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Foreword

The theory of high energy small-momentum transfert interactions
is far from being completely understood. It has become apparent
that the essential requirement is the fulfilment of the unitarity
in the g and in the & channel. Whereas the $S-channel unitarity
leads to rather intuitive requirements, like the optical theorem,
the t-channel constraints act in a more subtle way- and they
are basically responsible for the introduction of the moving
singularities in the complex plane of the analytically continued
angular momentum, i.e. the Regge poles,
It follows therefore that the major task of the theory
is to put the Regge poles in agreement with the S§S-channel
unitarity. At moderately high energies there are not many
problems, since the large contribution is frepresented by the
single Regge pole exchange, and the unitarity contraints,
involving the exchange of more poles, can be satisfied perturbatively.
And indeed the picture based on Regge poles is more or less satisfactory.
It is at very high energy, probably much higher than those
experimentally reached today, that the dynamics of the leading Regge
pole, the Pomeron, can no longer he treated in a perturbative
way, if the total cross section maintains the present non-
decreasing behaviour,
It appears that there is essentially one theoretical
structure capable to handle the requirements of S and € channel
unitarity, whereas providing an acceptable physical picture, and
it is the Reggeon field theory.
In this contest the Reggeon or, more precisely, the Pomeron
field represents the collective degrees of freedom that are
relevant to the description of the high energy phenomena, more or
less in the same way as a phonon represents a collective behaviour
in a cristal; both descriptions suppose, and ultimately will be

based on, a more fundamental and detailed theory.

Here we review some aspects of the theory which are
relevant for the discussion of the expected distribution of the

produced particles. Our aim will be to provide a general picture
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mostly of the present understanding of the asymptotic regime,
where everything simplifies,

Of course, after the qualitative behaviour is well
established, more phenomenological computation for the
experimental energies will also be necessary. The theory has
not be fully explored yet and some of the results we will
describe are subject to be rediscussed.

We will try to relate the simplest version of the various
theoretical phenomena we are concerned, still keeping the
essential points. In general, except some explicitely stated
or self-evident cases, the calculations not shown in detail
can be easily reproduced as an exercise by the interested
reader,

We have not attempted a review of all the work done in
the field, Rather, we have chosen a number of representative
developments, mainly with a pedagogical criterion, in order
to present a definite comprehensive and self consistent picture.

We apologise with those whosc work has not been related here.



1. Multi Pomeron exchanges, without Pomeron interactions.

The basic ingredient of the theory of the high energy
small transverse momentum interactions is the exchange of the
leading Reggé)pole, the Pomeron, which gives the contribution to

the scattering amplitude
. 1
T= ¢ p's™ (1)

with the normalization & .i- Jm'l'. This exchange is
represented by a graph (ordered in the rapidity 'a = &A l)

RN

The intercept ©{ is around 1. We will consider also the
possibility o > 1 . The multiparticle content of this
contribution is known, according to the multiperipheral dynamics.
In particular the leading term of the multiplicity of the produced

particles is obtained by taking the derivative with respect to &}

M. d‘..l. = C 9‘_& 6‘-1- where € is a constant ,

This is so because if Cr = Zm d".n ;s the generating function

of the multiparticle distribution

S (?,S) = 2 z” Cm (S) J S (4, 9')=GT (2)

can be interpreted in terms of a rescaling by a factor # of the
underling coupling constant of the multiperipheral model, on
which the intercept & depends.,

More in general,

P
M (ma)) o (m=-p+4)>. 64 = C 4 d"‘r Sy . (3)
ol o

A first candidate to a double Pomeron exchange is represented

by the diagram P “
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which defines the variables we need.

Actually, as it is well known, this diagram gives a non
leading contribution at high energy. A quick way of obtaining
this result, as well as of discussing other contributions,
consists in factorizing out the phasé space of the transverse
momentum‘which stays bounded whereas the longitudinal one expands,
and in using the light cone variables in the €M frame. At high
energy we can assume Te=Ke= O yherecas Pw K. =‘\E.j due
to the assumed "softness" of an underlying field theory, typically
a ‘P‘ theory which in the ladder approximation gives the Regge
poles, the invariant masses of the various lines of the diagram
are effectively bounded. Therefore }

(R-f-'R-) is small and therefore R.q. and/or R.

is smallisuppose it is Ra

Then the smallness of the mass of the line 2 gives
o _'L)_ ..!._)
R+_0(K-'O(V.s_

and the same for the line 1 gives -R -z O (% ) = O (%.) s

Therefore we neglect the longitudinal part of the momentum transfert
carried by the Pomeron with respect to the transverse one

( R;fR_ as compared to a transverse squared mass 4ﬂr ). This is
what happens in other situations, too.

Then, in doing the required loop integration we can separately
integrate over R. and Fl+- . The singularities for 12- are at
('m"“‘.‘)/a (from the line l)a those for Rq. are at = f"m:"'")/K-
(from the line 2) and we separately close the conteurs to get:
zero. l'he assumed quickly decreasing behaviour in the masses
of the lines is actually realized, as usual, by mutually cancelling
contributions of singularities at, say for the line 1, 4";l,ﬂﬂf:fn
Therefore, it can be said that the contribution of the elastic
intermediate states is canceled by part of the contribution of
the diffractively produced states.

In order to obtain a non vanishing contribution one has of
course to look for situations in which the singularities for

Fa# (and 12- ) occur on both sides of the integration contour,
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The simplest case in which this happens is the Mandelstam diagram

P

K

where the top looks like

and similarly the bottom.

