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ABSTRACT, - We present a phenomenological analysis of the pion-proton elastic scattering, at
intermediate energies, based on the theory of surface waves. These are excited at the edge of
the interaction region and propagate along it, being damped in the direction of propagation. Sin
ce at the energies, where we are working, the black-body limit is not yet reached, the surface
waves can also take one or more shortcuts inside the interaction region, This fact explains the
enhancement of the cross-section at backwards, Many points of the theory can be phenomenolo
gically checked, and the interaction radius, in the pion-proton elastic collision, can be numeri
cally derived,

RIASSUNTO., - Presentiamo un'analisi fenomenologica della collisione elastica pione-protone,
ad energie intermedie, basata sulla teoria delle onde superficiali, Queste ultime sono eccitate
al bordo della regione d'interazione e si propagano attorno ad essa, attenuandosi nella direzio
ne di propagazione. Alle energie a cui lavoriamo, possiamo assumere che la regione d'intera
zione non sia totalmente assorbente ; quindi alcune onde superficiali possono penetrare all'inter
no e percorrere delle "scorciatoie". Cid permette di spiegare 1'innalzamento della sezione di
urto a grandi angoli, Molti punti della teoria possono essere verificati fenomenologicamente.
Inoltre si pud dedurre numericamente il raggio d'interazione nell'urto elastico pione-protone.

1. - INTRODUCTION,

We consider the elastic scattering of positive pions from an unpolarized proton target in
the momentum range 3-7 GeV/c. Following Schrempp(l), we assume that the pion-proton colli
sion in the centre of mass system (c. m.s.) may be reduced to the scattering of a plane wave
from a body, which has the shape and the dimensions of the interaction region, identifying the
wave number k with the c. m.s. momentum of the colliding particles. We make the hypothesis
that the interaction region is a sphere of radius R, centered in the centre of mass,

In the momentum range considered, the small wavelength approximation can be applied;
moreover we assume that there is a strong absorption at small impact parameters, but not at
large ones. Therefore one can associate with the 1-th partial wave an impact parameter by =
= (1+1/2)/k and roughly say that the partial waves with by < R are absorbed, More precisely
the so called "localization principle" leads to a subdivision of the partial wave series into three
domains(2) ;
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where B = kR and c is a quantity of order unity, Partial waves in the domain (i) are absorbed ;
those in the domain (iii) are damped by the centrifugal barrier and give a negligible contribution,
Finally the waves, belonging to the domain (ii), correspond to incident particles passing close to
edge of the target and give rise to surface waves, which propagate along the surface of the body.

The scattering process that we analyze can be described using a complex valued potential
such that the real part has a sharp edge and the imaginary part has a radius smaller than the real
one. In other words there is a transparent shell at the periphery of the interaction region. This
shell disappears towards larger energies, when the "black-body" limit is reached(1), Therefore
the grazing rays may describe simply an arc of geodesic around the body or also take one or mo
re shortcuts before emerging tangentially at the surface, The process is quite involved and it is
convenient to use the ray tracing technique, which has been originally introduced in optics. Then
we shall speak of a complex valued "refraction index" instead of a potential, and we shall usethe
concepts and methods of geometrical theory of diffraction in the sense of Keller(3), Indeed the wa
ve function of the m T-p system satisfies the stationary Klein-Gordon equation(l), which is for-
mally identical to the stationary wave equation, so that, in the limit of large k, the methods of
Keller's theory can be extended to our case., Therefore, hereafter, we shall use words typical of
optics, like diffraction, reflection, refraction and so on, which shall refer, in this case, to par
ticle trajectories rather than to light rays. &

UE to now, as far as we know, only the case of high frequency scattering by a transparent
sphere( ) (or a wholly opaque sphere(4: )) has been considered in detail, The mathematical met
hods in use are so involved that it appears hopeless, at the moment, to extend these procedures
to the realistic case of a "refraction index" strongly absorbing at the centre and with a transpa-
rent shell at the periphery, We prefer to follow a more practical attitude, which consists in pro
posing suitable conjectures to be supported by the phenomenological analysis. Our main conjec-
ture is the following one: we suppose that, while the waves in the domain (i) are absorbed by the
opaque core of the target, the waves in the domain (ii) give rise, precisely, to the same pheno-

mena as in the case of a wholly transparent sphere. This conjecture is theoretically reasonable
in virtue of the "localization principle" which we have illustrated above., Indeed, thanks to this
principle, we can assume that the phenomena which occur at the periphery (i.e. in the transpa-

rent shell), are essentially independent of the inner structure of the refraction index,

The paper is organized as follows: inSection2 we sketch an outline of the theory; Section 3
is devoted to the phenomenological analysis.

2. - OUTLINE OF THE THEORY.

