INFN/AE-78/2
1 Febbraio 1978
E. Recami: A NEW INTRODUCTORY VIEW ABOUT SUPERLUMINAL FRAMES AND TACHYONS.

INFN/AE-78/2
1 Febbraio 1978
E. Recami: A NEW INTRODUCTORY VIEW ABOUT SUPERLUMINAL FRAMES AND TACHYONS ${ }^{(0)}$.

1. - RIVISTING THE POSTULATES OF SPECIAL RELATIVITY (SR). -

A suitable choice of postulates for the theory of Special Relativity (SR) is the following one: (see ref. (1) and (2))

1) First Postulate: Principle of Relativity (PR): "Physical laws of Mechanics and Electromagnetism are covariant (=invariant in form) when going from an inertial observer to another inertial observer". Notice that this postulate does not impose any constraint on the relative speed u of the two inertial observers; and it is inspired to the consideration that all fra mes should be equivalent [for a careful definition of 'equivalence' see refs. (3) and (1).]
2) Second Postulate: "Space-time is homogeneous and space is isotropic". As wellknown, this postulate is justified by the fact that from it the conservation laws (of energy, momentum, angular momentum) follow.

Since 1910 it was shown that the postulate of ligh-speed invariance is not strictly necessary, since it can be derived ${ }^{(4)}$ from the above postulate 1) and 2). Let us moreover obser ve that the particular role of light-speed in SR is due to its invariance and not to the fact that it is (or is not) the maximal one.

If we want - as we do - to avoid information transmission into the past, a third postulate is necessary ${ }^{(1)}$:
3) Third Postulate: "Negative-energy objects or particles, travelling forward in time, do not exist (and physical signals are carried only by objects that appear to carry positive energy)". This postulate will be shown to be equivelent to the Principle of (Retarded) Causality: "For every observer, "causes" chronologically precede their own 'effects' [for a definition of "causes" and "effects"see e. g. ref. (1)]". Moreover, from Postulate 3) the existence of anti--matter will be inferred.
From postulate 1) and 2) it follows ${ }^{(2)}$ that one, and only one, quantity w^{2} (having the physical dimensions of a speed square) must exist, which has the same value according to all the inertial frames: $\mathrm{w}^{2}=$ invariant. If we assume $\mathrm{w}=\infty$, as in Galilean relativity, then we'ld get classical (Ga lilei-Newton's) physics. In such a case the invariant speed would be the infinite one, and we could write: $\infty \oplus \mathrm{v}=\infty$; we indicate by \oplus the operation of "speed composition". But experience has shown to us that the invariant speed is finite (and real); it is the light speed, c, in vacuum. In this case

$$
\begin{equation*}
\mathrm{c} \oplus \mathrm{v}=\mathrm{c}, \tag{1}
\end{equation*}
$$

and we immediately get Einstein's Relativity and physics. Let us emphasize that, in this second case, the infinite speed is no more invariant: when eq. (1) holds, then $\infty \Theta \mathrm{v} \neq \infty$. Moreover, postulates
(o) Contribution to the volume of proceedings "Tachyons, monopoles, and Related Topics" (North Hol land, Amsterdam, 1978), edited by E. Recami. Work performed with the support of INFN.

1) and 2) require the existence of one invariant speed, and not of a maximal speed; the ligh speed will result to be in SR a limiting speed, but any limit is wellknown to have a priori two sides.

2. - CAUSALITY IN SR. -

Let us consider Fig. 1, where for simplicity a two-dimensional space-time is depicted. When
 we are in the position $x=0$ at time $t=0$, we usually incline to consider as 'existing' all the $x=a x i s$ events. However, if another inertial observer, 0^{\prime}, moving along the positive x-axis, overtakes us at the origin-event, then at the same time $t=t^{\prime}=0$ he will tend to consider as existing all the x^{\prime}-axis events. Therefore, if we want to be able to start discussing and exchanging information with him, we must first be prepared to consider that all chro notopical events 'exist' (at least the ones outside the past-future zone of the ligh-cone). Then, nothing a priori prevents event A from influencing event B (see Fig. 1).

$$
\text { FIG. } 1
$$

Just to forbid such a possibility we introduce the Third Postulate. Our point is that, since we 'explore' the Minkowski space-time going forwrd in time (along the direction determined by thermo dynamics and by cosmological evolution (5) any observer will see the event B of Fig. 1 as the first one and the event A as the last one.

It can be, moreover, shown that ${ }^{(6)}$ an object going backwards in time (Fig. 1) corresponds in the dual space, i. e. in the four-momentum space (see Fig. 2a), to an object carrying negative ener gy; and vice-versa. Let us start from the safe consideration of a positive-energy object, going forward in time; if we want to turn its motion backwards in time, then postulates 1) and 2) obli ge us to apply to it a non-orthocronous Lorentz transformation. But any Loren tz transformations changing the sign of time will change also the signs of the fourth components of any other $4-\mathrm{vec}$ tors associated to the observed object

(and in particular of the energy). This is true also in relatistic quantum mechanics (QFT); for example; if $f(\vec{p}, E)=1 /(2 \pi)^{2} \int \tilde{f}(\vec{x}, t) \cdot \exp [i p \cdot x-i E t] \cdot d^{4} x$, then ${ }^{(6)}$

$$
\begin{equation*}
f(\vec{p},-E)=\frac{1}{(2 \pi)^{2}} \int \tilde{f}(\vec{x},-t) \cdot \exp [i p \cdot \vec{x}-i E t] \cdot d^{4} x \tag{2}
\end{equation*}
$$

Let us now apply our Third Postulate (or "RIP", see the following): The two paradoxical occur rences "motion backwards in time and negative energy" can be reinterpreted in an orthodox way by any observer when they are - as they actually are - simultaneous ${ }^{(6)}$. In fact, let us suppose (Fig. 3) that a Particle P, with negative energy and e. g. charge ${ }^{(7)}-\mathrm{e}$, tra velling backwards in time, is emitted by A^{-} at time t_{1} and observed by B at time $t_{2}<t_{1}$.

$\left[t_{1}>t_{2}\right]$
a)
[$t<t^{\prime}$] $\mathrm{ph}=\underset{(t, x)}{(t+a) ; E>0 ; \vec{T} ; p>0} \underset{(+\lambda) ; \gg 0}{\frac{\theta}{\left(t^{\prime}, x^{\prime}\right)}}$ $\hat{c} \hat{T}(p)=\underset{(-t, x)}{[-\pi} \frac{(-q) ; E>0 ; \vec{T} ; p<0}{(+\lambda) ; v<0} \underset{\left(-t^{\prime} ; x^{\prime}\right)}{\square}$ "R/P" $(p h)=\frac{A}{(t, x)} \frac{(-q) ; E<0 ; \bar{T}_{;} p<0}{(+x) ; r>0} \frac{B}{\left(t, x^{\prime}\right)}$ $\hat{c} \hat{\rho} \hat{Y}(p h)=\bar{\theta} \frac{(-a) ; E>0 ; \tilde{T}_{i p}>0}{(-\lambda) ; r>0} \pi$
b)

Therefore at time t_{1} object A 'loses' negative energy and charge - e, i. e. gains positive energy and charge $+e$. And, at time $t_{2}{ }^{\gamma} t_{1}$, object B 'gains' negative energy and charge $-e, i, e$. loses po sitive energy and charge + . The physical phenomenon here depicted will of course appear to be nothing but the exchange from B to A of an (ordinary) particle Q with positive energy, charge +e , and travelling forward in time.

We have seen, however, that Q has the charge opposite to P; this means that our 'reinterpre tation procedure' operates-among other things-a 'charge conjugation' ${ }^{(7)}$, C. A closer inspection (see refs. (6) and (8)) of the 'RIP' tells us that Q will indeed appear as the antiparticle of P :

$$
\begin{equation*}
\mathrm{Q}=\overline{\mathrm{P}} ; \tag{3}
\end{equation*}
$$

(actually, the mere 'RIP' in this case yields the particle except for the helicity sign: but the full result, eq. (3), is immediately got when considering the action of the complete Lorentz transfor-mation-together with the 'RIP').

We are meaning that the concept of anti-matter is a purely relativistic one; and that, on the basis of the double sign (Fig. 2a)

$$
\begin{equation*}
E= \pm \sqrt{\dot{p}^{2}+m_{0}^{2}} \tag{4}
\end{equation*}
$$

existence of antiparticles could been predicted since 1905-exactly with the properties they actually showed to posses when later discovered, - provided that recourse had been made to the above 'reinterpretation'. We therefore mean that the points of the lower hyperboloid-sheet in Fig. 2a re present the kinematical states of the anti-particle $\overline{\mathrm{P}}$ of the particle P represented by the upper hy-perboloid-sheet.

Our Third Postulate, together with the above reinterpretation procedure, can assume the following form, that - after STÜCKELBERG ${ }^{(9)}$ and FEYNMAN ${ }^{(9)}$ - we shall call 'Reinterpretation Principle' (RIP): "Negative-energy objects travelling forward in time do not exist; and any negati-ve-energy object P travelling backwards in time can, and must, be reinterpreted as its anti-object $\overline{\mathrm{P}}$ going the opposite way (but endowed with positive energy and travelling forward in time)" (see refs. (1) and (8)). Notice that our three postulatesimply also that: positive-energy objects tra velling backwards in time do not exist; moreover, not only we can apply the 'RIP', but we must apply it (since we must 'explore' space-time in the positive t-direction).

It is now clear that the 'RIP', by eliminating any information transmission into the past, implements the validity of the law of (retarded) causality ("causes happen before their own effects"). Our 'RIP' finds a-more elegant formulation in a five-dimensional space, where the fifth axis is related to rest-mass (see the following).

