 
(28) 

(29) 

If we suppose to consider an angular domain, which does not include any transition region, then 
i).l,'} 

we can assume that F( p, N, 1)) depends weakly on {} (at least in comparison with __ e ) 

Therefore we get, for a fixed value of k: 

do 
dQ 

-21m AI,') 
e 

'!! C 0 ~-,--,;-
sin~ 

(Si~*)TT2 . 

(30) 

where Co 
R21dl141-12 _ ---iJ1F3 F , and F is the mean value of F over the {} interval considered. 
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Finally from (29 ) it is apparent that the value of Co changes abruptly crossing a transition region , 

+ 
B ) Now we consider the angular re gion where (n - {} ) is small . Then let us rewrite ~p as fol-

lows: I !: vpf("'-*)' where vp : "' - P*t (mod2",l. (0 !fvp~ 2"'). Next, in the generalized 

Laguerr e
P 

po lynomials, we replace ~± with v, since (n: - {} ) is small, and we write: 
p p 

( 31) 

+ 
Sin ce n n - 1 we can rewrite fo rmula (31) as follows: p p , 

(32) 

where G : (21T)1 / 2(d
l

)2 e -i"'/ 4. But the last factor in formula (32) is simply the asymptotic be ha 

v iour of PAI -.!( - cos"*) (i. e. the Legendre function of the firs t. kind with index '"1 - ~), when 
2 

11. 11 ....... 00, I Al l (rr -t} ) »1 and ).1 is approximated by p in the denominator. Furthermore we 

assume that at backwards the sum (4) is dominated by the te rm which corr esponds to the s hortest 
path of the surface waves, say p = p. In conclusion we write: 

+ . / 1 ·-aJ~ () 2v- i). v_ n- } 
fd(P,(} ) >:: GPI 3 e21Pp Y -I L.:l (_ .~) e I P i P PI. _1. ( - cos ,:t) 

p V N 2 -1 I 2 
(33) 

where we use explicitly the Legendre function P). 1 ( - cos {} ) instead of its asymptotic behaviour. 
1 -"2 

This function is regular for f} = 11', and we can assume that formula (33) holds true even in a neigh 
bourhood of the angle {} = n, Finally. ne glecting the reflected ray contribution , we have: 

do 
"(j"Q : (34) 

where 

In order to fit the experimental data, it is convenient to express the differential cros s sec 
tion as a fu n ction of the Lorentz invariant variables t and u (Mandelstam variables) . Then, in 
place of formula (30), we have: 

c ( 35) 



At backwards we have : 

where 

d. 
du 
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Substituting formula (22b) into (37) we obtain: 

A = Al K -4/3 e - c K 1/3 

with 

a nd 

Lastly, since PI. _!( - cos # ) 
1 2 

1 for # = It, from (36) we have: 

(~) A 
du # =It 

1/3 
A K-4/ 3 - c K . 

1 e 

3. - PHENOMENOLOGICAL ANALYSIS. 

(36) 

(37) 

(38) 

( 39) 

In a previous paper(7) (which will b e r eferred hereafter as 1) the backward differentia l 
cross section of the elastic scattering of pions from an unpolarized proton target, in the momen 
tum range 3 .55 -7.00 GeV/c, has been fitted with the follow ing formula(x): 

B I p I 1 ( - cos 
A --I 2 

(4 0) 

1 
wh ere P J.. _ ..!:.. is an associated L egendre fu nct ion, which has been introdu ced in order to take 

1 2 
into account the spin of the proton (indeed the second term of (40) corresponds to the spin-flip 
amplitude). If B ::: 0 formula (40) reduces to formula (36). In I we obtaine d, with formula (40), 
very a ccurat e fits , at fixed energy, in the angular region: 0. 8 0 < - cos *c m < 1 -<see Figs . 1 
2, 3 of I) , B y t hese fits we d erived the values of ReAl and Im)..l at thre'e different energies, 
and so it was possible to dr aw phenomenological trajectories of Re Al and 1m A1 versus s (== 