The #*-p system is described by a wave function satisfying the stationary Klein-Gordon
equation(1) :

(P2 +N2k2)yp = o, r€R , (1a)
(72 + k3w - o, r3R (1b)

where k is the wave number in the c. m.s. and N is the "refraction index"., Here we neglect the
effects of the spin of the proton. This approximation is acceptable since the target is unpolarized,
Moreover we shall verify phenomenologically that the spin-flip amplitude is negligible with respect
to the non-spin=flip one,

Let us observe that the equation (1) is formally identical to the wave equation describing a
monochromatic beam of light hitting an obstacle, Since B = kR>>1, we can use the same appro-
ximation methods as in the optics of the short wavelengths., Therefore translating the methods
and terminology of geometrical diffraction theory into the domain of particle dynamics, we can
distinguish the following phenomena :

a) reflection at the surface of the sphere;
b) refraction;

c) diffraction of grazing rays ; these describe an arc of geodesic around the obstacle and may also
shed into limiting refracted rays,



Now the refracted rays cannot cross the opaque core, However we assume that the trans-
parent shell is large enough to allow the critically refracted rays to cross it without being absor
bed. Therefore, in evaluating the scattering amplitude we have to take into account the direct re
flection, the diffraction and the critical refraction. Moreover we must distinguish between the
rays which describe an arc of geodesic around the target and shall be called "surface rays", and
those which, being critically refracted, give only a geometrical contribution, In order to be mo-
re precise on this point, let us consider a ray which is critically refracted at the point of inciden
ce and takes a shortcut: it may undergo a second critical refraction and emerge in the direction
% = ¥, where & is the amplitude of the arc corresponding to the shortcut ; or alternatively, it
may be internally reflected 1,2,....., p-1 times and emerge, after a final critical refraction, in
the directions = 2d, &= 34, ..... , ¥ = pd, without describing any arc of geodesic, For the
moment we do not consider this type of geometrical contribution. Therefore we treat only the re
flected and diffracted rays ; then the scattering amplitude f(f,4) is given by:

(g, #) = £ (B, %) +1(B,9), (2)

~where f (B,4) and f,(8,%) denote respectively the reflection and the diffraction amplitudes.
Here, following Nussenzveig'®/, we use dimensionless scattering amplitudes ; therefore, in or-
der to evaluate the differential cross-sections, we must multiply the modulus squared of f by
the factor RZ,

Asg far as reflection is concerned, we assume that the reflected wave (and therefore the re
flection amplitude) depends only on the properties of the obstacle at the point of reflection and on
the angle of incidence, As a consequence, we can use the same formula that was found for a whol
ly transparent sphere{2 ;

1 Nz-cosz'g - sing -2iﬁsin-1z2
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where N is the (real) refraction index in the transparent shell, This formula fails when

< 3-1/3, i.e. in a region including the diffractive peak, where reflection at the critical angle
occurs ; this particular situation will be examined later on. Finally, formula (3) is strictly va-
lid if we assume a sharp edge at the surface of the sphere. In the next Section we shall see how
this formula can be modified under more general conditions.

Now let us consider the term fd( B,%). This has to be further decomposed into different
contributions, i, e.

88 = g+ 3 Pge (4
p=l
where f((jo)(ﬂ,ﬂ) refers to the surface waves which travel only on the surface, whi'le ffjp)(ﬁ,q)),

for p2 1, takes into account the contribution of those rays which have limiting refraction and
take p shortcuts.

To evaluate each term of the sum (4), we give a detailed description of the ray tracing of
the grazing rays which emerge in a direction ¥#(0 % ¢ <x), after taking ‘0, 1, 2,......, p
shortcuts inside the transparent shell of the sphere. In particular let us consider, for each va
lue of p, the ray tracing for the surface rays, in a way similar to Chen(6) and Nussenzveig(2]]
When p=0, a grazing ray describes an arc of amplitude :

"
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where (,'3 m is the arc described by the counterclockwige travelling surface wave, while ;‘6. oAl
is the arc described by the clockwise travelling one (see Fig, 1). When p=1, the grazing ray may
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FIG, 1 - Diffracted rays in the direction &, a)p =0; b) p =

undergo a critical refraction, take a shortcut and reemerge at the critical angle, describing an
arc of amplitude :

+ il 9

i = b 13 =

F (_,'1 ma Yo =50, 15 s (6a)
where

i +

T =

T I - 9, (mod2m), (O<§1$2n). (6b)

+
However, the grazing ray may also describe an arg of amplitude @ (0L ¢ < gl m), then take a
shortcut and lastly describe an arc of amplitude §1 - . We have a different ray for any va
lue of ¢, so that we must take all these infinite pos:rsiblhnes into account.