The "softness!" imply the smallness of

(RuRy), (ReyRe.), (@), (Rev @), (84-Q1), (8,,8)).

Since Q“-i- Q;J‘-P#, Q”and/or Qu. must be large, therefore
G,_ and/or 0,. must be small; but Gy.+t®_=0, therefore &4.

E&i Q‘_ must be small , & 0{4/&) Analogously, Qi‘_ & O("/P‘,).

It follows that

'E‘-_ &« 0 (1/P+).
An identical argument for the bottom gives -R\‘.p‘o("%:). Therefore
we can neglect (R;,,-R;-) in the Pomeron exchange, -RH- on the
top integrations, Ri. in the bottom integrations. This result
is quite general; we can factorize the graph into two halves:
the top, where only the ‘R;_ are relevant, the bottom, where the
Ru‘q. are relevant . Now) the calculation for the top is completely

independent from the calculation of the bottom. It gives

JQ..- 4 dQ:- 4

Sd Qn‘

. L (':i)m).t ' i(P-t-'QnJ“,

I have assumed the outgoing longitudinal momentum equal to the
incoming one, and written for the Pomeron exchange the factorized

form of

(e, (@), )

BoTTOM

(@ Q.- m'rit) ((Q,=R)A. = mUig) ) @y ql-mit) (2R Mi)



The singularities in Qq_ are at Cm“"“)/@” and CﬂM‘-i‘*)/(—O,*-P,).

Therefore in order to obtain a non vanishing contribution we

must have '@ & R 42 < B. . The result for the top is

then:

F; 4 e &
- (2 ITJ\ 'Sn J Q«- (P : b {Ql*)°" (Pf"ou)_

'a‘*)m‘-.-a“,m‘ ' (P'l' “@u]"lﬂ"—i- Qu.wt

(To be more precise we should have distinguished the various
transverse masses, which here are indicated with the same
symbol m* ),

Let us note that:
1. The result obtained correspond to substituting one of the two
propagators in o] and one of the two propagators in Q’ (which
one does not matter) with their discontinuities.,
2. But for the Regge factors fau-)da (F-'r-sh)t the top is given as
an integral over an integrand without singularities. In this sense
"it is purely real',
3. Therefore taking cthe discontinuity of the whole graph does not
alter numerically the top or the bottom. This is also explicitly
seem from the point 1, since the top (and bottom) can already
be expressed as a discontinuity ., We can proceed analogously
for the case of the exchange of more Pomerons, Since the (Pomeron)
P-lines carry a flow of (-) component of momentum in the top part,
that one can be in turn split into two halves as far as the
integration over the (Q_)'s is concerned, separated by the
points when the P- lines are attached. As an example one can
easily verify that in the case of the graph

4
3

X :
4

the integration over {ﬁh_))[a%_) gives a non vanishing result
only if Qq., Q‘,, Qy,, R¢, > © (they are such that

P= = Q. )I' it can be done by turning round the poles/
giving the sum of two terms which can be expressed as the
result of putting 1 and 2 on the mass shell and the result of
putting 3 on the mass shell, The resulting function of the

variables has no singularities in the integration range; a
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reason for that is that, for instance,3 cannot be on the mass
shell together with 1 and 2.

These results can be generalized for the case of the
exchange of 8 -Pomerons ( of course, no more than one Pomeron

can be attached to the same line):

P
Q

k

X VI
Each Pomeron gives a factor (sq) = (Q‘Hp' qa-) s

The contribution to the scattering amplitude 1  is:

Tt [ [ (T, ) ste-da. rien)

L[ (T, o) sdorrm] o

4
(I T
(t (s ,'})
Z7
-re must then be integrated over the transverse phase space. F(Q+)

.
We can compare with an eikonal model, where ~T = =435 g

is a homogeneous function ef the @;‘.; of degree .2(4-8)) which is
purely real, that is, without singularities in the integration
range: it can be represented as a sum over all the (meaningful)
ways of taking the discontinuity of the top (or the bottom)(*).
Let us consider the discontinuity of the whole graph. To

simplify the notation, let us call
ol
—1 = "l“i (Q+'q_) (5)

an uncut Pomeron (P_) contribution. An uncut P_ exchange is
then:
'q"—l. (-1)':'.1

The discontinuity of a Pomeron is twice the immaginary part,

(#) This can be verified explicitly for the case in which the
blobs are a sum of tree diagrams, To get the general case one
would probably have Lo specify more the "softness" of the theory.

29¢&
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therefore it is equal to
23 Ty= + 2% (6)

which we call;a cut Pomeron contribution. It represents(with a factor

2s) the sum over all the production cross section of the
multiperipheral model. The imaginary part of 72 is given by

% ® (the sum of all the contribution obtained cutting the
graph). A cut divides the graph in a left and a right part,
and a cut can pass through none, one or several Pomeron lines.
A cut Pomeron line corresponds to a multiperipheral production,
several cut Pomeron lines at once are often called to correspond
to a polyperipheral production. Out of the ; - lines, let us
call f; the cut ones, eL the oneg which belong to the left
part, £, the ones of the right part(an element of the left
part is the complex conjugate of the corresponding element of
the right part, but here everything is real). Of course, the

P -lines cannot be all (=) or all (+). The top and the bottom
are, for what said, already equal to their discontinuity for
every configuration (+), (-~) and (€ ) of the Pomerons. Thereforé
they are unaffected by the cutting operation (or, put in another
way, they are real factors and therefore they can be taken out
of the imaginary part).