squared ener gy in the centre of m a ss system); see Figs. 4 and 5 of 1. However, the second 
of these traje~tories does not show a.ny precise law in the dependence of 1m A1 on s. In this 
connection let u s r emark that there was some arbitrariness in choosing th e angular region whe 
re we tr ied to fit the data. In order to make possible the comparison of the values of R e A1 and 
1m Al at different energies, it seems more appropriate to keep the range of the variable u fixed , 
rather than cos "'c . m.' compatibly with the available experimental data. Indeed both the mini
ma and the following maxima i.n the differential cross-sections occur at the same u-values(8). 
For this reason we report here the fit of the data at PLab = 3.55 GeV / c (see Fig. 3) , since in I 
the range of th'e variable u for this set of data was somewhat different from the other ones. 
F u rthermore, in order to complete our phenomenological analysis, we report here two other 
fits (th e experimental data used, as well as those fitted in Fig . 3, are given in refs, (8, 9)), peE. 
for med with formula (40); th ey are given in Figs. 4 and 5, 

(xl - In I we have written a in the place of 
1 'I -"2' 
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FIG. 3 - Diffe rential c ros s section 
do! du, at PLab ~ 3.55 GeV/ c; 
-1.175(GeV/c)2< u < 0.083 (GeV/c)2 
The fit parameters are: 
A ~ 131. 9 f'b/( GeV/ c)2 , 
B ~ 0.45 p.b/ (GeV/ c) 2 , 
ReAI~ 5 .47, ImAI ~ 0.76 . 

The X2 value is 15.1 and the X2 

test gives a probability of ~ 60 %. 
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FIG. 4 '- Diffe rential cross section 
do! du: at PLab ~ 2.85 GeV/ c ; 
- 1.238 (GeV/ c) 2 < u < 0.107 (GeV/ c )2 
The fit parameters are: 
A ~ 494.6 f'b / (GeV/ c)2 , 
B ~ 2. 78 pb/(GeV/ c)2 , 
ReAl ~ 4 . 72 , ImA I ~ 0.45. 

The X2 value is 26 . 5 and the X2 
test gives a probability of - 35 % 
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F IG . 5 - Different ial cross section 
do! du, at PLa~ ~ 3. 30 GeV / c; 
- 1. 275 (GeV/ c) < u < 0.088 (GeV/ c)2. 
The fit parameters are: 
A ~ 145. I Pb/ (Gev/ c~2, 
B ~ 0.22 p.b/( GeV/ c) , 
ReAl ~5.35 , Im AI ~0.86. 

The X2 value is 9.45 and the X2 

test gi ves a probability of ...., 60 %. 
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Then, using formula (22a , b) we can fit Re),1 and 1m )'1 versus pc. m. = -fi K (recall that the 
values of ReAl and 1m Al at PLab " 5.20 GeV/c and PLab " 7.00 GeV/c are those obtained in 1). 
The fit of Re),1 versus pc. m. will be discussed later on (see Fig. 12). The fit of 1m 1.1 versus 
Pc. m. is reported in Figs. 6a and 6b. Fig. 6a shows that the agreement between the data and the 

t5 

I 

: I 
., 

__ --1 ___ ---' 
1.75 2.00 '-------~ ,10 ~:L.I_ ......... -,!,;--' -+.--' ~' 

- 1,W 1.75 zeo 
Po" IGCV/cl 

a) 
PCt.! tG~V/C) 

b) 

FIG. 6 - Im).1 versus Pc m =11 K. a) All the available data are consldered. the ilt para 
meter (see formula (22b))',S' b l Rl / 3 0.55 (fm)1/3 b) 0,,1" the data at f L ab " 5.2 GeV/c 
and 7.0 GeV/c are considered; the fit parameter is: b1R 1/ = 0.67 (fm)l J; the 7. 2 value 
is 0.05 and the X2 test gives a probability of -80 %. 

fitting curve is not satisfactory. But it becomes very good if we fit only the two data at higher rno 
menta (see Fig. 6b). This fact can be tentatively explained as follows: 

a) Our model does work only if ~ >,. I ; this condition is not yet satisfied at lower momenta. Inde 
ed the data at lower momenta are quite near to the resonance region. 

b ) The valu es of 1m ),1 , considered in Fig. 6a, have been derived by fitting data sets obtained in 
different experiments. Indeed the th ree pOints at lower momenta derive from one experiment(10); 
the two pOints at larger momenta (considered in J:<'ig. tib) derive from another one(8, 9). The di 
screpan cy might be due , perhaps, to different normalizations in the experiments. 