For p = 2 the surface rays take two shortcuts, so that the arcs of geodesics have, in all, an
amplitude :

o
gzi-m: §£+2mﬂ7, m =0,1,2 0. (Ta)

where

4+
(= 19-29 (mod2w), (0<&;s2m), (7b)

In this case we must consider two different kinds of rays:

(=

i) the raysthat describe an arc @ at the surface (0 £ ¢ £ 52 m)» then take two shortcuts conse-
cutively and, lastly, describe an arc of amplitude §2 m-% .- Wehave a different ray for any
value of @,

ii) the rays that describe an arc 991 (0 = 9’1 < Cz b ), then take a shortcut, reemerge describing
an arc @, (0< @y 2 2“ e tpl) and, after another shortcut, describe an arc of amplitude

Cé m "~ ®1- ®2; we have a different ray for each value of ¢, and @,.

Consequently the type (i) rays can be traced in a simply infinite number of ways, while the
type (ii) can take place in a doubly infinite number of ways.



' rays can be obtained by substituting one ty-

For a general value of p, a ray, before emerging in a direction 1, has to describe arcs of
amplitudes tpj such that:

+ 4 .
.= (" = §( +2mm, m =051,2, e 8a
?933 Sp,m” °p (8a)
where 3,
g;;r: t 9-pd, (mod2m) (0<g g2m). (8b)
We must consider p different kinds of rays, according as they have 0,1,....., p-1 internal reflec

tions. In this connection it is useful to distinguish between type (i) and type (ii) vertices: we den_o-
minate type (i) vertices those at which an internal reflection takes place, type (ii) vertices those
at which two critical refractions occur (see Fig, 2). In the simplest case the ray describes an
arc @, then it has p-1 internal reflections i
(i.e. (p-1) type (il_ vertices) and lastly de-

a)
scribes an arc !,‘}; m - @ . Another class of

pe (i) by one type (ii) vertex. Similarly, all
the possible classes of rays are obtained by
substituting 2, 3,..... type (i) vertices by
2,3,..... type (ii) vertices,

In order to compute the contributions
of the rays to the scattering amplitude, we
must distinguish among the different "inter
actions" of the ray with the surface. More
precisely, we may regard as an "interac- .
tion-vertex" any point at which diffraction,
critical refraction or internal reflection ta
kes place, Consequently, we may define a proper "coupling constant” for any type of interac-
tion, They are:

b I
FIG, 2 - Two types of vertices. a) One interral
reflection (type (i) vertex); b) Two critical re-
fractions (type (ii) vertex).

a) the diffraction coefficient D, ;

b) Dy5 and Dy, for the rays which have a critical refraction entering into, or emerging from the
sphere ;

c) Ry, for the internal réflection.

Note that we assume these coefficients to be dimensionless, Moreover, the line joining two
"vertices" can be regarded as a "propagator", We must distinguish between two cases, whichare
the following ones :

a) the "propagator" for a shortcut is given by

Jkf2 VNP 1RY 248 N2

(9)
where 2 /N2-1 R is the optical path length of the shortcut ;
b) for a surface ray describing an arc of amplitude Q'Jj the "propagator" takes the form
id
e''n g (10)

J
where ln =B+ ie,, a, being the decay exponents of the surface waves.
'Furthermore. due to the geometry of the obstacle, the diffracted rays form an axial cau-

stic, which is the straight line parallel to the incident beam and passing through the centre of the
sphere, On the caustic the ray approximation is no longer valid ; however we take into account



the focusing effect with the factor (sin 13)'1/2, provided that we are sufficiently far from the cau
stic itself.

Next we do two simplifying assumptions:
a) we do not take into account the rays for which m21;

b) we consider only that surface wave for which Rea is the lowest one, i.e. n=1, This latter
approximation does not hold in the transition regions, which will be defined subsequently.

Finally it is convenient to split fép)(ﬁ,@) into the contributions of the counterclockwise and
clockwise rays, i.e,

(p) N e 7E (p)~
e2(8,8) = £5 (B,0) + 55 (B, 9] . (11)

Indeed we must take into account a phase-shift of -m/2 between f&p)_(ﬂ,ﬂ) and f(dp)+( B.®), since
the clockwise rays cross the focal points once more than the counterclockwise ones. Therefore in
the expressions of fépH and fgp)' we shall introduce two phase factors i"p and i"P respective
ly, such that ng = n"}.') s

Let us begin with p=0. The surface waves are excited at T; and T,, and are reconverted
at 51 and Sy into tangentially emerging rays (see Fig. 1). The contribution to the scattering am-
plitude is given by:

£9% 8, 8) - = D eillﬂ D (12a)
d (Smmliz 1 1
A vl id{(2m-49)
£7(8,9) - ——1—17? Dye | By - (12b)
(gin )
Next let us consider the contribution for p=1; we have:
+
n_{ g1 j 3 ; Er
A0 5 17*1'-’°D 2i B VN -1 144 ( 1'5”)d e
4 PB) === B, & 12°¢ 21°® Ty
(sin #) 0
(13a)
nt -+
iy . 2 148
) i 2 2ipVNe-1 AT e e
ke 772 P1P12P2; © = &
(sin %)

Wehave carried out the integration over ¢ in order to consider all the possible ways in which a
ray with p=1 can be traced.