If we indicate symbolically
-n; w® -tC £E¥2e
,

we get, by our rules,

'} ,df s é. e
%) (-v). . (7
Im T = & &;e..:..e biele -1 ey

where Z’ means that we exclude e+=e and e_'é-
The fact that the sum gives back the correct result for 'a“n—ﬁ
is a check of the consistency of the theory with the $§ -channel
unitarity. The rules we have discussed so far are the famous AGK
cutting rules,

It is not completely clear how much these rules are model
dependent; in particular the exchange of two Pomerons has been
discussed in detail, both in the Feynman graph approach and in

¢
Jd -
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the dual model3), giving the above results.

We will see anyhow that a nice feature of those rules is the
fact that they can be generalized to hold also in the more complex
case in which the Pomerons interact each other. They are in fact
almost unique in that respect(that is, within some general assumption
we will discuss later on), and they guarantee the fulfilment of one
of the s-channel requirements, i,e. the optical theorem.

One of the immediate, and most celebrated, consequences of the
cutting rule concerns the evaluation of the multiplicity moments

Mps (m(n-a)u(m-pra)>,

Clearly, looking at the eq.s (2) and (3), we see that in
order to get the moments we have to take the derivatives with
respect to the intercept of the cut Pomeron, at fixed intercept
of the uncut ones., This is so because only the cut Pomerons
represent the sum over the cross sections for the production of
different number of particles -~ the uncut Pomerong represent the
absorption effects, necessary to restore the unitarity. We can
graphically represent a derivative with a cross over a P ~line.
Therefore a contribution to m, will be represented by a graph
in which a number of cut Pomerons carry one or more cross, with
any number M of cut and uncut Pomerons without crosses. For a

fixed M»¢® we have to sum over different possibilities and

we get:
m, m. m
2 2l (-1) (1) BV= o
Myt M = M, = /m‘,!ﬂl\_.lm'{ (8)

because now the sum is unrestricted - it is not Z_’ like before -
since there is at least one extra crossed cut Pomeron besides the
M. considered.

This is the AGK cancellation: only graphs in which all the
exchanged Pomeron are cut and crossed contribute to the inclusive

distribution. For instance
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-d—t-din = g =4 {%(-)
da:dﬂb E

Here we have put a cross at a given rapidity-we are considering

a3
Mueller diagrams; remember that Mp By = Sd‘h""fﬂp d S/QU;"""&P'

ap
<15
[}

Clearly, what we have seen is relevant for high energies, where
threshold effects can be neglected. For instance, in eq. (4)
in order that we can speak of a Pomeron exchange the relative
invariant energy s.,,,Q“,q‘_ must be sufficiently high
(say, Sa55 qd" ). The energy momentum conservation factors,
S(P.;—ZQ*).S(K.-Z‘]-) prevent the &
P- exchange to be meaningful if e is too high at fixed total
invariant energy § ;3 this threshold effect also distorts the
energy dependence of the whole graph?)
We will assume in the following that for the values of
we are interested in, graphg with too high 2 give a negligible
contribution.
Let us summarize the rules obtained so far:
since or graphs are in general non planar, it is convenient to
think of them as three dimensional structures. In order to compute
the discontinuity of a graph we immagine a cut plane through
the graph. A Pomeron can appear as cut, when it lies in the
cut plane; or it can be at the right of the plane and then it
is called a (+) Pomeron or at the left and than it is a (=) One(%%z
The cut Pomerons represent the sum over the cross section
of the multiperipherally (without rapidity graphs) produced
particles. More than one Pomeron can be cut at once, but

the Pomerons cannot be all (+) or all (-=).

(#)The second equation does not hold in general in the case of
Pomeron interactions.

(#3#%)A pomeron cannot be partially cut.
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A (+) or a (=) Pomeron gives a contribution (-"“' a
cut Pomeron gives a contribution 2,7 .

It is convenient to redefine the uncut contribution to
be M : then we insert an l: in the top and the bottom
for each uncut P in our graph. It is also convenient to
redefine the cut contribution to be "z , too: then we insert
a \r2-. in the top and the bottom,

The cut Pa lines will be represented by double lines ! ” [
the uncut ones by a wavy line: g i

By defining an overall factor in such a way that

H E -4
= = = Su (9)

(and therefore the sum of the cut diagrams is equal to _!_ JmT) ()
we can formulate our cutting rules in terms of the top and

bottom vertices as follows:

. M"

m - uncubt

M. m, My

Mot M M= N
The uncut top vertex of the r.h.s. of the above graphical eqguation
is the one of the theory for the amplitude (as opposed to the theory
for the discontinuity of the amplitude); it contains a factor (L)M
which,combined with the bottom, gives the c-ﬂ.,)m of the alternating

[
series of the 'r -exchanges.

e —— f 8 (e-1)
(¥) A @-Pomeron exchange contributes a factor (=1)+ S

to -1/ dwm | . It can be understood in general by observing
that the top is in the form of

S T.S'fdﬁu 8) . ﬁlda-) 'ﬁ{da'_) S(R-Z&)S(ZQ.).8(ZQL). (Pemomimakin)

where the denominators are bounded functions of Q.,Q- or

Q. Q. . Therefore changing variables to M‘., Qir Q;_ and
to M';",Qh Q_;_‘ (which are bounded) and rescaling Qi =V5 X¢,
with P 'y , we get the result.