3. - SOME CONSEQUENCES. -

Inspection of Fig. 3b) shows e. g. that the 'RIP' does change -among other things - the 3-momentum sign but doesn't affect the 3 -velocity sign: i. e. it changes the rest-mass sign. The 'RIP' can be recognized ${ }^{(1,10)}$ from Fig. 3b) to be formally equivalent to change the sign of all additive charges and of the rest-mass \underline{m}_{0} (besides changing emission into absorption and vice-versa); we shall call 'strong conjugation' $\overline{\mathrm{C}}$ the discrete operation

$$
\begin{equation*}
\overline{\mathrm{C}} \equiv \mathrm{CC}_{\mathrm{m}_{\mathrm{o}}} \tag{5}
\end{equation*}
$$

where C is the conjugation of all additive charges and $C_{m_{0}}$ is the rest-mass sign inversion. (Notice that, in quantum mechanics, our operator $\overline{\mathrm{C}}$ will be a unitary operator when acting on the sta te-space $\left.{ }^{(10)}\right)$. Neglecting the operation X that effects the charge emission \rightleftarrows absorption, we can write

$$
\begin{equation*}
{ }^{\prime} \mathrm{RIP}^{\prime} \equiv \overline{\mathrm{C}} . \tag{6}
\end{equation*}
$$

We can conclude that antiparticles must be formally attributed negative rest-masses (but positive total energies, of course). For clarity's sake, let us remember that in covariant form for any free particle:

$$
\begin{equation*}
\mathrm{E} \equiv \mathrm{p}_{\mathrm{o}}=\mathrm{m}_{\mathrm{o}} \mathrm{u}_{\mathrm{o}} \mathrm{c}^{2} \tag{7}
\end{equation*}
$$

where u_{o} is the time-component of four-velocity. Now, let us consider a non-orthochronous Lo-rentz-transformation 5 L, changing (for simplicity) only the sign of all time-components:

$$
E^{\prime}=-E=m_{O}\left(-u_{O}\right) c^{2}=m_{O} u_{O} c^{2}
$$

Afterwards, when applying the 'RIP' so as to get the corresponding antiparticle we finally have for the antiparticle):

$$
E^{\prime \prime}=-E^{\prime}=\left(-m_{0}\right)\left(-u_{o}\right) c^{2}
$$

so that the antiparticle (endowed of course with 4 -velocity component $-u_{0}$) remains with a negative rest-mass. We shall therefore write

$$
\left\{\begin{array}{lll}
E=+m_{0} c^{2} & \text { for free particles } & \left(m_{0}>0\right) \tag{8}\\
E=-m_{0} c^{2} & \text { for free antiparticles } & \left(m_{0}<0\right)
\end{array}\right.
$$

so that always $E=+\left|m_{0}\right| c^{2}$. Eqs. (8) do not violate covariance since they both descend from the covariant eq. (7).

However it should be clear that nothing prevents us from introducing a new formalism, where e. g. a new 'proper mass' (as distinct from the 'rest-mass') is invariant when going from particles to an tiparticles ${ }^{(11)}$; what we wanted to notice is that, in the usual formalism, ordinary rest-mass possesses the abovementioned property. For instance, let us shift to QFT: if we correcly insist in as sociating positive energiesto both electrons e^{-}and positions e^{+}, then we get that the free Dirac equation yields (10) opposite intrinsic parities for e^{-}and e^{+}- as required - only under condition m_{0} (fermion) $=m_{0}$ (antifermion). Still within the realm of QFT, it is easy to observe also that (when we deal, as usual, with states of definite parity ${ }^{(10)}$):

$$
\begin{equation*}
\overline{\mathrm{C}} \equiv \mathrm{P}_{5} \tag{5bis}
\end{equation*}
$$

quantity P_{5} being the chirality operation $\left[\mathrm{P}_{5}^{-1} \psi \mathrm{P}_{5} \equiv \gamma^{5} \psi=\overline{\mathrm{C}}^{-1} \psi \mathrm{C}\right]$, so that ${ }^{(10)}$

$$
\begin{equation*}
\text { 'RIP' } \equiv P_{5} . \tag{6bis}
\end{equation*}
$$

We shall come back to similar considerations in the following.

4. - EXTENDED RELATIVITY : HISTORICAL REMARKS.

All the previous considerations assume a more compact form if we allow room also for Super-luminal (=faster-than-light) frames of references and for tachyons ${ }^{(6)}$, so to consider all space-time 'rotations' (in Fig. 4, e. g., relative to $0<\alpha<2 \pi$) as generalized Lorentz transformations. In particular, the same set of three postulate previously introduced, are enough for deriving a causal theory even in presence of faster-than-light objects. Such objects have been given the name 'Tachyons' (T) in ref. (12), from the Green word $\tau \alpha \chi \hat{v} \zeta=$ =fast.

"Une particule qui a un nom possed dejà un début d'existence", will later be commented ${ }^{(13)}$. We shall call 'Bradyons' (B) the usual, slower-than light objects ${ }^{(14)}$ from the Green word $\beta \varrho \alpha \delta \dot{v} \zeta=$ slow. At last, we shall call 'luxons' (ℓ) the objects - like photons - travelling exactly at the speed of light ${ }^{(15)}$.

As regards tachyons, as far as we know the first author mentioned them was LUCRETIUS, as outlined by CORBEN during this Meeting as well as in ref. (16). Let us here explicity quote another passage from 'De Rerum Natura'(17):
"Quone vides citus debere et longius ire multiplexque loci spatium transcurrere eodem tempore quo Solis pervolgant lumina coelum? ',
which means: "Don't you see how thay must go faster and farther/And travel a larger interval of space in the same amount of/Time than the Sun's light as it spreads across the sky?"

After Lucretius we don't know about any other progress untillTHOMSON's ${ }^{(18)}$, Heaviside's, Des Coudres', and particularly SOMMERFELD's works ${ }^{18}$). In 1905, however, together with Relativity, the convinction that ligh-speed in vacuum was the upper limit of any speed spread over, the early -century physisicist being led (and possibly misled) by the evidence that ordinary particles cannot overtake that speed. They behaved like SUDARSHAN's imaginary demographer studying the popula tion patterns of the Indian subcontinent: "Suppose a demographer calmly asserts that there are no people North of the Himalayas since none could climb over the mountain ranges! That would be an absurd conclusion. People of central Asia are born there and live there: They did not have to be born in India and cross the mountain range. So with faster-than-light particles" (cfs. Fig. 5a). Moreover TOLMAN ${ }^{(19)}$ believed to have shown, in his old 'paradox' of the anti-telephone, that the existence

FIG. 5

of Superluminal particles allowed information transmission into the past.
Therefore, one had to wait almost untill the sixties before seeing the tachyon problem re-exa mined, apart from the mathematical considerations by WIGNER ${ }^{(20)}$ and by SCHMIDT ${ }^{(20)}$. The pio neering works are the ones by $\operatorname{ARZELIES}^{(21)}$, by TANAKA ${ }^{(21)}$, by TERLETSKY ${ }^{(21)}$, and by SUDAR SHAN and Coworkers ${ }^{(15)}$. After ref. (15), a number of people started studyind the subject, among whom, e. g. , in USA Feinberg ${ }^{(12)}$ and in Europe the present author and Coworkers ${ }^{(22)}$. One of the main reason of interest in 'Extendeci Relativity' (which includes Superluminal frames and objects ${ }^{(23)}$) is bound to the fact that it yields also a better understanding of ordinary SR, even if tachyons would not exist. as 'asymptotical objects'. However, no essential reason against the existence of free,' asymptotical' tachyons will be apparently met, so that we might get inspired - following Murray Gell-Mann -from the 'principle'(24) asserting that 'anything not forbidden is compulsory'.' Let us remember that most experimental search look ing for tachyons has been till now lacking of a good theoretical background; in particular, most experiments looked for Cherenkov radiation supposedly emitted by tachyons in vacuum, whilst our theory of SR extended to Superluminal frames and tachyons does not predict any such radiation in vacuum.

In 'Extended Relativity' ${ }^{(6)}$ (ER) both sub-luminal (=slower-than-light) and Superluminal frames are considered; the problem of finding out the 'Superluminal Lorentz transformation' (SLT) connecting a frame s of the former class to a frame S of the latter class has been first considered in the pio neering (independent) work by PARKER(25) (who studied the 2 -dimensional case) and by OLKHOVSK \bar{Y} et al. ${ }^{(26)}$ and then by MIGNANI et al ${ }^{(27)}$. The four-dimensional extension has been first attempted in refs. (26), and then - by complex transformations-in ref. (27).

5. - PRELIMINARIES (AND CAVEATS) ON TACHYONS.

In a bidimensional space-time, or in the case of purely collinear motions, it is possible to define rapi dity the quantity $R \equiv c \cdot \operatorname{tgh}^{-1} \beta$, so that $R=0 \pm$ for $\beta \rightarrow 0 \pm$ and $R \rightarrow-\infty$ for $\beta \rightarrow \pm \mathrm{c}$ (and one gets an additive 'rapidity composition law'). But this cannot be meaningfully done in more dimensions, so that - even from this point of view - space-like objects cannot be 'squeezed away' from space-time.

The theory of ER can be based on our postulates 1), 2), 3) of Sect. 1; to make our arguments sim pler, let us however substitute now postulate 2) with the more conventional one light-speed invarian ce in vacuum. Therefore we shall base ER on the assumtions: (1) Principle of Relativity; (2) lightspeed invariance in vacuum; (3) Third Postulate: principle of retarded causality (or equivalent ones: see above). We are releasing ${ }^{(29)}$ the additional postulate the $|\overrightarrow{\mathrm{v}}| \leq \mathrm{c}$ for all velocitites $\overrightarrow{\mathrm{v}}$. Let us choose throught these lectures the signature (+---); natural units ($c=1$) will be adopted when convenient. We shall make recourse to Einsten's notation and to the 'Euclidean metric' $\mathrm{g}_{\mu \nu}=\delta_{\mu \nu}$, by writ ing the chronotopical vectors as $\mathrm{x} \equiv\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \equiv(\mathrm{ct}$, ix , iy, iz). We shall not have to distinguish between covariant and contravariant components, and the light-cone will write $\sum_{\mu=1}^{4} x_{\mu}^{2}=0$. Formally we shall have: time $=\mathrm{i} \cdot$ space, $[\mathrm{c}=1]$. As noticed by MINKOWSKI himself, we ${ }^{\mu=1}$ can formally write: 1 second $\equiv i\left(3 \times 10^{8}\right)$ meters.

Extension of SR to Superluminal frames and objects is straightforward when we have a symmetry between the numbers of space and time dimensions, like in the two-dimensional M^{2} case (25) or when we introduce a $\mathrm{M}(3,3) \equiv \mathrm{M}^{6}$ space or a C^{3} space ${ }^{(30)}$. If we stick - as in the following - to the usual Minkowki space-time, in order to get equivalence between s and S frames, we shall have to introduce sometimes some imaginary units ${ }^{(23)}$. Some authors (as CORBEN ${ }^{(16,23)}$ and SHAH ${ }^{(23)}$) are satisfied by the situation and the present interpretation possibilities ${ }^{(23)}$; others looked for a wider interpretation on the basis of complex (or real multi-dimensional) space times. From a 'conservative' viewpoint, one can regard the use of SLT's as an analytic-extrapolation procedure (leading to deal, in the intermediate steps, with complex - or at least purely imaginary - space-time coordinates), not far from the one adopted by T. Regge in his known theory where scattering amplitudes are extra polated to complex values of energy or momentum. The essential point is that in ER we shall always be able to write the final equations in terms of (purely) real quantities.