Similarly we get:

e

(1)- * mEgpE 2 2ip YN 14 1 .-
fd (8,9) -—.—’—'1—/5 D1D12D21e e (:1 (13b)
(sin &)

Now we can generalize this procedure to any value of p. Besides the focusing factor, we
have the common factor D% D19 Dgq, due to initial and final diffraction and critical refraction,
Moreover we have to consider p "propagators" of type (9), i.e. eZiPﬁ sz-l‘ and a number of
"propagators" of type (10), i.e.

F A T ot Ay ol B (14)
J

o o+



Lastly we must take into account all the possible ways in which the intermediate interactions take
place, In the case of (p-1) internal reflections (i.e. when all the vertices are of type (i)) we have
a contribution of

(15)

g":
(p-1) [7P ;
(Ry) f d9 = (R,,

0

{p=1) T
) Cp |

Next we can substitute one type (i) by one type (ii) vertex in (p-1) different ways ; the contribution
is:

O a4+

+ o
(p-2) : ER (p-2) (p)
(p-1)Rgp) ™ "DypDyy ] 49, 49, = (P-1)(Ryp) ™ "DygDyy =271 (186)
0 0

y L -1)(p-2
The substitution ot two type (i) by two type (ii) vertices can be done in (p ;(r ) different ways.
© We get a contribution: i

+ + T
(p-1(p-2) n (p-3) 2 1P %1 p 01
-1)(p-2 p- =
g wagr . Wpfeg f d‘p1f wzj ¥
0
(17)
(e
_ (p-1)(p-2) (p-3) 2 ' ’p
: 21 (Rog) ™ 7 (DypDyy)” —33
Taking all the possible contributions into account, the p-th term gives:
(p)* i P 2 2ipp VN2-1 **1%p
f (B,%) = D.D,.D__e e
d (Sinmﬂz 1712721
(18)
+ .1
P [p-1 (p-m) (m-1) ‘&5
2 (Ry5) (D;5Dyy) m!

m=1 m-1

el

where n; = n

At this point, in order to pass from the kinematical description, like that given by the ray
tracing, to a dynamical theory, one must do precise statements on the "coupling constants" and
on the surface wave "propagators", In virtue of the "localization principle" (see the Introduction),
we can conjecture that the grazing rays undergo the same type of "interactions" as in the case of
a wholly transparent sphere, More precisely, we make the following assumptions:

a) The total reflection takes place, 1i.e.
R22 =1, (19)

b) The transmission coefficient, like the reflection coefficient, depends merely on the properties
of the sphere at the point of refraction and on the angle of incidence ; therefore we assume for
the "coupling constants" Dyg and Dgj the same values which have been obtained in the case of
a wholly transparent sphertjz) and of a wholly transparent cylinder(a), i.e,

D..D g

R ————— (20)
12721 m

c) The diffraction coefficients D, and the decay exponents a (and therefore the "propagator"
constants Ap = B+ ia,) depend only on the properties of the spherical surface.



This implies that we can assume for these coefficients the same k-dependence as it was calcula-
ted for a wholly transparent sphere(z). Thus we have:

2 _ .2 o-1/8
D = dnB (21)
and
Re A, = B+ a, ﬁlls (22a)
Im J‘n = bn Bl/a 5 (22h)

Note that, in the case of a wholly transparent sphere, the terms ln represent the locations, in
the complex angular momentum plane, of those poles of the Debye expansion of the S-function,
which lie in the first quadrant(z).

In conclusion formula (18) can be rewritten as follows :

+
o’ +
2 .p t L o
+ d, i . ]/ 2 id, § P -l 2§
TR S— R e P —=L-] L.
d B]/S(sin 1‘})1/2 m=1 \m-1/\yN2_ ™
nt (23)
2 .p ; i
d : A
) § =+ 2ipp N2.1 e‘ 1Cp 11 xP)
1653 1.2 +
B (sin &) P 2
+
p_ 25 (~1)
where X = ____éE_ and P is a generalized Laguerre polynomial defined in the following
(2). N1
way' </ :
_ -X P = P p-l m
! ]')!x) = '}—{E-l—- AL R s imT (24)
p p dxp m=1 m-1 !