Se
( i}
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2. Pomeron interactions and Reggeon Field Theory.

Let us consider the usual one f—exchange in more detail

—(1=0a) Y —t'K?Y
E = —F,@,_-e BiY) =

KB -0 ) B’y

e 8= . J44PrD)

anm'Y

(11)

We have written explicitly the dependence on the transverse
momentum _EJ. and introduced the impact parameter _?_ s which is
the conjugated variable, in the sense of the Fourier transfor'm)of
_’S_.L . In the phase space (rapidity-impact parameter) the one

;4 ~exchange is represented as the propagation of a signal from
the position of the first particle b_: e, p=©° to the
position of the second particle _b_-_-g ) 5=Y . The propagator
—Pcﬁlb) is a Green function, it obeys the non homogeneous

equation
(_% Staese) + 0 G ) Pls )< -StySC ), (1)

This equation describes the propagation of a field ¢ s in a

dynamical system corresponding to the action

S = (dydh (-d"dyp -2 L VP - (1-%)d%P ) =
= S"‘“-’dz-b- (-"dy - ¥, ). (13)

+-
Cb is a canonical conjugated variable with respect to ¢ ¢ We

*l
may take ¢(h}to be the creation operator of a Pomeron and Cb(ﬁ)

to be the annihilation at the point b « Their commutator is

therefore

16
]

i

O

(14)

(), (k) W
[ bt &tn]

9
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The one P -exchange is given by the vacuum expectation value

LB PNB) = -RiPuolb(B) e bTa)les

where Ho - Sd‘b )A‘to '

A multi T -exchange is similarly described by

<" (4B e R (P ) (Top). (Betom)  (15)

m!

This term is generated through derivatives by

_pp.P(VB) LRDIB) SHY Lipdle
Z"(P'IPL)=-QPP =<ole £ € P 1>
(16)

1)

As it is well known the Pomerons can interact among themselves.
TechniCally, this amounts to the addition of an interaction term to
the hamiltonian density . The simplest form is a 3P interaction

described by the hamiltonian

M = &' VT VP + (4-co) ' +£2_§. (¢’ +). 1)

Let us remark the antihermitean nature of the interaction, related
to the absorptive nature of the correction represented by the
insertion of an extra P -line in a graph. For instance, the
O(g‘) correction to the Pomeron propagator, corresponding to the

diagram

has the opposite sign as the unperturbed propagator z-

The 3? interaction we have considered is known to be
different from zero (see discussion below), buth other multi-P
interactions may also play a role. In the following we will
essentially concerned with the pure 32 case, which is the one

most explored.
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Similar things can be repeated for the more complex world
of the uncut Pomerons. We have three kind. of fields: the (+)
fields, the (-) fields and the cut fields. Their free propagator,
and therefore their respective free hamiltonians, are the same,
As far as interactions are concerned, the (+) Pomerons can
interact among themselves and the (=) Pomerons also among
themselves with an interaction which must be equal to the one
of the uncut theory. This is clear since the (~) Pomerons, for
instance, are just the ordinary uncut Pomerons to the left of the
cut plane(%} .

Beside that, there are the interactions of the (+),(=) with
the cut ones, and of the cut ones among themselves,

There is an interaction (cut) (+)(=) which represents the
diffractive production of a large mass and is the one experimentally

observed in the inclusive distribution corresponding to the well

known diagram:

t=) t+)
Cuat)

This interaction must be real, and indeed instance the graph

- ) adds with a + sign to

since they both represents cross sections of physical processes.
Finally, there is a real (cut)®(cut) (cut) interaction,
which represents an inelastic rescattering of the particles
represented by the cut Pomeron with production of new multi
peripheral states, and the imaginary (cut)=p(cut) (+) and

(cut)=p(cut) (-) interactions,representing absorption corrections

(%) since the (+) “P's represent a complex conjurated dynamics
with respect to the (=)-P's , the 3@P interaction should be
the negative of the 3(=)P one. We can however redefine the sign
of the (-) field to have a symmetrical picture.

[ criep
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to the inelastic processes. Therefore the interaction hamiltonian
will be of the form:

Mg =4 Z 30 (Hh b+ B i) oo

2

where the non-zero elements of %‘JK are:

%+++= g---= 3 gcc.t . ge e gA

De-s= Dex-~ T‘:‘ 5 Feee = g a2

Let us notice that themvertex (cut) —» Cb; d>J " Vg,‘J' is such
that VCs'j - -&: (1"3) K ‘-8 ) Mg Dbeing the number of cut
fields among 4 and d , provided Ga= 82=89,= 8.

This would give for Vﬁfé the same rule which we have seen to
hold for the coupling of the Pomerons with the external particles
(see fig-eq.10) Indeed we can formally bend upward the external
particle lines in fig. 10 to recostruct the symbol for the cut
propagator, remembering that the cut plane stays in the middle,
In genera%’we ask the validity of the optical theorem in the
cut theory. At the level of one P- exchange, this requires the
cut and uncut complete propagators to be the same. The one loop

correction gives (besides a factor which is the same for both)
2 ? z L3
- 43A -2 8 - =