In Minkowski space-time (Fig. 4) our world-line coincides - in our frame - with the time-axis t; on the contrary, the world-line of an infinite-speed tachyon moving along x coincides with the x -axis itself (with respect to us). Such a 'trascendent' tachyon ($V=\infty$) will then consider as his time-axis t' the one called x-axis by us, and analogously will consider as space-axes $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ the ones called t, y, z by us. On the contrary, such a'trascendent' observer will appear to us - owing to the structure of ER - as possessing onespace-axis andthree time-axes; and the same will happen for rods and clocks. Let us repeat that (free) bradyons always admit a class of s-frames (the rest-frames) according to which they are space-'points' extended in time along a line; whilst (free) tachyons always admit a class of s-frames ${ }^{(31)}$ (the 'critical' ones ${ }^{(6)}$) whereform they appear with divergent speed, i.e. as 'points' in time extended in space along a line. This is important for understanding the tachyon 'localization' with respect to us and corresponds to the fact that the 'little groups' of time-like and space-like represen tations of the Poincaré group are $S O(3)$ and $S 0(2,1)$ respectively.

6. - THE GENERALIZED LORENTZ TRANSFORMATIONS (GLT). -

From the postulates (1), (2), (3) of Sect. 5 we get ${ }^{(6)}$ immediately as a corollary the 'Duality Prin ciple': "the terms B, T, s, S are not absolute but only relative, and

$$
\begin{equation*}
\mathrm{B}(\mathrm{~S})=\mathrm{T}(\mathrm{~s}) ; \mathrm{B}(\mathrm{~s})=\mathrm{T}(\mathrm{~S}) ; \ell(\mathrm{s})=\ell(\mathrm{S}) ; \tag{9}
\end{equation*}
$$

moreover the relative speed between two frames S_{1}, S_{2} (or s_{1}, s_{2}) is always smaller than c, and the one between two frames s, S is always larger than $c^{\prime \prime}$. Therefore, the transformations L between two inertial frames f_{1}, f_{2} must be such that (6)

$$
\begin{equation*}
\mathrm{x}_{\mu}^{\prime} \quad \mathrm{x}^{\prime \mu}= \pm \mathrm{x}_{\mu} \mathrm{x}^{\mu} \tag{10}
\end{equation*}
$$

for every fourvector x_{μ}, where the sign plus refers to the the ordinary case ($u^{2} \angle c^{2}$) and the minus
to the Superluminal one $\left(U^{2}>c^{2}\right)$. Of course, according to postulate (1), frames S are supposed to have at their disposal exactly the same physical objects as frames s have, and vice-versa. When two frames s, S observe the same event, time-like vectors transform into space-like vectors, and vice-versa, in going from s to.S or from Sto s; the "Superluminal Lorentz transformations" (SLT) are expected to be such that $[\beta \equiv u / c]$:

$$
\begin{equation*}
c^{2} t^{\prime 2}+\left(i \overrightarrow{x^{\prime}}\right)^{2}=-\left[c^{2} t^{2}+(i \vec{x})^{2}\right] . \quad\left[\beta^{2}>1\right] \tag{11}
\end{equation*}
$$

Of course also tachyons will posses real rest-masses. If we apply eq. (11) to 4 -momentum vec tors, we derive for tachyons

$$
\begin{equation*}
E^{2}-\overrightarrow{\mathrm{p}}^{2}=-\mathrm{m}_{0}^{2}<0 . \quad\left[\mathrm{m}_{0} \text { real }\right] \tag{12}
\end{equation*}
$$

In Figs. 3 the three cases (for B^{\prime} s, ℓ^{\prime} 's, T's, respectively) are depicted. Any SLT maps the 'interior' of the light-cone $\mathrm{p}_{\mu} \mathrm{p}^{\mu}=0$ into its 'exterior', and vice-versa (as it can be shown e. g. within the mathematical 'theory of catastrophes': see SHAH ref.(23)), even if such a mapping is one-to-one quasi everywhere only. Tachyons will slow down when energy increases (cf. Fig. 5 b). In particular, divergent energies are needed to slow down tachyon speed to its lower limit c; and, on the contrary, when a tachyon tends to have divergent speed, its energy tends to zero (see Fig. 3c and Fig. 5a). Incidentally, since trascendent tachyons transport zero energy butfinite (minimal) momentum (with magnitude $\mathrm{m}_{\mathrm{O}} \mathrm{c}$), they allow getting the rigid body behaviour even in SR ; as a consequence, in elementary particle physics tachyons can be useful for describing diffraction scatterings, pomeron-exchange reactions, and elastic scatterings (see the following) on a classical basis.

From our postulates (1), (2), (3) it follows that GLT's must be linear transformations satisfying eq. (10); they costitute $(1,32)$ a new group G which is the extension of the usual (proper, or thochronons) Lorentz group L_{4}^{+}by the two operations CPT and \mathcal{P} :

$$
\begin{equation*}
\mathrm{G}=\varepsilon\left(\mathrm{L}_{4}^{+}, \mathrm{CPT}, \vartheta\right), \tag{13}
\end{equation*}
$$

where \mathscr{I} is the product of the two operators $A \mathrm{X}^{\mu} \longrightarrow i \mathrm{x}^{\mu}$ and $\mathrm{B} \equiv \beta \rightarrow 1 / \beta$. Notice that: det $\mathrm{L}=$ $=+1, \forall L \in G$; and that, if $L \in G$, then $-L \in G, \forall L \in G$. Briefly speaking, if we call LT the usual (proper, orthochronous) Lorentz transformations, then

$$
\begin{equation*}
\operatorname{SLT}(1 / \beta)= \pm \boldsymbol{\rho}[\operatorname{LT}(\beta)] . \quad\left[\beta^{2}<1 ; \frac{1}{\beta^{2}}>1\right] \tag{14}
\end{equation*}
$$

At this point, let us observe that $\sqrt{\beta^{2}-1}= \pm i \sqrt{1-\beta^{2}}$ since $(\pm i)^{2}=-1$; let us choose the sign plus. We shall also understand that, for $\beta^{2}>1$, quantity $\sqrt{1-\beta^{2}}$ represents the upper half-plane solution. Then, for a Superluminal boost along the(positive) x-direction with speed U, eq. (14) yields $(26,27,33)$:

$$
\left\{\begin{array}{l}
x^{\prime}= \pm \frac{\mathrm{ct}-\mathrm{ux} / \mathrm{c}}{\sqrt{1-(\mathrm{u} / \mathrm{c})^{2}}}=\mp \frac{\mathrm{x}-\mathrm{Ut}}{\sqrt{\beta^{2}-1}} ; \tag{15}\\
\mathrm{t}^{\prime}= \pm \frac{\mathrm{x}-\mathrm{ut}}{\mathrm{c} \sqrt{1-(\mathrm{u} / \mathrm{c})^{2}}}=\mp \frac{\mathrm{t}-\mathrm{Ux} / \mathrm{c}^{2}}{\sqrt{\beta^{2}-1}} ; \quad\left[\beta \equiv \frac{\mathrm{U}}{\mathrm{c}}>1\right] \\
\mathrm{y}^{\prime}= \pm \text { Biy; } \quad z^{\prime}= \pm \text { B iz }
\end{array}\right.
$$

where we put $u \equiv c^{2} / U<1$. In eqs. (15) the relative signs depend on our conventions above. In the two dimensional case, the GLT's simply read (in G-covariant form):

$$
\begin{equation*}
x^{\prime}= \pm \frac{x-u t}{\sqrt{\left|1-\beta^{2}\right|}} ; \quad t^{\prime}= \pm \frac{t-u x / c^{2}}{\sqrt{\left|1-\beta^{2}\right|}} ; \quad\left[-\infty<\beta \equiv \frac{u}{c}<+\infty\right] \tag{16}
\end{equation*}
$$

in such a (or similar) form eqs. (16) first appeared in refs. (26), (27), and then in a number of subsequent papers ${ }^{(34)}$; in refs. (27), (35) the eqs. (16) have been shown to be - in the Superluminal case essentially an improved version of the pioneering Parker's equations ${ }^{(25)}$.

Let us consider an application: if a tachyon has rest-mass m_{0} (relative to its rest-frames) and moves with speed U relative to us, we shall then observe the total mass

$$
\begin{equation*}
m=\frac{m_{0}}{\sqrt{\left|1-\beta^{2}\right|}}=\frac{-i m_{0}}{\sqrt{1-\beta^{21}}}=\frac{m_{0}}{\sqrt{\beta^{2}-1}} \quad\left[\beta^{2}>1 ; m_{0} \text { real }\right] \tag{17}
\end{equation*}
$$

where tachyons are evidently attributed real rest-masses.
A 'rule of ER' easily follows: the relativistic laws for tachyons can be obtained from the corresponding laws for bradyons by applying a SLT, for instance the 'trascendent' one $\mathrm{K}_{+} \equiv+\lim _{\beta \rightarrow \infty}[\operatorname{SLT}(\beta)]$; more precisely, $K_{+} \equiv\left(\begin{array}{cc}\sigma_{2} & 0 \\ 0 & i \sigma_{0}\end{array}\right)$, where $\sigma_{2} \equiv\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$ and $\sigma_{\mathrm{O}} \equiv\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ are Pauli matrices. Actually, at this stage we have still some freedom; for instance, we may have a rotation of axes y, z around the motion line (axis x) when 'crossing' the light-cone, so that a priori the above quantity i σ_{o} can be e.g. chosen with the sign minus.

7. - TACHYONS AND CAUSALITY. -

In the case of tachyons it is even clearer (cf. Sect. 2) that our Third Postulate does easily eliminate any motion backwards in time. In fact (see Fig. 2c), to get transition from an (ordinary) tachyon A to a negative-energy tachyon A^{\prime}, it is enough an ordinary LT. The fact that such a LT will change sign not only to energy but also to time is easily seen by comparing Figs. 2c and 6. Let us first look at Fig. 2c, and consider a frame s_{0} and then a continuous succes sion of frames, with increasing positive speeds $u<c$ along thexdirection, that observe the same free tachyon T. When varying observer, the point K representing the kinematical state of.. the observed tachyons moves from its initial position $A \equiv K\left(s_{0}\right)$, which represents e.g. tachyon T travelling with speed $V>c$ along the positive x-direction. In order to go from the upper $(\mathrm{E}>0)$ region to the lower $(\mathrm{E}<0)$ one, point K must cross the hyperplane $E=0$ where it refers to a tachyon T endowed with infinite speed (since $\vec{V}=\vec{p} / E$) and minimal momentum $m_{0} c$. It is easy to calculate that the critical frame s_{∞} wherefrom T appears to be trascendent is the one with speed $u=c^{2} / V<c$

FIG. - 6

(relative to s_{o}). Incidentally, in two dimensions the one-to-one correspondence $\mathrm{V} \longleftrightarrow \mathrm{c}^{2} / \mathrm{v}$ can be easily set between subluminal frames (or objects) with speed $\mathrm{v}<\mathrm{c}$ and the Superluminal ones with $V \equiv c^{2} / v>c$.