The total diffraction amplitude is given by the sum (4). Should we extend to infinity this sum, the
series would diverge, However, as pointed out by Nussenzveig(z), each term (23) represents on
ly the main contribution for a fixed p and B sufficiently large, whereas we are interested in the
asymptotic behaviour for fixed f and increasingly large p. Since, for increasing p, the num-
her of neglected terms also increases, for p large enough, (23) no longer represents the domi-
nant term, Nusslenz\.feig'(2 has given a. heuristic argument to show that the resultant effect, due
lo the correction terms, brings about an exponential damping factor for large p. Then the re-
mainder of the sum (4) after P terms is negligible, where P is of the order of magnitude of

'ﬂ.?f-'i_ In conclusion we have:
2
P d P T
fq(8,3) zp{fiim*'(ﬂ’,})+f£]p)'(311})} * =7 1 . 2p821PB Ne-1
0 g (sin ¢V~ 0
(25)
+ + = .
n fid1 € n i, P =
{. Pigl=liy sPie 1 Byy Pt~ Py o ! p}
p # p =

l.et us remark that formula (25) does not hold within certain angular regions., Indeed at forwards
and at backwards the diffracted rays from an axial caustic, so that the approximation, which we
agsumed, fails in a neighborhood of & = 0 and 4 =@, Moreover at the angles = pd (p=1,2,...)



we must take into account the contributions of the "critically refracted" geometrical rays. Fur-
| oo by
thermore in neighborhoods of these angles, one cannot neglect exponentials like e with
n>1; indeed, as one can see from fromula (22b), the simplifying assumption (b) is no longer
suitable when
| &-po Y kil (26)

In other words in these angular regions, which will be called "transition regions", all the surfa-
ce waves contribute,

It is worth illustrating this point in a more detailed way. For p=0 the inequality (26) defi-
nes a region which includes the forward diffraction peak, Here the surface waves give rise to a
divergent contribution. On the other hand, near = 0, the incident and reflected rays have near
ly the same directions. From this it follows that also the geometrical contribution presents a di
vergence at forwards, which compensates the divergence of the surface waves(1), -

For % =1 the surface waves relative to the term p=1 are excited. Therefore this angle
is a transition point between two different regions, since here the surface wave contribution chan
ges abruptly., Moreover we have also the geometrical contribution of the critically refracted rays.
In conclusion we can say that a neighborhood of % =¥, is a transition region. We have an analo-
gous situation for & = p# (p=2,3,...).

As far as the backward direction is concerned we shall return on this question later on,

Now it is convenient to distinguish between two different angular regions,

ﬂ When @ - ¢ is large, the contribution from ffip)_ is negligible, Therefore formula (25) can
be approximated by:

. 2 %
. © P+ ) 4 P o 2ippin2ar Bp
fd(B."’)- Z'pfd (8,%) = —7¢ e e Fo W
0 B “(sin 9) 0
(27)
ii M id @
(-1) 0 p 1
Lp (-X+)e e
where n_ = §+ - 1. Then, neglecting the reflected ray contribution (we shall discuss this ap-
proximations in the next Section), we have:
2lq |4 -2Im A&
as 2R2|f(,81?)|2‘RI;1||F(BN1})23———-~1—— (28)
df? s ﬁ1/3 T sin ¥ i
where
+
P ; 1/ 2 n Tk T
2 - "
P(B.N,8) = T, e pgint l1"14(1)”(-)(‘3)»3 Eils ) (29)
0

If we suppose to consider an angular domain, which does not include any transition region, then

id @
1
we can assume that F(f§,N, 9) depends weakly on ¥ (atleast in comparison with ——Tz—).
Therefore we get, for a fixed value of k: (sin )
-2Im A%
do . c e ]
aQ = Yo sing ()

Rz, d l 4
1 -2 - .
where Cg = 51/—3— |Fl , and F is the mean value of F over the 4 interval considered.
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Finally from (29) it is apparent that the value of C, changes abruptly crossing a transition region,

-

B) Now we consider the angular region where (7 -4) is small. Then let us rewrite Sp as fol-

lows : ;t = vp f(mw-19), where vp =4 - pq}t (mod 2m), (0= 'up£2.1's). Next, in the generalized

Laguerreppolynomials, we replace g: with Vpr since (& -4) is small, and we write:
2
d P VY2 v 2 idyw
i'd(ﬂ.'l?)ﬁ' 178 5 173 EPEZipB N-]'I..(l)w———z-—)e L7p
B/ ®(sin &) 0 P YN2.1
+ (31)
n i (@-4) n_ id (7w-9
Sa:d Pe +iPe } .
Since n; = np-— 1, we can rewrite formula (31) as follows :
P 2w TN i
= I il
£4(8,9) "GB”s {ZPEZIPNN 1,(-1) __J._E_)e 1'p;p } .
0 e N2-1
(32)