A more involved relation comes,S)in the next step, from the
comparison of the vertex corrections in the cut and uncut
theory, which should also be proportional. This set of equations

give two solutions
o) 82=3,°38,=9 ) @.= 3 gr-"ﬁ,g g’.ﬁg‘

Of course, we consider the solution a), which is the one
consistent with our rules for the particle-Pomerons coupling.
In order to insure the fulfilment of the optical theorem

in general, we have then to be sure that the rules we have
established for the cutting of a M -Pomeron exchange diagram

in the case of no interaction still hold when the interactions
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are present, This amounts to require that the top of the m -
Pomeron exchange diagram still satisfies the equality of fig.(10)
even when the blob contains Pomeron interactions, Both sides
of the equality of fig.(10) are modified in the way respectively

shown here

Me

g - L. (T) " (19)
I {”t‘i d—z () 19

where we indicate with {'M.‘l, {’hu‘} a set of M, P-lines of the
kind (+) etc with  m +M_rma=m, M, +N-tMN.=N | Calling

(’mt" “”u’) . c”' m)
qc the Green function of the cut theory and q" the
Green function of the uncut one,the equality of fig.(10)

clearly remains satisfied, as in fig.(19), if

(e t‘) m , M)
G O AN

'M,.,'!'m-* M‘ = ﬂ

with an extra obvious constraint, that if the MM are all (+) or
all (-) also the m must be all (+) or all (-) respectively.

It can be showng)with an ingenious trick, that indeed eq.(20)

is satisfied (for the solution a)), together with the constraint.
Those relations can be put in compact form by introducing the

generating functional of the Green functions:

Zc (@n '6") g’c) %Hg-) 3:) &

= = et et )™ M M
(il Emad oma oM Tp e 5E Ml m!
. 8)™ e PP )™
Z“(h,x)=§2;_ s Gu Tl (21)
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The relations are:

Zc (&a ©,9; g-r‘g-i g‘)= zlﬂ. (ﬁ'}g*')
Z.(°¢.0°, 3+,3-03) =2, (£;3-)

Z i ( & &, E'é) 8+) 3_)—;%(3,,@_-3,))'-‘2'& (& 33)- (22)

As an example, let us check the optical theorem taking the
coupling of Mm.,M4,Me Pomerons to the top particle line

] » m_ . % “t
to be '_‘vf.c" . £'_‘_‘_2 B M 9 in agreement with the eq.(10)

(@-’3 for the bottom line), Then

\ - e (M'.iwl.) W, .
cd D Te ot ' 8)7 )Ry ) g™
s 2 T R N

!
where Z means not all M or o, equal to zero nor all
of the kind (+) or all of the kind (-). With the previous

formulae we get

-4 3mT=_4 (Z,(40)-1-2 (2..(8:9)-2))=(But43)-1)

which is the optical theorem, We have used the fact that

Z“ (.6.} D)'i; i.e.

4ol(ct>*)elo> =<o|($)"ep =0, for Lm3A4,
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3. Applications.

a) As a first illustration we will consider the multiplicity

6,7 1
distribution }.n the "critical" theory, which is by definition
the case in which the renormalized intercept ©o{ is equal to 1.
In this case it is convenient to work in the phase space (&, _E;)
where E is the Laplace transform variable with respect to the

~ b i 4

rapidity Y (4(5]:_80011'& ﬁ(\’)) and KL is the transverse momentum.

The inverse free propagator is then
(4,4) ) e
I = E- (4-o) =ol' kg

therefore & =1-J , in terms of the analytically continued &=
-channel angular momentum J . In the critical theory, for the

complete (inverse) propagator we have

r,tm) (E=0, 5*=a)= 2.

The dominant contribution to the cross sections (total or inclusive)
comes from the most singular diagram (for E£-29, X, 0 ), which
is the 1 - £ exchange, or (I"""") i . As explained before,
in order to obtain the inclusive distribution we take the
derivatives with respect to ©{¢ at y=4 of the complete
propagator for a 1- cut r -exchange:_)P ( - u.u)‘i

L(sem)= 2" P c (23)
where # is a constant and L. means Laplace transform. A(re-)

normalization is necessary in order to eliminate a divergence |

’D tt,oﬁ- _
-3&‘,.(':) = -1/ .

d,_-l
E=F _
Then an equation follows from the rescaling of E and & (for

de=d=ol=-4d =0 we do not have "mass" in the propagator);

this is a well known renormalization group equation
P -1
p) ) ( CLI ) =0 (24)
— +4) + -+ i 3 = .
We have considered that the dimensionality in E is

JP r|- - E'P"‘
[5,‘_& ¢ = s ”L and r are called anomalous dimensions.

:
AR
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GZ determines the behaviour of the total X-section

,_'t.-l"’ E-t-n-"z) = Gy qu.

The behaviour of the multiplicities can be read from the

equation (24) !}

Y . ~(14y) = Pl4+p) ”+ plA+y)
{;:P r: )~ E $ MP“T o ‘r‘ v

r is easily computed by taking E=E in the equation (24) for P"i-'
Fi (kT Ly
Esz {ﬁ‘_rcl = (2+?‘+'Z)E,_

In terms of radiative corrections

N o= !

E - {4"‘(.)1'2:.

since the normalization is z‘_(é')-o and the definition of z

o 1 92
is "I_,E—. E_E-JE- s we get

Now 2. is in general a bubble: 2 - @
c L]

For any number of Pomeron exchanged the derivative with respect
to 0(; gives zero, as we have seen in sect., L, Therefore ‘L:—f1
(the g- expansion at order g gives ?af/g ;3 more refined
estimates give 'z ~ .24).