Any observer coming after s_{∞} in the above succession of frames should therefore see T andowed with a negative energy E (see point A^{\prime}). Let us pass to Fig. 6; the frame s_{∞} will be represented by axes x_{∞}, t_{∞} rotated with respect to $\mathrm{s}_{\mathrm{O}}(\mathrm{x}, \mathrm{t})$ by an angle α_{∞} such that x_{∞} is superimposed to the wor-ld-line OT of the considered free tachyon. The frames, in the above succession, attributing $\mathrm{E}>0$. to T correspond to $0<\alpha<\alpha_{\infty}$, and the ones that should attribute $\mathrm{E}<0$ to T are rotated by $\alpha>\alpha_{\infty}$; but inspection of Fig. 6 confirms that the latter ones should also see T moving backwards in time. It is straightforward to conclude that, owing to the 'RIP', point A' actually represents nothing but an anti tachyon \bar{T}, travelling the opposite way (with positive energy, and forward in time). We are left with no motion backwards in time.

This success of eliminating any causality violation is obtained at the price of abandoning the con viction that the judgement about what is 'source' (or 'cause') and what is 'detector (or 'effect') is independent of the observer $(6,37)$. Actually, in Relativity only lwas, and not the description 'details', must be covariant ${ }^{(6,8)}$. In fact, the initial observer s_{o} in the case above examined judges the event at A as causing the event at B (see Fig. 3, and 2c), whilst any observer s' (which interprets the same phenomenon as exchange of an antitachyon $\overline{\mathrm{T}}$ from B to A) judges the event B as cause of the event at $A^{(38)}$. Nevertheless, all observers will always see the cause chronologically to precede its own effect; the law of 'retarded causality' is relativistically covariant and holds for all inertial observers both s and $S^{6}, 8,3$).

However, the relativity of judgement about cause and effect (and even more of existence of a 'causal correlation' $(3,6,8)$ led to a series of apparent 'causal paradoxes' that -even if solvable(38)- gave rise to some perplexities. Let us here recall only the 'paradox' proposed by PIRANI ${ }^{(39)}$ in 1970 and essentially solved by PARMENTOLA and YEE (38) in 1971 on the basis of refs. (38). For such a point,
refs. (3), (6), (8), (38). For instance, in refs. (3), (6) the paradox by Pirani is formulated also in a 'strong version' and then solved (following ROOT and TREFIL(38)). See the "Note Added" at the end.

Let us add some considerations about antimatter. We have seen that, given a tachyon T, an or dinary LT can transform it into an object $\overline{\mathrm{T}}$ expected to have exactly all the properties that antiparticles actually showed to have in the experiments. Therefore, in the case when we confine ourselves to ordinary LT's, the character matter/antimatter is invariant for B's but it is relative to the obser ver for T's. However, in ER that character is relative to the observer also for B's. Moreover, let us confine ourselves for simplicity to boosts along x; then, when overtaking the trascendent (relative to s_{0}) frame $f(U=\infty)$, we pass from frames f^{R} (e. g. with a right-handed spatial frame) to totally-in verted frames $f^{L}=(P T) f^{R}$ with a left-handed spatial frame, a reversed time-axis, and so on. See Fig. 7. In other words, we pass from frames f^{R} to frames f L with space-parity and with particles transformed into antipar ticles. This could have been expected, since the total invers \bar{i} on PT is a 'rotation' of space-time, so that PTEG.

A close inspection of Fig. 3 reveals that the Third postulate cannot be applied if we do not take account of the proper sources and detectors (for each B or T), or - more generally - of the proper 'interaction regions'. This leads to completing the 'RIP' by saying that "Under a trans-critical GLT, when the rôles of emitter and absorber happen to be interchanged, any negative-energy object in the initial 'state' phy sically corresponds to its positive-energy antiobject in the final 'state', and vice-versa'.

It is worthwhile to repeat that, if a GLT acts on a fourvector associated with a body, then it ana logously act on the other fourvectors associated with that body. In particular, the 'total inversion' operation $\overline{\mathrm{P}} \overline{\mathrm{T}}=\mathbb{1}$, which changes sign to $\overrightarrow{\mathrm{x}}$ and t , will change sign also to $\overrightarrow{\mathrm{p}}$ and E, ect. We used the now symbols $\overline{\mathrm{P}}$ (strong parity) and $\overline{\mathrm{T}}$ (strong time-reversal) for meaning the sign-inversion of the first three components and of the fourth component of all fourvectors, respectively.

Besides, if we call $\Lambda_{<} \equiv \Lambda\left(\beta^{2}<1\right)$ the ordinary, proper, orthochronous (homogeneous) LT's in 4×4 matrix-form, then $\mathrm{SLT}= \pm i \Lambda_{\Omega}$, where $\Lambda_{>} \equiv \Lambda\left(\beta^{2}>1\right)$ are (complex) matrices formally identical to the $\Lambda_{\alpha^{\prime}}^{\prime}$ but corresponding to values $|\beta|>1$. One can verify that $\left[i \Lambda_{>}(\beta)\right] \cdot\left[-i \Lambda_{>}^{-1}(\beta)\right]=\mathbb{1}$, but $\left[i \Lambda_{>}(\beta)\right] \cdot\left[i \Lambda_{>}^{-1}(\beta)\right]=-\mathbb{1}$. In general, the product of two SLT's (which is always a LT's) can yield a LT both orthochronous and non-orthocronous. In Particular GLT $\left(\alpha=180^{\circ}\right)=\overline{\mathrm{P}} \overline{\mathrm{T}}=-\mathbb{1}$. Since, in order to reach $\alpha=180^{\circ}$ (starting from 00) we have to bypass the case $\alpha=90^{\circ}$, then we have to apply the 'RIP' (cf. Figs, 7 and 3), so that actually

$$
\begin{equation*}
\left.\operatorname{GLT}\left(\alpha=180^{\circ}\right)=\mathrm{CPT} ; \quad \overline{\mathrm{PT}} \overline{\mathrm{CRIP}}\right)_{\mathrm{CPT}} \tag{18}
\end{equation*}
$$

and CPT-covariance is directly required by ER as a particular case of G-covariance ${ }^{(6,3)}$. At a
classical (purely relativistic) level, it is moreover possible to derive the so-called 'Crossing Relations' of high energy (elementary particle) physics, also for ordinary bodies (bradyons ${ }^{(6,8)}$). At last let us mention that within $E R$ it seems easy to explain why relativistic equations are expected to admit both retarded and advanced solutions ${ }^{(40)}$.

8. - CLASSICAL PHYSICS FOR TACHYONS. -

By applying the 'rule of ER' (Sect. 6) one can predict the classical laws obeyed by tachyons, such laws being got in terms of purely real quantities.
For instance:
(I) The fundamental law of dynamics for bradions reads $F^{\mu}=c \frac{d}{d s}\left(m_{0} c \frac{d x}{d s}\right)$ and for tachyons according to ref. (6) will read:

$$
\begin{equation*}
\mathrm{F}^{\mu}=-\mathrm{c} \frac{\mathrm{~d}}{\mathrm{ds}}\left(\mathrm{~m}_{\mathrm{o}} \mathrm{c} \frac{\mathrm{dx}{ }^{\mu}}{\mathrm{ds}}\right), \quad\left[\beta^{2}>1\right] \tag{19}
\end{equation*}
$$

so that in G-covariant form we should have

$$
\mathrm{F}^{\mu}=\frac{\mathrm{d}}{\mathrm{~d} \tau_{0}}\left(\mathrm{~m}_{0} \frac{\mathrm{dx} \mu^{\mu}}{\mathrm{d} \tau_{\mathrm{o}}}\right), \quad\left[\beta^{2}>1\right]
$$

where $\mathrm{dx} / \mathrm{ds}$ is a four-vector only with respect to the group L_{4}^{+}, whilst $\mathrm{dx} / \mathrm{d} \tau_{0}$ is a four-vector with respect to the whole group G. Notice that by suitably choosing the Lagrangian, the 3--momentum of tachyons can result to be opposite to their velocity: $\vec{p}=-m \vec{v} / \sqrt{\beta^{2}-1}$; in such

(2) In a gravitational field (associated e.g. to subluminal sources), where a bradyon feels an attractive gravitational force, a tachyon will experience the repulsive 4 -force ${ }^{(6)}$

$$
\begin{equation*}
\mathrm{F}^{\mu}=+\mathrm{m}_{\circ} \Gamma_{\varrho \sigma}^{\mu} \frac{\mathrm{dx}^{\varrho}}{\mathrm{ds}} \quad \frac{\mathrm{dx}^{\sigma}}{\mathrm{ds}}, \quad\left[\beta^{2}>1\right] \tag{20}
\end{equation*}
$$

where m_{0} is the tachyons (real) rest-mass. However, due to eq. (19), the eqs. of motion for both tachyons and bradyons in a gravitational field will still read (in G-covariant form) ${ }^{(6)}$:

$$
\mathrm{a}^{\mu}+\Gamma_{\varrho \sigma}^{\mu} \quad \mathrm{u}^{\varrho} \mathrm{u}^{\sigma}=0, \quad\left[\beta^{2} \leq 1\right]
$$

where $u \equiv d y / d \tau_{0}$ and $a \equiv d u / d \tau_{0}$ are 4-velocity and 4-acceleration, respectively. In conclusion(41): (a) from the energetical and dynamical point of view, tachyons appear to be gravita tionally repulsed by ordinary matter, i. e. to be the 'anti-gravitational' particles; (b) from the kinematical viewpoint, however, tachyons appear as bending (or 'falling down') towards the gravitational source.
(3) As a constant-speed bradyon in vacuum does not emit radiations, so a constant-speed tachyon in vacuum will emit no radiations: in particular, no Cherenkov's $(6,42)$.
(4) As regards Doppler-effect for Superluminal sources, in the case of relative motion parallel to the x-axis, we shall have in both the sub-and Superluminal cases

$$
\begin{equation*}
v=v_{0} \frac{\sqrt{\left|1-\beta^{2}\right|}}{1+\beta \cos \alpha}, \quad\left[u^{2} \leq c^{2}\right] \tag{21}
\end{equation*}
$$

where $u \equiv u_{x} \equiv \beta c$ is the relative speed and $\alpha \equiv \vec{u} \vec{e}$, the vector \vec{e} going from the observer to the source. The same shift will be observed for both $u=v<c$ and for $U=c 2 / v>c$. For Superluminal approach, the radioemission will be received in reversed chronological order, and this fact corresponds to the negative sign appearing in eq. (21) in such a case.
(5) With regard to Maxwell eqs., if one assumes the usual quantity $F_{\mu \nu}$ to be still a tensor under the new group G of GLT's, then he gets ${ }^{(42 a)}$ that Maxwell equations are G-covariant. However, if - more consistently - one firstly generalizes ${ }^{(1)}$ the transformation-laws for electric and mamagnetic fields, \vec{E} and \vec{H}, then new generalized Maxwell eqs. are got. Namely, in presence of both subluminal, $j_{\mu}(\mathrm{s})$, and Superluminal, $j_{\mu}(S)$, four-currents, we should have ${ }^{(43)}$ in Lorentz--covariant form:

$$
\left\{\begin{array}{l}
\vec{\nabla} \cdot \overrightarrow{\mathrm{D}}=\varrho(\mathrm{s}), \tag{22}\\
\vec{\nabla} \overrightarrow{\mathrm{B}}=-\varrho(\mathrm{S}), \\
\vec{\nabla} \wedge \overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{j}}(\mathrm{~S})-\frac{\partial \overrightarrow{\mathrm{B}}}{\partial \mathrm{t}}, \\
\vec{\nabla} \wedge \overrightarrow{\mathrm{H}}=\overrightarrow{\mathrm{j}}(\mathrm{~s})+\frac{\partial \overrightarrow{\mathrm{D}}}{\partial \mathrm{t}} .
\end{array} \quad\left[\mathrm{v}^{2} \stackrel{\mathrm{c}^{2}}{2}\right]\right.
$$