Finally let us observe that, in the energy 
interval analyzed, t.h e effect of the spin is ne gli 
g ible, i. e. B ':! O. Therefor e, hereafter, we
s hall discard the effect of the spin, as we said 
before. 

Next we try a fit at fixed angle, i. e . 
'17-c . m. = 1(, with formula (39). Indeed we have 
experimental data in the momentum range 
3. 3 - 6.00 GeV/ c(ll). The fit is reported in 
Fig. 7 . Let us observe that the theoretical 
curve does not reproduce some small oscilla 
tions that the experimental data exhibit. These 
coul d be du e to the interference of the princi
pal term , p =p, with one or more terms, which 
we have neglected in the sum (32). 

FIG. 7 - The differential cross section 
(do/'du)*c " 1< ve rsus pc . m.' The 
fit paramefers are: 
AI " 9. 92 x 106 (b/ (GeV/ c)2/ 3 , 
c" 5.82 (fm)l/ . 

till . 

1.2 t3 1.4 \5 1.' 
PCM {GeV/el 
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A t this point we have determ ined the parameter c (which appears in formula (39» , by mean s 
of the preceding fit at "'c. m . = n. Moreover we know a:so the valy~s.of A (see. formula (36» at 
different values of K. Then we can test whether the quanhty A e cK 15 proportional to K-4/ 3, 
as pre s cribed by formula (38). The fit is reported in Fig. 8. In this case we have an agreement 
between the data and th e fitting curve which does n ot r equire any subdivision of the datal' This fact 
may be explained , pehaps, with the quite large statistical error s of the quantity A ecK 1 3. 
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FIG. 8 - Th e quantity t1 = A ecK1 / 3 versus p c . m.' The fit parame
ter is: A I =6 .89xI06 /Lb/(GeV/c)2/ 3. 

As we said in Section 2, at forward we have the diffraction peak. In our model the diffrac
tion peak is described by the following formula(J , 2), which holds true for if« p-I/ 3 

~ (J1;:if) Y do 

dTTT (41) 

J 1 being the Bessel function of index 1. P henomenologically the data suggest that we should use 
the formula: 

d o 
d I t I 

to which (41) reduces for if«p-l. 

D e- bl t l (42) 

The agreement of this fo r mula with the data ceases to exist at a certain angle, say {}. 
For l llrger values of f} we try a fit with the use of formula (35). Now the functions (42) and f35) 
should be smoothly joined; we link them simply imposing the continuity at t} = {}o' Therefore 
the parameters D, b, C, Im).1 and {}o are not all independent. We fit three sets of data (the e~ 
perimental data us ed are given in refs . (12,13)). The results are presented in Figs. 9,10 and 11. 
These fits stop at a cer tain angle "Max' where the cross section rises again and therefore the 
agreement between fo r mula (35) and the experimental data is no l onger satisfactory . 

Up to now we have neglected the reflected ray contribution for {} >- "'a. Of course this 
term i s present and one could even argue that it is dominant, at least at not too large angles. 
Therefore, to exclude this hypothesis , w(' have tried a fit with the following formula (for ",. 1Jo): 

where(J4,15) 

do 

dftT 

1 sinh ~K A ( J N2 - cos
2 ~ - s in ~ TI 

- 2" sinh ~K LI ( YN2-cos2~+sin~J 

(43) 