(-i;.lm-ﬁnig) (ialm-m-ig)
e + e

(2 B rsinfﬂ)]"/2

where G = (Zﬁ)llz(dl)z e-m;/4. But the last factor in formula (32) is simply the asymptotic beha-

viour of P’ll" 1(-cos¥#) (i.e. the Legendre function of the first. kind with index Aq- %). when

I J‘ll —» @, l J‘ll (r-4) 51 and 1.1 is approximated by f in the denominator. Furthermore we

assume that at backwards the sum (4) is dominated by the term which corresponds to the shortest
path of the surface waves, say p = p. In conclusion we write:

+ ;
=2 27~ iA v~ n=
(B.9) % Gﬁl/a{ezlpﬁm -1L(I_)-1)(_ 5 1”5, p}P
1

) e i l(-cos 3) (33)
Vn2-1 "2
where we use explicitly the Legendre function P, 1 (-cos &) instead of its asymptotic behaviour,

2
2
This function is regular for &= m, and we can assume that formula (33) holds true even in a neigh-
bourhood of the angle 4 = ;. Finally, neglecting the reflected ray contribution, we have:

2ImAq v= ‘
TR XU LD W L : pIPll_l(-cos't‘I‘) ’ (34)
2
where 2w 9
2 21 -(=1)
A= R*|Gl™ | s
o %ol - g

In order to fit the experimental data, it is convenient to express the differential cross sec
tion as a function of the Lorentz invariant variables t and u (Mandelstam variables). Then, in
place of formula (30), we have:

-2ImAq ¢
do ~ o e ; C = ”Co (35)
dity sin ¢ : *
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At backwards we have:

9 .
L9 . alw  1(-tea @ (36)
du }“1-5

where il %

- m -
A= axa g3 e (37)

Substituting formula (22b) into (37) we obtain:

1/3
A = AlK_4/3 o R (38)
with
A, = mA R2/3 and c = 2b, V= .
1 o Lo
Lastly, since Pﬂ. 1(-cos #) = 1 for % =g, from (36) we have:
173 .
1/3
do \  _ . AlK'4/3e'°K : (39)
du &=

3. - PHENOMENOLOGICAL ANALYSIS,

In a previous papcr-(7} (which will be referred hereafter ags I) the backward differential
cross section of the elastic scattering of pions from an unpolarized proton target, in the momen
tum range 3.55 -7.00 GeV/c, has been fitted with the following formula(X) .

do 2 1 2
T YA Pl _1(-cos®#)] +B 11 _1(-cos &) (40)
52 12
where Pll 1 is an associated Legendre function, which has been introduced in order to take
172

into account the spin of the proton (indeed the second term of (40) corresponds to the spin-flip
amplitude), If B=0 formula (40) reduces to formula (36), In I we obtained, with formula (40),
very accurate [its, at fixed energy, in the angular region: 0.80 £ - cos 19'C ey S L (see Figs 1
2, 3 of 1). By these fits we derived the values of Rel; and Im4i; at three different energies,
and so it was possible to draw phenomenological trajectories of Re 1.1 and Im 11 versus s (=
squared energy in the centre of mass system); see F'igs. 4 and 5 of I. However, the second

of these trajectories does not show any precise law in the dependence of Im 3.1 on s. In this
connection let us remark that there was some arbitrariness in choosing the angular region whe
re we tried to fit the data, In order to make possible the comparison of the values of Re l] and
Im 4; at different energies, it seems more appropriate to keep the range of the variable u fixed,
rather than cos "}c m . » compatibly with the available experimental data. Indeed boih the mini-
ma and the followin‘g maxima in the differential cross-sections occur at the same u—values(g).
For this reason we report here the fit of the data at py ,, = 3.55 GeV/c (see Fig. 3), since in I
the range of the variable u for this set of data was somewhat different from the other ones,
Furthermore, in order to complete our phenomenological analysis, we report here two other
fits (the experimental data used, as well as those fitted in Fig. 3, are given in refs. (8,9)), per
formed with formula (40) ; they are given in Figs. 4 and 5, -

(x) -In I we have written a in the place of }.] - % g
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FIG, 3 - Differential cross section
do/du, at PLap - 3.55 GeV/c;

-1.175(GeV/c)2 ¢ u < 0.083 (GeV/ c)2.

The fit parameters are

A = 131.9 pb/( Gev/c)
B = 0.45 ub/(GeV/c)?
ReA, = 5.47, Imi; = 0.76.

The %2 value is 15.1 and the 12
test gives a probability of ~60 %.

de/du [ub/tGeY/c)]

0 25 50 75 T
-u [(Gev/c)?]
FIG. 4 - Differential cross section

da/du, at PLab = 2.85 GeV/c;
-1,238 (GeV/c) <u<0.107( GeV/c)
The fit parameters are

A = 4946 ub/(GeV/c)?

B = 2.78 pub/( GeV/c)2

ReA; = 4.72, ImA; = 0.45.