In other words, if we define the usual dual tensor $[\mu \nu \varrho \sigma=0,1,2,3]$:

$$
\begin{equation*}
\mathrm{F}_{\mu \nu}^{*} \equiv \frac{\mathrm{i}}{2} \varepsilon_{\mu \nu \varrho \sigma} \mathrm{F}_{\varrho \sigma} ;\left(\mathrm{F}_{\mu \nu}^{*} \quad\right)^{*}=-\mathrm{F}_{\mu \nu} \tag{23}
\end{equation*}
$$

and introduce the quantities ${ }^{(43)}$

$$
\overrightarrow{\mathrm{F}} \equiv \mathrm{i}(\overrightarrow{\mathrm{E}}+\mathrm{i} \overrightarrow{\mathrm{H}}) ; \mathrm{T}_{\mu \nu} \equiv \mathrm{F}_{\mu \nu}-\mathrm{i} \mathrm{~F}_{\mu \nu}^{*} ; \mathrm{J}_{\mu} \equiv \mathrm{j}_{\mu}(\mathrm{s})-\mathrm{i} \mathrm{j}_{\mu}(\mathrm{S}),
$$

then eqs. (22) write

$$
\partial_{\nu} \mathrm{T}_{\mu \nu}=\mathrm{J}_{\mu} ; \quad \mathrm{T}_{\mu \nu}^{\mathrm{x}}=+\mathrm{i} \mathrm{~T}_{\mu \nu} \quad\left[\mathrm{v}^{2} \gtrless \mathrm{c}^{2}\right]
$$

and a connection is met between the electromagnetic duality in eq. (23) and the 'dual correspondence' (see ref.(6)) bradyons \longleftrightarrow tachyons (Sect. 6). Moreover, if we introduce also the complex four-po tential ${ }^{(43)}$
where, following CABIBBO and FERRARI(44),

$$
\mathrm{F}_{\mu \nu} \equiv \mathrm{A}_{\nu / \mu}-\mathrm{A}_{\mu / \nu}-\mathrm{i} \dot{\varepsilon}_{\mu \nu \varrho \sigma} \mathrm{B}_{\sigma / \varrho} ; \quad ; \quad \mathrm{F}_{\mu \nu}^{*} \equiv \mathrm{~B}_{\nu / \mu}-\mathrm{B}_{\mu / \nu}-\mathrm{i} \varepsilon_{\mu \nu \varrho \sigma} \mathrm{A}_{\sigma / \varrho},
$$

then the genaralized Maxwell equations (22') will read ${ }^{(43)}$

$$
\square \mathrm{C}_{\mu}=\mathrm{J}_{\mu} ; \hat{\mathrm{o}}_{\mu} \mathrm{C}_{\mu}=0 . \quad\left[\mathrm{v}^{2} \geqslant \mathrm{c}^{2}\right]
$$

Of course, also eqs. $\left(22^{\prime}\right)$, ($22^{\prime \prime}$) can split into purely real equations. Notice that in our theory A_{μ} is only a Lorentz-vector and not a G-vector, since under GLT's it behaves do as dx/ds; for instance, under a SLT=L:

$$
\mathrm{A}_{\mu} \rightarrow \mathrm{A}_{\mu}^{\prime}=-\mathrm{i} \mathrm{~L}_{\mu \varrho} \mathrm{A}_{\varrho} ; \mathrm{T}_{\mu \nu} \rightarrow \mathrm{T}_{\mu \nu}^{\prime}=-\mathrm{i} \mathrm{~L}_{\mu \varrho} \mathrm{L}_{\nu \sigma} \mathrm{T}_{\varrho \sigma},
$$

and analogously for $\mathrm{F}_{\mu \nu}$ and $\mathrm{A}_{\mu / \nu}$. Finally, the structure of this theory reveals ${ }^{(43)}$, however, that $\mathrm{B}_{\mu}=-\mathrm{L}_{\mu \nu}^{-1} \mathrm{~A}_{\nu}^{\prime}$. For further details or comments, see refs. (43). Here, let us only add that our ver sion of 'extended electromagnetism' predicts existence of both sub- and Super-luminal 'electric' charges, rather than of (subluminal) magnetic monopoles. In other words, following our formulation of ER, we can expect existence of only one (electromagnetic) charge, both sub- and Super-luminal; the latter ones bring into the field equations a contribution analogous to that one expected to co me from magnetic poles (if you want, you may call electric the subluminal charges and magnetic the Superluminal charges: but our 'magnetic charges' are faster-than-light 'electromagnetic' charges) (see ref. (43)). See Fig. 8. On the contrary, for Corben's version of 'extended electromagnetism' see CORBEN: these Proceedings. See also the contribution of TERLETSKY (these Proceedings) on the same topic.

9. - TACHYONS AND BLACK-HOLES. -

Let us pass to consider for a moment General Relativity (GR). Instead of accepting completely general coordinates, however, let us limit in the following way the adoptable coordinates. Given a set of general coordinates (a, b, c, d) and a space point P, we shall associate to them (he (lo cal) observer 0 which is at rest at P with respect to those coordinates. Then, let us require that we can go from ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$) to other general coordinates ($\mathrm{a}^{\prime}, \mathrm{b}^{\prime}, \mathrm{c}^{\prime}, \mathrm{d}^{\prime}$) only if the (local) observer 0^{\prime}, associated to ($a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$) at the same point P, (locally) moves with slower-than-light speed with respect to 0 . Let us remember that, in GR, continuity and double-derivability of our space-time manifold are usually assumed, so that the geodesics never change their type and bradyons (tachyons) always remain bradyons (tachyons). Our previous requirement, however, leads us to abandon the manifold-derivability requirement, at least on some 'special' (not necessarily singular) varieties: so that the geodesic type can change there.

For instance, let us consider the Szekeres -Kruskal (SK) coordinates ${ }^{(45)}$ as a priori constituting two sets of general coordinates for describing the (Schwarzschild) solution of Einstein equations in the case of spherically-symmetric mass-distribution.: Namely - if we write down for sim plicity only the radial and the time coordinates, - let us consider the set of SK coordinates ($u_{>}, \bar{v}_{>}$) defined outside the event horizon (i. e. for $r>2 M ; c=G=1$), and the set of SK coor dinates ($u_{<}, v_{<}$) defined for r $<2 \mathrm{M}$. However, we assume the definition of each set to be so extended to cover the whole spacetime manifold (both outside and inside the event-horizon). It is then immediate to realize that [now in $\mathrm{c}=2 \mathrm{MG}=1$ units]:

$$
\begin{equation*}
v_{<}(1 / r)=f\left[u_{>}(r)\right] ; u_{<}(1 / r)=\mathcal{f}\left[v_{>}(r)\right] \quad[r \geq 1 ; 1 / r \leq 1] \tag{24}
\end{equation*}
$$

where \mathcal{J} is here the operator changing $\mathrm{r} \longrightarrow 1 / \mathrm{r}$ and multipying the whole function by the imaginary unit. The operator \mathcal{Y} is formally identical to the operator entering eq. (14) and effecting the transition from sub- to Super-luminal frames. Incidentally, that operator \mathcal{f} of eq. (14) coincides with the 'trascendent boost' K_{+}(cf. Sect. 6), which from eqs. (15) results to effectuate in two dimen sions the transition ${ }^{(1)}: x \rightarrow x^{\prime}=t ; t \rightarrow t^{\prime}=x$. Moreover, let us notice that, if we define ${ }^{(45)}$

$$
\begin{aligned}
& u_{\|} \equiv \sqrt{|r / 2 M-1|} \cdot \exp (\mathrm{r} / 4 \mathrm{M}) \cdot \cosh (\mathrm{t} / 4 \mathrm{M}) ; \\
& \mathrm{v}_{\|} \equiv \\
& \cdot \sinh (\mathrm{t} / 4 \mathrm{M})
\end{aligned}
$$

so that, for $r>2 M$, one has $u_{>} \equiv u_{\| 1} ; v_{>} \equiv v_{i 1}$, then for $r<2 M$ we get: $u_{\langle } \gtrless i v_{\|} ; v_{\langle } \equiv i u_{\|}$。 Therefore, going from $r>2 M$ to $r<2 M$ (with t fixed) means exchanging the rôle of u, v: namely, $u_{\|} \longrightarrow u^{\prime}=v_{\|} ; v_{\|} \longrightarrow v^{\prime}=u_{\|}$. This shows again the formal identity between going from s to S frames and going from the 'exterior' to the black-hole 'interior'. In ref. (45) it is concluded that the internal SK-coordinates ($u_{<}, v_{<}$) are associated to observers that move faster-than-light relative to the observers associated (at the same point) with the external SK-coordinates ($u,{ }_{y}, u_{\text {}}$). In such a case, we would have a violation of our initial postulate and we should confine ourselves - for instance - to choose everywhere either the 'external' SK-coordinates or the 'internal' ones. The same could be said for other coordinates, as FINKESTEIN's.

With our postulate (and therefore with our limitations), it is easy to realize that a free-falling B outside the event-horizon will become a T inside the horizon, and vice-versa(45). And black-ho les will be classical sources of tachyons.