(44) 
2 . Q • if 

- 1,.. sm 2" 
e 
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FIG. 9 - Differential cross section 
dO/dltl at Prab = 3.0 GeV/c, 
0.085(GeV/ c) <. _t< 3.58(GeV/c)2 . 
The fit parameters are: 
D = 54.1 mb/(GeV/ c)2, 
b = 16.5 (GeV/ c)-2, 
C = 3.66 mb/(GeV/ c)2, 
ImAI = 1. 21, *0 = 0.71 cad. 
The X2 value is 61. 1. 
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FIG. 10 - Differential cross section 
dO/dltl at PLab = 3.50 GeV/c , 
1.01 (GeV/c)2 < -t <.4.26(GeV/ c)2. 
The fit parameters are: 
D = 41.5 mb/( GeV/c )2, 
b = 19.3 (GeV/c) -2, 
C = 7.07 mb/(GeV/ c)2, 
ImAI = 2.07, *0 = 0.65 rad. 
The X 2 value is 28.7 
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FIG. 11 - Differential cross section 
dO/dl II at PLab = 3. 63 GeV/ c, 
0.075(GeV/c)2 < -t <3.45 (GeV/c)2. 
The fit parameters are: 
D = 44 . 3 mb/ (GeV/ c)2, 
b = 19. 8 (GeV/c) - 2, 
C = 11.4 mb/(GeV/ c)2, 
ImA I = 2.36, *0 = O. 63 rad. 
The X2 value is 42.8. 
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.1 being the diffuseness parameter and N the maximum value of the real part of the "refraction 
index" inside the interaction region. Let us observe that formula (44) generalizes formula (3); 
indeed it reduces to (3) for ..1-* O. As a result we have found a too large, unphysical value of R .. 

In conclusion the fits of Figs. 9, 10. 11 seem to indicate that, after the dominance of the 
diffractive peak, there is an angular region where only one surface wave contributes significantly 
and its interference with the reflected ray contribution can be neglected. However we cannot say. 
at the moment. whether this wave corresponds to p = 0 or p = 1. Furthermore we obtain values of 
1m )'1 which are systematically larger than those obtained at backwards. Indeed we cannot believe 
in the details of the model. For instance, it is unrealistic to assume that the transition regions 
for p ~ 1 are of the order of p -1 / 3. since our values of p are not large enough to support fully 
an asymptotic theory. Moreover we have assumed that the boundary of the interaction region has 
a sharpe edge , which is certainly too drastic. Neverthel ess we can accept the general trends of 
the model. In particular we can explain, as an effect of the transition regions, the discontinuity 
between formula (35). used in the angular range tJo - "Max' and formula (36) used at backwards. 

Our confidence on the gross features of the theory is al so based on the possibility of evalua 
ting the interaction radius R using formula (22a). With this in mind we plot the values of Re AI
versus pc. m. (recall that these values have been obtained by the fits at backwards) and observe 
that these five pOints can be subdivided into two groups . The first group is composed of the two 
data at larger momenta; in the second one there remain three pOints at lower momenta (recall 
that we have done an analogous subdivision in connection with the fits r eported in Figs. 6a, b). 
The data of the first set can be fitted by a straight line passing through the origin (see Fig. 12), 

10 
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.2 .4 .6 .8 1.2 1.4 1.6 1.8 
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FIG. 12 - Re"l versus pc. m.' The encircled points denote the 
locations of the n+ -p resonances. 

So doing we have neglected the term proportional to p 1/ 3 (see formula (22a)); as we shall see in 
a moment, this approximation is acceptable. From this fit we obtain the following value for R: 
1. 017 ~ 0.006 fm. The agreement of this evaluation with others(16). obtained with different models 
a nd using data in the forward angular region, is satisfactory. Furthermore let us observe that 
the n-+ -p resonances lie along this fitting straight line (see Fig. 12) . The three pOi!1ts at lower 
momenta can also be fitted by formula (22a); · in t his way we obtatn a value of aI' which turns out 
to be zero within the statistical errors. This legit/'mates the approximation, which has been done 
before, of neglecting the term proportional to pI 3. Then, also in this latter case, we fit the 
data with a straight line passing through the origin. The corresponding value of R is: 0.882"! 
to. 014 fm. The small discrepancy between the two values of R, which have been obtained, can 
probably be explained recalling the remarks which we have done in connection with the fits of 
Figs. 6a, b. 
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