Of course, the interesting thing is that Z does not depend
on any measured quantity, it is a pure number determined by the
structure of the theory (even if it may be difficult to compute).
An analysis of the same kind7shows that also the correlation
coefficients, defined as -Cp= m%ﬁd‘?only depend on the structure
of the theory. So far only the first order f= expansion has been
computed for Cq and Cy (giving 1 + 1/4 and 1 + 7/4
respectively), It is necessary to extend the application of
alternative techniques also to the evaluation of those fundamental

outputs of the critical theory.

- ¥
|
[~
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b) Triple Regge region for the inclusive distribution in a
theory in which the intercept is &> 1.The basic diagram for

this region is

(25)
This defines the coupling constant of the theory. Indeed we
have (m-d't) (V-y) M
3
ds _ 4 .g.3.p 2 e
d»\,d!: 16T
T
with p=zel-4 3 and 1=2‘H . Roughly this gives
-1 6 -2
for M = 0.06 and (z8 cev , ( ple™ = 100 GeV “),

g ¢ 05 qu/’.’

Of course the task is to compute corrections like the ones

illustrated in the figure:

‘) =) ) .I"L Il’ tlt,') - o (26)
Let us define the 3P region in the inclusive distribution as
the configuration in which there is production of a cluster
of particles more or less uniformely distributed covering the
rapidity range from zero to "L .

In our theory this corresponds to having at least one cut
Pomeron between 4=© and ¥4="% and no cut Pomerons between

bg’[ and 4 = Y . This calculation has been attemptedsgo
far in a drastically approximated scheme:

1) neglecting the internal Pomeron loops (e.g. neglecting the
graph of fig. 26 i) but retaining the one of fig.20 ii).
2) in the zero slope limit d' =0,

The two approximations are not so bad after all sincegy
calling P a typical coupling of a Pomeron to an external line,
the statement 1) corresponds to retain powers of ﬁg compared
to powers of gz (at very high energy however the loops will
anyhow dominate) and the statement 2) corresponds to neglect
the slope of the Pomeron trajectory as compared to the slope of
the Regge residue (also this approximation will not be valid at

very high energy). Moreover this calculation will give an idea
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of the general trend of the theory.

The approximation 1) technically means to compute the
Pomeron Green functions, before attaching them to the external
particle lines, in the tree graph approximation. As it is well

known, the tree graphs are generated by the functional

Z(tufa) s“' -=¢¢L"3¢6?

where S,_' is the action, given in eq.(13)and (18), evaluated over

the classical solutions, i.e. the solutions of the field differential

equations
S _ 5.5
St 5 '
In our case the sources term I and 3 have to be

interpreted as

:_f-d# = l‘ﬁ(cb.) 'f‘dDu-))la‘Y
Sodt= plidl, idL+ EdN )0

since at Y= ¥V there is a sink for the (+) and (-) fields and
at 4= O there is a source for the fields (+), (=) and (cut).

As for the hamiltonian, it is the one of the cut theory, see
eq.(18), with the extra prescription that for !)m the interactions
involving the cut field are zero, since there cannot be sink or
sources of the cut ficld for YD . The inclusive distribution

(at fixed impact parameter) is then proportional to

-Jo -7
_. ~ (Q)C# , (%) & f"r)-es‘ , (27)

The factor in front of the esponential represents the basic
graph of fig.(25), while the development of the exponential
generates the other corrections in the tree approximation,

At the end one should attach the Green functions to the particle
line. As it stands eq. (27) represents the case in which the
coupling of £-romerons follow a Poisson distribution law.

To cover other cases one has to perform proper convolutions with

respect to the sources.

01«
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The key pointg)of the theory is that for large rapidities
the fields must have values near the fixed points of the
Hamiltonian.

In the probleé)%f the uncut fields it is convenient to
redefine 4) = -l'p) ¢+g -a'q ; then , only real terms appear in
the '"classical "equations of motion. P and q play the role
of the usual canonically conjugated variables and the hamintonian
is

H=pPq - £ pPalp+a).

The fixed points are at
(4=0P=0), (A=%5 , P=35 ) (9= % p=c)i (4=0 P=}).

Actually only the last two are attractive in the limit of large
rapidities. Which one of the two is reached depends on the value
for the sources) in any case one of the two, 4 or ? s is zero,
The classical action, calculated for the solutions attracted by
the fixed points, takes a finite value for Y-» &0,

A similar situation also occurs for the more involved case
of the cut theor-yg.) The relevant attractive fixed points are
such that or ¢i' =0 or ¢‘+.= ¢2 . Actually this means
that in the expression of eq.(27) , or 4>C (“1)-—? o

% t i oTR) o
or cbm(“l), d%)(’{) 20 , like - o2 €

for (Y-z)’ M =» oo . The classical action in the same
limit remains finite. The conclusion is that the triple Regge
configuration gives a negligible contribution to the total
X=section, d‘/d? actually going to zero in this region.
This is due of course to the absorptive effects, which
will become more and more important with the growth of the
rapidity graps. In view of the smallness of the triple Pomeron
coupling constant the asymptotic result is expected to appear
at rapidity wvalues far behond the reach of the present research.
We will see that this kind of picture is common to the wvarious
more or less approximate schemes which investigate the Pomeron

theory for of > 1. Everything at the end turns out to be determined
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by the fixed points, and this is the mechanism which tames the
apparent too violent behaviour of the theory.