What we want here to stress is that the same mathematical problems, met in SR for extending LT's to Superluminal frames, seem to be present in GR when going from the exterior to the interior of a 'horizon'. In particular, for non-spherically symmetric mass distributions (when, besi des r ant t, further space-coordinates enter in an essential way), the same difficulties with imaginary units should be met. Again, a useful tool on this respect seems to be the 'catastrophe theo $r y^{\prime}(46)$. Actually, when analysing perturbed Schwarzschild problems, some authors(47) had to sugg gest the existence of coordinate-independent 'singular' surfaces.

10. - VIRTUAL PARTICIJES AND TACHYONS. -

From the four-momentum conservation law, it is immediate to deduce that a body at rest cannot emit any tachyon, unless it lowers its rest-mass by a discrete 'jump'. For instance, a trascendent tachyon (bearing $E=0$, but $|\overrightarrow{\mathrm{p}}|=\mathrm{m}_{0} \mathrm{c}$) cannot be emitted - nor absorbed - by any body in its rest--frame (unless the body rest-mass performes a classical jump to lower values). Let us remember that infinite-speed tachyon emission is completely equivalent to infinite-speed antitachyon absorption.

Moreover, when two moving bodies A, B exchange a trascendent tachyon (i. e., either a trascendent tachyon T is emitted by A and absorbed by B, or equivalently a trascendent antitachyon T is emitted by B and obserbed by A) ${ }^{(13)}$, then we shall observe an elastic interaction of A, B due to an \underline{n} finite-speed transmission of momentum. Since the infinite speed is not Lorentz-invariant, then other observers will deem the same process to be due to exchange of finite-speed tachyons (or antitachyons).

In other words, let us consider two interacting bodies A, B which do not change their rest-mass; then, in the c.m.s., the two bodies appear as exchanging momentum but no energy. Therefore, in the c. m. s. , they can naturally be considered as connected through a trascendent-tachyon exchange (48). By applying the LT's, this fact means that the elestic scatterings can be in general described by me ans of suitable, finite-speed tachyon exchanges $(49,3)$. Even more generally, the tachyon-exchanges can be useful to interpret (at a classical level) also the inelastic interactions between elementary particles.

Let us perform some calculations. A body (or particle) A can emit in its test-frame a tachyon T with rest-mass m only if the rest-mass M_{A} of A jumps to a lower value M_{A}^{\prime} such that $\Delta\left(M_{A}^{2}\right) \equiv$ $\equiv \mathrm{M}_{\mathrm{A}}^{2}-\mathrm{M}_{\mathrm{A}}^{2}=-\mathrm{m}^{2}-2 \mathrm{M}_{\mathrm{A}} \mathrm{E}_{\mathrm{T}} \leq-\overrightarrow{\mathrm{p}}^{2} \leq-\mathrm{m}^{2}$, where $\overrightarrow{\mathrm{p}}$ is the tachyon. 3-impulse and $\mathrm{E}_{\mathrm{T}}=\sqrt{\overrightarrow{\mathrm{p}}^{2}-\mathrm{m}^{2}}$; in fact, it must be

$$
\mathrm{M}_{\mathrm{A}}=\sqrt{\overrightarrow{\mathrm{p}}^{2}-\mathrm{m}^{2}}+\sqrt{\overrightarrow{\mathrm{p}}^{2}+\mathrm{M}_{\mathrm{A}}^{\prime}}
$$

In the infinite-speed case $\left(\mathrm{E}_{\mathrm{T}}=0\right)$, we have

$$
\begin{equation*}
\Delta\left(M_{A}^{2}\right)-m^{2} \tag{25}
\end{equation*}
$$

Let's now consider a second body (or particle) B moving with (subluminal) speed w along the x -axis, and call M_{B} and $\overrightarrow{\mathrm{P}}$ its rest-mass and 3-momentum, respectively. Owing to 4-momentum conservation, B can absorb atachyon T (having rest-mass m and 3 -momentum $\vec{p} / / \overrightarrow{\mathrm{P}}$) only if

$$
\begin{equation*}
|\vec{p}|=\frac{m}{2 M_{B}^{2}}\left[m|\vec{P}|+\sqrt{\left(\overrightarrow{\mathrm{P}}^{2}+M_{B}^{2}\right)\left(m^{2}+4 M_{B}^{2}\right)+M_{B}^{2} \Delta}\right] \tag{26}
\end{equation*}
$$

where now $\Delta \equiv M_{B}^{\prime}{ }^{2}-M_{B}^{\prime}{ }^{2}=2 \mathrm{p}_{\mu} \mathrm{P}^{u}-\mathrm{m}^{2} \geqslant 0$. In the rest-frame of B , i. e. when $\overrightarrow{\mathrm{P}}=0$, we get $|\overrightarrow{\mathrm{p}}|=$ $=\left(m / 2 M_{B}\right) \sqrt{m^{2}+4 M_{B}^{2}+\Delta}$; it means that a particle B at rest absorb only tachyons T endowed with
the speed V such that ($c=1$):

$$
V=1+\sqrt{4 \mathrm{M}_{\mathrm{B}}^{2} /\left(\mathrm{m}^{2}+\Delta\right)},
$$

which tells us again that trascendent tachyons (having any direction whatsoever can be absorbed by B only if eq. (25) is satisfied. Notice that, if two bodies have infinite relative speed, then the product $\mathrm{p}_{\mu} \mathrm{P}^{\mu}$ of their 4-momenta is zero.

Considerations of this kind for elemental particles - alth ought accomplished within the realm of QFT - recently led CORBEN ${ }^{(50)}$ to explain many hadrons as compound states of (other) bradyonic and tachyonic hadrons, thus proposing a Lorentz-covariant 'bootstrap' theory. With regard to refs. (50), let us notice that, if hadron B with rest-mass m_{1} absorbs a tachyon T with rest-mass m_{2} and $\mathrm{m}_{1}>\mathrm{m}_{2}$, then the compound particle is always a bradyon (49). Moreover, if a tachyon is bound by a repulsive central force (so as in the gravitational field generated by a subluminal source, and by extension (51) - in the strong field of a hadron), it reaches minimal (potential) energy when its speed diverges ${ }^{(51)}$, i. e. the fundamental state of the system corresponds to a 'trascendent', periodic motion of the tachyon. Actually, we should remember that a tachyon experiencing a central force can easily perform a harmonic motion (by inverting its direction in the points where it reaches $|\mathrm{V}|=\infty)^{(6,49)}$ or move along closed paths ${ }^{(49)}$. Now, within ER ${ }^{(6)}$ (applied to QFT), COR$\operatorname{BEN}(50)$ derived masses and quantum numbers of a host of baryon and meson 'resonances' by con sidering them as composed of one bradyonic and 1 to 3 tachyonic hadrons. If hadrons, incidental ly, can moreover be considered as 'strong black-holes'(51), the tachyonic constituens can then be emitted in bradyonic form, - when crossing the 'event-horizon' owing e. g. to quantum effects as Hawking's evaporation (51). Besides, CORBEN found for example the mass-differences among the members of various isospin-multiplets by binding Superluminal leptons to suitable (subluminal) hadrons $(50,49)$. By generalizing to the quark level such an approach, the quarks themselves could once more be assumed to be 'strings' or 'loops' made of Superluminal leptons (49) (in such a philosophy, quarks would of course be structures made of 'partons', where partons would be nothing but t.achyonic leptons).

If we insist to invade the field of strong interactions (usually reserved for Q. M.), we easily meet the fact that 'virtual particles' bear in general a negative square-momentum: $t \equiv p^{2} \equiv E^{2}-\vec{p}{ }^{2}<0$. This suggests too that subnuclear particles can interact by exchanging objects classically interpretable as tachyons(49)'. About ten years ago it was verified(49) - within 'one-particle-exchange' mo dels like the peripheral models 'with absorption' - that the hadron 'virtual-clouds' $(6,49,52)$ ough to be associated to Superluminal speeds. Besides, if we want to adopt the ordinary terminology (whe re everthing is related to subluminal frames, so that eq. (17) is naively interpreted by attaching imaginary rest-masses to tachyons), then it is intuitive to consider the hadronic 'resonances' as consisting of bradyons and tachyons(49). In connection with this, it is interesting to study how a non-free bradyon appears to a Superluminal observer, or, in particular, how a tachyon harmonically oscillating (in a frame S) will appear to us.

One should not forget also: (i) that the existence of space-like components always appeared as a natural, and perhaps unavoidable ${ }^{(53)}$, feature of interacting fields: e. g., it has been shown (53) that - if the Fourier transform of a local field vanishes on a domain of space-like vectors in four -momentum space - the field is a generalized free field; (ii) the rôle of 'dual theories', string models, Higgs mechanisms, 'instantons', etc., in the theory of elementary particle physics; (iii) that we have seen (Sect. 8) the essential analogy between the bradyon/tachyon duality and the electric/ma gnetic charge duality, but that new work, in progress, is revealing the connections (e.g.) between suitably modified Dirac strings and the dual strings; (iv) the proposed identifications between quark and magnetic monopole; interesting results have been for example obtained by assuming quarks simply to be quantized (closed) fluxes of magnetic field ${ }^{(54)}$.

Let us go back to eqs. (25), (26). With regard to eq. (26), let us notice that - if $\Delta=0$, or Δ assu mes 'discrete' values - body B can absorb (for every m) only tachyons with a definite (discrete) $\overrightarrow{\mathrm{p}}$; and vice-versa. With regard to the former equation, if $\Delta\left(\mathrm{M}_{\mathrm{A}}^{2}\right)$ assumes only discrete values, then eq. (25) yields a constraint-expression for m (in term of M_{A} and \vec{p}^{2}), like in the case e. g. of the possible process Δ_{33} (1232) \rightarrow p+t in the Δ_{33}-resonance rest-frame; by the way, if we compare this process with the electromagnetic decay of an axcited atom $A^{*} \rightarrow A+\gamma$, we meet again the hypothesis that the strong-field quanta can be (meson) tachyons.