The %2 value is 26.5 and the %2
test gives a probability of ~35%

d6/du [pb/(Gev/ci?]

00

-u [(Gev/c)?]

FIG. 5 - Differential cross section
do/du, at pLahZ 3.30 GeV/c;
-1.275(GeV/c)®< u< 0,088 (GeV/ c)2.
The fit parameters are

=145.1 pub/(GeV/ c%
B 0.22 ub/(GeV/c)
Rel = B85, Imll 0 86.
The 12 value is 9.45 and the %2
test gives a probability of ~ 60 %.
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Then, using formula (22a, b) we can fit Re A; and Im J.l versus p, =fAK (recall thatthe
values of ReA; and ImAq at pp oy = 5.20 GeV/c and py ., = 7.00 GeV/c are those obtained in I).
The fit of ReA; versus p, ,, will be discussed later on (see Fig, 12). The fit of Im 1; versus
Pc, m, 1s reported in Flgs 6a and 6b. Fig. 6a shows that the agreement between the data and the

15 ¢ H * i

Im Xy
Im Ay
i
.__K.

! ! 1 e 1 L L L
735 150 175 200 150 175 200
] Pew (GeV/c) ’ Pew (Gev/e)
a) b)
FIG. 6 -ImA; versus p, m, K. a)All the avallable data are considered; the fit para-
meter (see formula (22b)) is: b R1/3 0.55 (fm) ’ b) O?sy the data at f}ab 5.2 GeV/c
and 7.0 GeV/c are considered ; the fit parameter is: 0.67 (fm)1 the %2 value

is 0.05 and the %2 test gives a probability of ~80 %.

fitting curve is not satisfactory. But it becomes very good if we fit only the two data at higher mo
menta (see Fig, 6b). This fact can be tentatively explained as follows :

a) Our model does work only if § >>1; this condition is not yet satisfied at lower momenta, Inde-
ed the data at lower momenta are quite near to the resonance region.

b) The values of Im Ay, considered in Fig, 6a, have been derived by fitting data sets obtained in
different experiments. Indeed the three points at lower momenta derive from one ex eriment(10);
the two points at larger momenta (considered in Fig. 6b) derive from another onel®, 9) The di
screpancy might be due, perhaps, to different normalizations in the experiments, -

Finally let us observe that, in the energy
interval analyzed, the effect of the spin is negli
gible, i.e. B * 0. Therefore, hereafter, we -
shall discard the effect of the spin, as we said
before.
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Next we try a fit at fixed angle, i.e,

'&c m, = % with formula (39). Indeed we have

experimental data in the momentum range &
3.3-6,00 GeV/ (1) The fit is reported in =
Fig. 7. Let us observe that the theoretical @
curve does not reproduce some small oscilla- a
tions that the experimental data exhibit. These o
could be due to the interference of the princi- j
pal term, p=P, with one or more terms, which Py
we have neglected in the sum (32). &

FIG, 7 - The differential cross section

(do/du),ﬂ o Versus pe o, . The

fit parame%grg are: 2/3 g )

A 9,.92x10° ub/(GeV/c) 5 L — L L L
l 5. 82 (fm) ‘-f 12 13 T I 15 16

Poy (Gev/el
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At this point we have determined the parameter ¢ (which appears in formula (39)), by means
of the preceding fit at &, , = . Moreover we know also the va}rgs of A (see formula (36)) at
different values of K. Then we can test whether the quantity AecK is proportional to K'4/3.
as prescribed by formula (38). The fit is reported in Fig. 8. In this case we have an agreement
between the data and the fitting curve which does not require any subdivision of the data, Thisfact
may be explained, pehaps, with the quite large statistical errors of the quantity A ecK1/3,

1
S ol 1
3 TR L G | .
3> 1 T : A
9
= 109
a,
e -
3
ST 4 J . : ,
1 125 150 . 175
i Pow (Gev/e)

1/3 :
FIG. 8 - The quantity & = A ecK / versus pg p . The fit parame-
ter is: A, = 6.89x 106 ub/(Gev/c)?/3,

As we said in Section 2, at forward we have the diffraction peak. In our model the diffrac-
tion peak is described by the following formulall, 2), which holds true for & <<g=1/3

3,80\’
i Al W e

J1 being the Bessel function of index 1, Phenomenologically the data suggest that we should use
the formula:

do

e-blt!
dltl

D

(42)

to which (41) reduces for & <<f-1.

The agreement of this formula with the data ceases to exist at a certain angle, say .
For larger values of ¥ we try a fit with the use of formula (35), Now the functions (42) and (%5)
should be smoothly joined; we link them simply imposing the continuity at #= &, Therefore
the parameters D, b, C, ImA, and 1‘}0 are not all independent. We fit three sets of data (the ex
perimental data used are given in refs. (12, 13)). The results are presented in Figs. 9, 10 and 11.
These fits stop at a certain angle #Max' where the cross section rises again and therefore the
agreement between formula (35) and the experimental data is no longer satisfactory.