Reassuring as it is, this ultimate pattern will likely set in
at astronomycal energies. Therefore, the necessary strategy will
be to turn to numerical evaluations relevant for experimental

energies, once completely clarified the general qualitative

behaviour,

c) Inclusive distribution - and diffractive production of

many particles - in a theory with intercept o> 1.
In order to discuss this topic is necessary to reviewlu’ll)

very briefly the main points of the uncut theory for &% 1.

The multi E exchange Green functions are generated by

: Bt
Z,(piP)= <ole"(3‘¢e_‘”"e‘—*f‘n¢ o> (29

P, is centered at impact parameter § ) Pq. is centered at
impact parameter 0. We have already written the hamiltonian;
1)

1
let us now add to it a specially chosen quartic term. The

reason for this is that, first of all, nobody knows the

structure of the interaction besides the trilinear term, so we
have some freedom, and,second,this extraterm semplifies
enormously the following discussion, It actually plays the role
of regularizing the theory; as matter of fact the theory can
also be treated without it. Since however at the present stage
we only can deal with models which more or less approximately

reproduce the theory, let us consider the simplest of them.

Qur hamiltonian is

Hae St (¢ 9890 ¢+ |§ (F089)+ 1 64)

If  p3el-12 9/ (and we will stick to this case), H
can be transformed by a similarity transformation into a honest

hermitian semipositive definite hamiltonian:

6% (d'b ¢ He—?@;—s-hb¢= S‘JtL (J'Q¢TE¢ . %_ ¢+(¢+_ ;_;") (¢+¥)¢)

The spectrum of }1 is therefore real positive. It is easy to

find out the lowest eigenstates, for which the eigenvalue is
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zero,They are:

right eigenstates

e (atu g

lo, o> a 10> — & & loy

left eigenstates

% (dd
Z0| J S

<"+',| = Lol - <ole

/

Notice that € ~s| is not the hermitean conjugate of |,

The normalization is
{olo>= 4 dPal Vo> = -4 £ FoloD> = ol > =0,

Let us now consider the continuous é space replaced by a
lattice whose intersite distance is d . Then Sﬂ'k b ZJ‘

and redefining d) to be ¢/¢L we find the one site ham:u,ltonlan HS
to be

pdd e L (s $4Y)+ A4S

Again, the lowest state are :

2t ot

right: A = |0g) ) l‘f;):,{ - CP where ¢p = LA 10:>,
2 ; o
left: X=<0;f, (A=) - CF where P = (o€ ' "
Now = ot
<Os10s>=4 , <LAl4>= -1+ € uéT

For simplicity we will consider g so small to neglect & ‘E‘!-
The intersite distance &. plays the role of a cut-off, which
somehow the theory must provide,

The other, more crucial, approximation is to truncate 10)
the Hilbert space to be the space spanned by [0 and g2,
We remember that we are indeed interested in the large Y
behaviour of the theory, where the relevant states will be
those of minimal energy.

The completeness is then 1045 €Oy ] =455 ¢ A3 | = ﬂ .

Accordingly, we represent the ¢ and ¢+ operators in this basis as
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pott (D U)smgpr Hhug()emigda

and the total hamiltonian reduces to its intersite part

H - %:dl g %: (QI*-S“ 'P! -+ QI-Pl*E;)

where the sites nearest to §¥ are £¢_§; i

The lowest eigenstates of H ) with E= O, are, as seen,

the collective states

oy = & 1!_ and 1Yoy = -,;I-Ar - Ircr-[ ’
Since
M
PX=o (P)¢=¢
and
M —
@7A=x-¢ Q¢=o
the expression of 2, in the limit of large Y (at fixed E ),
when the only contributing intermediate states are 18 and %D,
becomes
_P, %.‘ -P“ 2p0l
Z, o 4-(1-¢ Jolgme"PF)
Y-boo
Therefore at high energy in this model the matter appears as
grey (remember T = ¢S (4-2) Vi
10
If we look at the model in more detail, )r'eading the
expression for Z“ given in eq.(28) from right to left, we find 1;}1;,\1[—j
first, the operator Q!,a acts on the state [0 = 1;I'Lr .

This gives

(a5.0) Wl = T4 - feo TA

We may say that the second state at the r.h.s. has an impurity

? at the site r.—_—a .The point is now that the evolution

-HY
operator £ expands the impurity, whose edges travel with a
velocity U= duix'd /‘a‘ . Since there is at the end
the action of the operator 'Pl.'. , winich annihilates x,‘!'! )

we obtain a result different from zero only if the impurity has

succeeded in traveling up to E . Therefore the maximal l_B_'-\-\rY

0 1<



28

and the cross section turns out to be

6~ YT
It is now easy to consider in this model the diffractive
production of a number of particleé‘.?)since by definition the
diffractive production is mediated by the Pomeron exchange,
each produced particle is represented by the insertion of the

operator, in our basis,
-+ o ° 3 '
c Cb Cb = ¢! ( o 4) =2 ')

-Qfl‘d‘/a!
(actually ¢'~ & € , therefore we would have obtained
zero with the previous expressions for ¢ and ¢+-. We have to
suppose that € compensates the small factor).