11. - ASTROPHYSICS AND SUPERLUMINAL OBJECTS. -

We already considered (Sect. 8) the Doppler effect for Superluminal cosmological objects. Let us here consider a macro-object C emitting spherical electromagnetic waves. When we see it tra velling with Superluminal, constant speed $\overrightarrow{\mathrm{V}}$, because of the 'distorsion' due to the large relative speed $|\overrightarrow{\mathrm{V}}|>\mathrm{c}$ we shall observe the electromagnetic waves to be internally tangent to an 'enveloping' cone Γ having as axis the motion-line of body B (this cone has nothing to do with Cherenkov: cf. Sect. 8). As we hear a sonic 'boom' when we have the first sound-contact with a (constant speed) supersonic airplane ${ }^{(55)}$, so we shall see an 'optic boom' when we first enter in radio-contact with body C, i. e. when we meet the surface of cone Γ. In fact, when C is seen under the angle α such that (see Fig. 9a):

$$
\begin{equation*}
V \cos \alpha=\mathrm{c} \tag{27}
\end{equation*}
$$

all the radiations emitted by C in a certain interval around its position C_{0} reach us simultaneously. If C_{O} is at cosmological distances, we can expect the 'optic boom' conditions to hold (when they hold) for a long time. Soon after the first optic (or radio) contact, we shall simultaneously receive the light emitted from suitable couples of points, one on the left and one on the right of C_{0}, respectively: We shall thus 'see' the initial body at C_{O} to split in two luminous objects receding along a line from each other with Superluminal (relative) speed U. In the simple case when C moves with almost infinite speed along r (see Fig. 9b), the apparent relative speed of C_{1} and C_{2} in the intial stage is

$$
\begin{equation*}
U \approx \sqrt{\frac{d c}{t}} \propto t^{-\frac{1}{2}} \tag{28}
\end{equation*}
$$

where $d \equiv \overline{O H} \equiv \overline{0 C_{0}}$ and $t=0$ is the instant when 0 sees $C_{1} \equiv C_{2} \equiv C_{0}$.
Such considerations may be interesting e.g. in connection with the 'experimental' fact that about 50% of λ Strong radio-sources reveal a structure apparently interpretable in terms of Superluininal ex pansion(56). Typically, they just appear as consituted of two sources collinearly receding from each other with (apparently) Superluminal relative speed, whilst 'covergent' Superluminal motions have not been observed. It is clear that phenomena of this kind can catch the observer's attention only when the angular separation θ between C_{1} and C_{2} is small, i. e. when C_{1} and C_{2} still appear near the position C_{0}. Then Fig. 9a clarifies that - according to the present working-hypothesis - both the bodies C_{1} and C_{2} should present a Doppler 'blue-shift', since thay are the images of a (unique) approaching body C. However if the Superluminal bodies C exist only at cosmological distances (like in the abovementioned observations $)^{(56)}$, then one has to take account also of the cosmological red-shift, which can mask the initial 'kinematical' blue-shift.

F. Catara,

Thanks are due for useful discussions to M. Baldo, A. O. Barut, P. Caldirola, \P. Castorina, H. C. Corben, V. De Sabbata, R. Mignani, M. Pavsić, G. Ziino, and to all the Partecipants to the International Meeting on 'Tachyons and Related Topics' (Erice, Sept. 1976).

REFERENCES AND NOTES. -

(1) - See e. g. E. Recami and R. Mignani, Rivista Nuovo Cimento, 4 209 $\div 290$, 398 (1974).
(2) - See e. g. L. A. Lugiato and V. Gorini, Journ. Math. Phys. $136 \overline{6} 5$ (1972); V. Gorini, Comm. Math. Phys. 21, 160 (1971); V. Gorini and A. Zecca; Journ. Math. Phys. 11, 2226 (1970) and references therein; V. Berzi and V. Gorini, Journ: Math. Phys. 10, 1518 (1969)
(3) - P. Caldirola and E. Recami, Report INFN/AE-77/4 (1977), to appear in "Boston Studies in the Philosophy of Science".
(4) - W. V. Ignatowski, Phys. Zeits. 21, 972 (1910); P. Franck and H. Rothe, Ann. der Phys. 34, 825 (1911); E. Hahn, Arch. Math. Phys. 21, (1913); among the most recent works see e. g. F. Severi, in Cinquant'anni di Relatività̀, M. Pantaleo Editor (Firenze, 1955);A.Agodi, (unpublished); V. Gorini and A. Zecca, ref. (2); M. Di Jorio, Nuovo Cimento B22, 70 (1974).
(5) - See e.g. P. Caldirola and E. Recami, Report INFN/AE-77/6 (1977), to appear in Proceedings of the 1976 Conference on the Concept of Time (S. Margherita L. , Italy).
(6) - E. Recami and R. Mignani, ref. (1), and references therein.
(7) - To us (in agreement with ref. (1)), "charge" means any additive charge, like electric, magnatic, baryonic, leptonic... charges. Our definition of "charge conjugation" will be therefore different from the usual one.
(8) - E. Recami, in Enciclopedia EST-Mondadori, Annuario 73 (Milano, 1973), p. 85; Scientia 109, 721 (1974); R. Mignani and E. Recami, Lett. Nuovo Cimento 11, 421 (1974); Nuovo Cimento 24A, 438 (1974); Int. Journ. Theor. Phys. 12, 299 (1975); E. Recami and G. Ziino, Nuovo Cimento 33A, 205 (1976); P. Caldirola and E. Recami, refs.(3) and (5).
(9) - E. C. G. Stückelberg, Helv. Phys. Acta 14, 321, 588 (1941); R. P. Feynman, Phys. Rev. 76, 749, 769 (1949). See also O. Klein, Zeits. f $\overline{4}$ Phys. 53, 157 (1929).
(10) - E. Recami and G. Ziino: ref. (8), and references therein; see also M. Pavsicic, Obz. Mat. Fiz. 19, 20 (1972).
(11) - $\overline{\mathrm{M}}$. Pavsićc and E. Recami, Nuovo Cimento 36A, 171 (1976); M. Pavisic, E. Recami and G. Ziino, Lett. Nuovo Cimento 17, 257 (1976); E. Recami, Lett. Nuovo Cimento 18, 501 (1977).
(12) - G. Feinberg, Phys. Rev. 159, 1089 (1967).
(13) - H. Arzeliés, Comp. Rend. Ac. Sc. Paris A279, 535 (1974).
(14) - R. G. Cawley, Ann. of Phys. 54, 132 (1969); E. Recami, Accad. Naz. Lincei Rendic. Sc. 49, 77 (1970).
(15) - O. M. P. Bilaniuk, V. K. Deshpande and E. C. G. Sudarshan, Am. Journ. Phys. 30, 718 (1962). In this paper the "reinterpretation principle"(9) has been applied for the first time to tachyons. See also G. Gregory, Phys. Rev. 125, 2136 (1962).
(16) - H. C. Corben, Nuovo Cimento 29A, 415 (1975), where a passage from the second book of ref. (17) is quoted.
(17) - T. Lucretius Carus, De Rerum Natura, book 4, lines $201 \div 203$, M. T. Cicero Editor (Roma, about 50 B. C.).
(18) - A. Sommerfeld, F. Akad. Wet. Amsterdam Proc. 8, 346 (1904); Narchr. Ges. Wiss. Gb̈ttingen, Feb. 25 (1905), p. 201. See also J. J. Thomson, Phil. Mag. 28, 13 (1889).
(19) - R. C. Tolman, The theory of Relativity of Motion_(Berkeley, Cal. , 1917), p. 54.
(20) - E. Wigner, Ann. of Math. 40, 149 (1939); H. Schmidt, Zeits. Phys. 151, 365, 408 (1958).
(21) - H. Arzeliés, Cinematique Relativiste (1955), p. 217; Dynamique Relativiste, vol. 2, (1958), p. 101; Comp. Rend. 245, 2698 (1957); S. Tanaka, Progr. Theor. Phys. (Kyoto) 24, 171 (1960; Ya. P. Terletsky, Sov. Phys. Dokl. 5, 782 (1960).
(22) - See e. g. E. Recami, Report Milano Univ. IFUM-088/SM (1968); Giornale di Fisica 10, 195 (1968); V. S. Olkhovsky and E. Recami,Kiev Preprint ITF-68/82 (1968); Nuovo Cimento 63A, 814 (1969).
(23) - See E. Recami and R. Mignani, ref. (6). See also the subsequent papers A. Yaccarini, Lett. Nuovo Cimento 9, 354 (1974) and (unpublished); R. Mignani and E. Recami, Lett. Nuovo Cimento 9, 357, 367 (1974); Nūovo Cimento A24, 438 (1974); B21, 210 (1974); Lett. Nuovo Cimento 12, 263 (1975); H. C. Corben, Lett. Nuovo Cimento 11, 533 (1874); Int. Journ. Theor. Phys. 15, 703 (1976); V. De Sabba ta, M. Pavsic and E. Recami, Lett. Nuovo Cimento 19, 441 (1977); R. Mignani and E. Recami, Lett. Nuovo Cimento 13, 589 (1976); Int. Journ. Theor. Phys. 12, 299 (1975); M. Pavsič and E. Recami, Lett. Nuovo Cimento 19, 273 (1977); P. Caldirola and E. Recami, refs. (3) and (5); K.T.Shah Lett. Nuovo Cimento $18,1 \overline{56}$ (1977); E. Recami, Proceedings of the XIII Karpacz Winter School, Vol. $\underline{2}$ (Wroc \ddagger aw, 1976), p. 269. For different theories, see R. Goldoni, Nuovo Cimento A14,