Up to now we have neglected the reflected ray contribution for & »a},. Of course this
term is present and one could even argue that it is dominant, at least at not too large angles.
Therefore, to exclude this hypothesis, we have tried a fit with the following formula (for & >,):

2
da _ @R 2
T * —KTIfr(,s.m] (43)
where(14’ 15)
” sinhErKA( VN2- cos? g . singﬂ -2ip sing
f(8,9) = -3 e (44)

sinhEFK A(' N2 cos? g + singE[



107 =

V/cizj

dc/dt [mb / (G

-l
n
w
o

-t (Gev/c)z

FIG. 9 - Differential cross section
do/ditl at ppap = 3.0 GeV/e,
0.085 (GeV/c)?< -t <3.58 (GeV/c)2,
The fit parameters are:

D = 54.1 mb/ (GeV/c)2

b = 16.5 (GeV/c)

C = 3.66 mb/(GeV/ C)

Imll 120, 17' = 0. 71 rad.

The %2 value is 61,1,
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FIG. 10 - Differential cross section

do/d1tl at Plap - 3-50 GeV/c,
1.01(GeV/c)2< -t <4.26 (GeV/c)2.
The fit parameters are

D = 41.5 mb/(GeV/c)
b = 19,3 (GeV/c)
C=17.07 mb/(GeV/c) -

ImA; = 2,07, 4, = 0.65 rad.
The %2 value is 28.7

d&/dt [mb/ (Gev/c)?]

-g‘[-

-t (GeV/c)?

FIG, 11 - Differential cross section
do/d1t) at pLab 3.63 GeV/e,
0.075 (GeV/c)2 < -t <3.45 (GeV/c)2.
The fit parameters are

D =44.3 mb/(GeV/c)2,

b =19.8 (GeV/c)-2,

C =11.4 mb/(GeV/e)®,

Imiy =2.36, ¥,=0.63 rad,

The %2 value is 42.8.
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A being the diffuseness parameter and N the maximum value of the real part of the "refraction
index" inside the interaction region. Let us observe that formula (44) generalizes formula (3);
indeed it reduces to (3) for A= 0, As a result we have found a too large, unphysical value of R,

In conclusion the fits of Figs. 9, 10, 11 seem to indicate that, after the dominance of the
diffractive peak, there is an angular region where only one surface wave contributes significantly
and its interference with the reflected ray contribution can be neglected. However we cannot say,
at the moment, whether this wave corresponds to p=0 or p=1, Furthermore we obtain values of
Im 4y which are systematically larger than those obtained at backwards. Indeed we cannot believe
in the details of the model. For instance, it is unrealistic to assume that the transition regions
for p2 1 are of the order of ﬂ"l/ 3, since our values of p are not large enough to support fully
an asymptotic theory. Moreover we have assumed that the boundary of the interaction region has
a sharpe edge, which is certainly too drastic, Nevertheless we can accept the general trends of
the model, In particular we can explain, as an effect of the transition regions, the discontinuity
between formula (35), used in the angular range - ‘,Max’ and formula (36) used at backwards.

Our confidence on the gross features of the theory is also based on the possibility of evalua
ting the interaction radius R using formula (22a), With this in mind we plot the values of Re iy
versus p. m, (recall that these values have been obtained by the fits at backwards) and observe
that these five points can be subdivided into two groups, The first group is composed of the two
data at larger momenta ; in the second one there remain three points at lower momenta (recall
that we have done an analogous subdivision in connection with the fits reported in Figs, 6a,b).
The data of the first set can be fitted by a straight line passing through the origin (see Fig. 12).
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FIG. 12 - Rei, versus Po. m,+ The encircled points denote the
locations of the Jr+-p resonances,

So doing we have neglected the term proportional to ,81/3 (see formula (22a)) ; as we shall see in
a moment, this approximation is acceptable. From this fit we obtain the following value for R:
1,017 10,006 fm, The agreement of this evaluation with others(16) obtained with different models
and using data in the forward angular region, is satisfactory. Furthermore let us observe that
the n:+-p resonances lie along this fitting straight line (see Fig. 12). The three points at lower
momenta can also be fitted by formula (22a) ;-in this way we obtein a value of a;, which turns out
to be zero within the statistical errors. This legitimates the approximation, which has been done
before, of neglecting the term proportional to Bl 3. Then, also in this latter case, we fit the
data with a straight line passing through the origin, The corresponding value of R is: 0.882 ¥
t0.014 fm. The small discrepancy between the two values of R, which have been obtained, can
probably be explained recalling the remarks which we have done in connection with the fits of
Figs, 6a,b,
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