The action of fL is
Qu Ty=e T =T -4, T e

Therefore 2 T on an impurity configuration gives back
the impurity m-i-nus the impurity with a hole at the position rf .
Since under the action of the evolution operator the impurit-;
expands over l » the hole will be filled, unless another
produced particle -n-‘:or the final -P_! operator is acting at
the same site before—too much rapidity is elapsed. If that
were not the case, we would get zero. As a result, if the
particles are produced at (&i,%9,), (b, Yo ) o) (R) Y )
we get a non zero cross section only if (ke- 28-4)
and the rapidity intervals (Y¢-Ye¢-y) are bounded (it turns
out, they are exponentially bounded). Therefore strictly
speaking there is asymptotically no diffractive procluction,%)
in the model, This process gives a negligible contribution to
the total Xssection.,

The inclusive distribution in the cut theory with e » 1

1
is a little bit more complex to discusss,) but the relevant

phenomena are always the same.

(#) The diffractive production of a bunch of particles at the ends
of the total rapidity interval is of course allowed.

0 |
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It appears useful to redefine

CH..):".CP-: Ch-, --if Ct’f_="¢3
i ey ok L
d>r+)= "'42 d%-: - “.Q ¢:=- ¢:

and a scalar product ﬁ ? =€.42'f‘\¢,-“3 b5 » where &.
is a ¢ -number source or it is the field $£.

In order to simplify the description of the essential
points, we will take a somewhat axiomatic point of view,
defining as a model for our theory the one in which the right-

eigenstates with zero energy eigenvalue are, at one site,
X =19 f e i$1|°‘> ¢, = € ‘i Y105

“ia (Badend)

f=e > %
2

The left-eigenstates are z-_- <o), @"(o)e 9 b, etc,
The point is that, by using the truncated Hilbert space spanned
by %, Y. s we get, at one site,
- 6‘ é —HY -!'3
Z. ($;9)=<¢ole " "€ ‘e *°7

and we can easily verify, by using a matrix representation for

10> = ¢o| e-f"?_e-!§,°>

d); and Cb‘- analogous to the one introduced before, that

indeed satisfies the basic relations of eq. (22)

(The form of the states has actually been obtained by some

variational technique from the cut Pomeron hamiltonian).

The total hamiltonian, intersite interactions included,

now reads (with d-‘j = t%i ﬁJ')
He s’ 32 (Bpp By Apfrg).

The eigenstates of zero energy are the five collective states

"Tx Tl-‘r . In order to get the moments of the inclusive
) ¢
¢ "0 g T
distribution one has to insert the operator
i ¥ v A T 2
C¢°4>,_=Cﬁ§:d A;ﬁ,a—: C%d R.
The basic property of R is that

0 1cC

249 (B3 -1 &
P e =
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R X, 4, =0 R@y=2(-%),

Let us now follow,like before, the evolution of our system
using the rapidity as a time variable. At the beginning
the action of ﬂ!=° on ]'TX"
creates at the site =0 impurities of the kind ¢,,¢, ande.
Every one of those impurities expands over 1_ with the same
velocity, equal to the one of the uncut theory. Consider a
first insertion of the operator -Rq‘ : it gives a non zero
result only if the impurities have expanded up to I1 . Ri.
annihilates everything but Cfs . The result is (2 times) the
same impurity state Q’.’ - minus a state which contains a site
Cﬁ inside the impurity fﬁ .

It can be seen that ¢ expands over tﬁ » at the same
rate at which @ expands over x .

We will then see an expanding CG impurity with a growing

(& hole inside.
%5 % @ %
§8 0 L »d T LewafFL.

The next insertion -Ra. gives zero if it hits the outside A
region, otherwise it can:

a) hit the position of the ¢, hole. In this case the state
with the hole is annihilated and the state without hole is
trasformed into a CP3 -minus a state with a ¢g hole at _‘d:'.,.

b) hit a ¢, position. It results the situation of the figure
&, P *,
§ R (Lo T )= L= -
‘—J ] L +m-l__

Suppose that next it comes the end, that is the sandwich with
TI Kd" e'!'ﬂha . It is only ﬁg which is relevant, so
that let us consider -T;l: X.t ﬁ;!=£ !

AhiX=o Xt@ez XAhR=1"E .

In the case a) of before it is clear that A; must hit a

o i
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position within the expanded hole ‘Pﬁ » giving in the matrix
element 7 . In the case b) of before we have the situation

represented in the figure

Ay
‘
+ _J | S
+ —’ l -
(the blobs representing the expanded % holes). It is clear
that the result is s @ only if A4 hits in a position in
which two expanded holes overlap.
Cases a) and b) can be summarized requiring that: first,
the insertions of Rl, ,Rh must occur at positions within the

expanded &fy , it does not matter if within or not possible

CP" holes; seccond, the final operator ﬁlf—! must occur

at a position within the overlapping of the expanded ¥, holes,
previously created by the operators R . This result can be
easily generalized and we get for the £- particles inclusive
distribution -T-”)(E ¥; biy:) at fixed impact parameter B

of the colliding particles and k¢ of the observed ones
te) g
T (B, ki) = (ww) ct J..’I3(#‘3}’-_@})9(0'(55,)'-(!'b;')l)

when W and W are constants =ethe coupling to the incoming

particle lines.

The multiplicity moments ‘Vle are then obtained:

g e)
ormp = [ '8 TTath, oy, T
[
By rescaling biw= Vi, BaVx, Yem P& , we get My e r’.

For the multiplicity M4 this result is easily understood.Due

to the AGK mechanism the only graph is

I

where the blobs contain P —interactions., As a consequence of

those interactions the field evolves both at the top and the
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bottom towards the fixed point. The result is essentially non

zero if the two regions in the impact parameter space where

the field has reached the fixed point,coming from the top site

¥z

or the bottom site _cno , overlap with the impact

parameter of the observed particle.
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