501, 527 (1974); Acta Phys. Austriaca 41, 75, 133 (1975); GRG 6, 103 (1975); F. A. Antippa and A. E. Everett, Phys. Rev. 8, 2352 (1973); A. F. Antippa, Phys. Rev. D11, 724 (1975); A. E. Everett, Phys. Rev. 13, 785, 795 (1976).
(24) - See T. H. White, The Once and Future King (Berkely, Cal., 1939). The same concept was clearly expressed by DEMOCRITUS. We thank H, Honig and G. Schiffrer for such quotations.
(25) - L. Parker, Phys. Rev. 188, 2287 (1969); see alsq E. Recami and R. Mignani, ref.(27).
(26) - V. S. Olkhoviski and E. Recami, Kiev Preprint ITF/70 (1970); Visnik Kievskogo, D. Universitetu Seria Fiziki 11, 58 (1970); Lett. Nuovo Cimento 1, 165 (1971). See also ref. (27).
(27) - E. Recami and R. Mignani, Lett. Nuovo Cimento 4, 144 (1972). See also ref. (28).
(28) - Unpublished work was apparently done also by A. F. Antippa, Preprint UQTR-TH-1 (Univ. de Québec, Trois-Rivieres, 1970); M. Pavsič, The extended Special theory of Relativity, Univ. of Ljubljana, 1971), unpublished; etc. See also K. H. Mariwalla, Am. Journ. Phys. 37, 1281 (1969).
(29) - E. Recami and E. Modica, Lett. Nuovo Cimento 12, 263 (1975).
(30) - See R. Mignani and E. Recami, Lett. Nuovo Cimento 16, 449 (1976); M. Pavsic and E. Recami, Lett. Nuovo Cimento 19, 273 (1977); P. Demers, Can. Journ. Phys. 53, 1687 (1975); E. Cole, Nuovo Cimento A40, $\overline{17} 1$ (1977), and (submitted for publication); P. T. Pappas, (submitted for pub.); G. Ziino, Univ. of Palermo preprint (1977); G. Ramachandran, S. G. Tagare and A. S. Kolashar, Lett. Nuovo C imento 4, 140 (1972); E. Recami and R. Mignani, ref. (27); A. Yaccarini, ref. (23); E. Recami and F. Mignani, Lett. Nuovo Cimento 9, 357 (1974); R. Mignani, Lett. Nuovo Cimento 13, 134 (1975); N. Kalitzin, Multitemporal theory of Relativity (Bulgarian Ac. Sc. , Sofia 1975); A.R, Lee and T. M. Kalotas, Nuovo Cimento B41, 365 (1977); J. D. Edmonds jr., Int. Journ. Theor. Phys. 7, 475 (1973). See also D. Weingarten, Ann. of Phys. 76, 510 (1973); R. VilelaMendesI. N. I. $\bar{C} .$, Lisboa Preprint (1977); V. De Sabbata et al. , ref. (23); R. Mignani and E. Recami, Nuovo Cimento 30A, 533 (1975).
(31) - Relative to us.
(32) - R. Mignani and E. Recami, Lett. Nuovo Cimento 9, 357 (1974); 16, 449 (1976); A. O. Barut, lectures at this Meeting.
(33) - See also R. Mignani and E. Recami, Nuovo Cimento 14A, 169 (1973), 16A, 208 (1973); H. C. Corben, refs. (16), (23).
(34) - See e. g. A. Antippa, Nuovo Cimento A10, 389 (1972).
(35) - See also E. Recami and R. Mignani, Lett. Nuovo Cimento 8, 110 (1973); R. Mignani, E. Recami and U. Lombardo, Lett. Nuovo Cimento 4, 624 (1972); $\overline{\mathrm{V}}$. S. Olkhovsky and E. Recami, Lett. Nuovo Cimento 1, 165 (1971).
(36) - See also L. Parker, ref. (25); D. Leiter, Lett. Nuovo Cimento 1, 395 (1971).
(37) - See also, e. g. M. Camenzind, GRG 1, 71 (1970).
(38) - E. C. G. Sudarshan, in Symposia on Theor. Phys. and Meth. 10, 129 (1970); O. M. Bilaniuk and E. C. G. Sudarshan, Nature 223, 386 (1969); J. A. Parmentola and Yee, Phys. Rev. D4, 1912 (1971); R. G. Root and J. S. Trefil, Lett. Nuovo Cimento 3, 412 (1970); E. Recami, refs. (8); E. Recami and R. Mignani, ref. (6); P. Caldirola \& E. Recami, ref. (3). See also P. L. Csonka, Nucl. Phys. 21B, 436 (1970).
(39) - F. A. E. Pirani, Phys. Rev. D1, 3224 (1970).
(40) - R. Mignani and E. Recami, Lett. Nuovo Cimento, 18, 5 (1977).
(41) - See also R. O. Hettel and T. M. Helliwell, Nuovo Cimento B13, 82 (1973); E. Honig, K. Lake and R. C. Roeder, Phys. Rev. D10, 3155 (1974); A. K. Rachaudhuri, J. Math. Phys. 15, 856 (1974); P. C. Vaidya, Curr. Sci. (India) 40, 651 (1971); R. W. Fuller and J. A. Wheeler, Phys. Rev. 128, 919 (1962).
(42) - R. Mignani and E. Recami, Lett. Nuovo Cimento 7, 388 (1973).
(42a) - H. C. Corben, refs. (16), (23); and these Proceedings.
(43) - R. Mignani and E. Recami, Lett. Nuovo Cimento 9, 367 (1974); 13, 589 (1975); Nuovo Cimento 30A, 533 (1975); E. Recami and R. Mignani: ref. (1); Phys. Letters B62, 41 (1976); Chap. 16 in The Uncertainty Principle and foundations of Q. M. , W. C. Price and S. S. Chissick eds. (Wiley, 1977), p. 321; C. Villi, (private communication).
(44) - N. Cabibbo and E. Ferrari, Nuovo Cimento 23, 1147 (1962). See also G. Arcidiacnono,(priv. comm.).
(45) - V. De Sabbata, M. Pavsic and E. Recami, ref. (23) and references therein. See also G. Cavalleri and G. Spinelli, Lett. Nuovo Cimento 6, 5 (1973).
(46) - See K. T. Shah, ref. (23); Phys. Letters 6 $\overline{3}$ A, 4 (1977); etc.
(47) - See e. g. L. Mysak and G. Szekeres, Can. Journ. Phys. 44, 617 (1966); W. Israel, Phys. Rev. 164, 1776 (1967); A. I.Janis, E. T. Newman and J. Winicour, Phys. Rev. Letters 20, 878 (1968).
(48) - Trascendent-tachyon exchanges can analogously be deemed to be the classical counterparts of "diffractive scatterings", and "pomeron exchange" reactions, besides of some elastic scatterings.
(49) - E. Recami, Milano Univer. Report IFUM-088/S. M. (1968), pages $4 \div 8$; Giornale di Fisica 10, 195 (1969); pages $203 \div 205$; V. S. Olkhovski and E. Recami, Nuovo Cimento A63, 814 (1962), page 822; M. Baldo and E. Recami, Lett. Nuovo Cimento 2, 643 (1969), page 646; R. Mignani and E. Recami, Nuovo Cimento A30, 533 (1975), Section 4, pages $538 \div 539$; Phys. Letters B65, 148 (1976), footnote at page 149; E. Recami and R. Mignani, Phys. Letters B62, 41 (1976), page 43; E. Recami, R. Mignani and G. Ziino, in Recent Development in Relativistic QFT and its Application, vol. 2, (Wrocław , 1977), p. 269; M. Pavsic and E. Recami, Nuovo Cimento A36,(1976) 171, particularly footnotes (17, 21, 32).
(50) - H. C. Corben, Lett. Nuovo Cimento (in press); Preprints (Scarborough Coll., West Hill, On tario; Aug., Sept. and Nov. 1977), to be published; and these Proceedings. Let us remember that, if $\mathrm{p}_{\mu} \mathrm{P}^{\mu}=0$, the two particles (having 4-momenta p_{μ} and P , respectively) possess a divergent relative speed.
(51) - P. Caldirola, M. Pavsic and E. Recami, Report INFN/AE-77/10 (1977), to appear in Nuovo Cimento B, and references therein; P. Castorina and E. Recami, Catania Univ. Preprint PP/ 580 (1977). See also E. Recami and P. Castorina, Lett. Nuovo Cimento 15, 347 (1976); R. Mignani, Lett. Nuovo Cimento 16, 6 (1976).
(52) - See also e. g. E. C. G. Sudarshan, Phys. Rev. D1, 2448 (1970); Ark. Phys. 39, 585 (1969); A. M. Gleeson et al. , Phys. Rev. D6, 807 (1972); E. Van Der Spuy, Phys. Rev. D7, 1106 (1973); C. Jue, Phys. Rev. D8, $17 \overline{57}$ (1973).
(53) - D. Tz. Stoyanov and I. T. Todorov, Journ. Math. Phys. 9, 2146 (1968); A. O. Barut and I. H. Duru, Trieste preprint IC/72/116 (1972); O. N. Greenbērg, Journ. Math. Phys. 3, 859 (1962); G. Dell'Antonio, Journ. Math. Phys. 2, 572 (1972). See also H. Van Dam and E. P. Wigner, Phys. Rev. B138, 1576 (1965); 142, 838 (1966).
(54) - See e. g. M. Jehle, Phys. Rev. D3, 306 (1971); D6, 441 (1972); D11, 2147 (1975; D15, 3227 (1977).
(55) - See e. g. H. Bondi, Relativity and common sense (Garden City N. Y. , 1964).
(56) - See e. g. M. H. Cohen et al., Nature 268, 405 (1977).

NOTE ADDED. -

In this Post Scriptum let us append an 'addendum' to Sect. 7, by concretely showing how the 'RIP' allows one to solve the causality paradoxes (also) for tachyons. Namely, we shall refer to Pirani's 'paradox'(39). Let us consider four observers A, B, C, D having some given velocities in the plane (x, y) with respect to a fifth observer s_{o}. Let us suppose that the four observers are given in advance the instruction to emit a tachyon as soon as they receive a tachyon from another ob server, so that the following chain of events takes place (see Fig. 10). Observer A initiates the ex periment by sending tachyon 1 to B ; observer B immediately emits tachyon 2 towards C; observer C sends tachyon 3 to D, and observer D sends tachyon 4 back to A, with the result that A apparently receives tachyon 4 (event A_{1}) befo re having initiated the experiment ${ }^{(39)}$ by emitting tachyon ${ }^{-}$ 1 (event A_{2}). The sketch of this 'gedanken experiment' is in Fig. 10, where oblique vectors represent the observer velocities relative to s_{0}, and lines parallel to the Cartesi

FIG. 10

an axes represent the tachyons paths. It is important to notice that in Fig. 10 the arrow of each ta chyonic line simply denotes its motion direction with respect to the observer that emitted that par ticular tachyon (but we cannot, of course, mix together observations by different observers). The refore, the figure does not represent the actual description of the process by any observer (onthe contrary, tachyons' and observers' velocities can be chosen in such a way that all tachyons effectively appear to so to move in directions opposite to the ones indicated in the figure 10). Thus, it is necessary to investigate how each observer describes the event-chain.

Following ref. (38), by Parmentola and Yee, let us pass - for this end - to Minkowski space and study the space-time description given e. g. by observer A. From a dynamical point of view, the other observers may be replaced by external force-fields that scatter the tachyons (or by ato ms , able to absorb and emit tachyons).

In Fig. 11 it is clearly shown that the absorption of 4 happens before the emission of 1 . It mi ght seem that one can send signals into the past of A. However, observer A will effectively see an orthodox sequence of events, as follows: Event D consists in the creation of pair 3 and 4 by the external field; tachyon 4 is then absorbed at A_{1}, while 3 is scattered at C (transforming into tachyon 2); event A_{2} is the emission, by A itself, of tachyon 1 that annihilates at B with tachyon 2. Therefore, according to A, one has essen tially an initial pair-creation at D, and a final pair--annihilation at B; and tachyons 1, 4 do not appear ca usally correlated at all. In other words, according to A the emission of 1 does not initiate any chain of even ts that leads to the absorption of 4 , and we are not in the presence of any effect preceding his own cause.

FIG. 11

Analogous, orthodox descriptions (i.e. the descriptions put forth by the remaining observers) may be obtained by Lorentz-trasforming the above description supplied by A. ${ }^{(3,6)}$

As we already mentioned in Sect. 7, the same 'paradox' can be formulated in a strong version (see refs. (3) and (6)) and then solved by following Root and Trefil ${ }^{(38)}$.

