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ABSTRACT. - Given a Schwarzschild black-hole, we choose as reference-frame the frames o
at rest with respect to the Schwarschild metric. Inthese locally non-inertial frames, a free fall-
ing body is shown to reach the speed of light on the horizon and then to travel faster-than-light
inside the horizon. The usual Szekeres-kruskal (SK) coordinates represent themselves frames
that (with respect to the frames ¢ ) travel at subluminal speed outside, at luminal speed on and
at Superluminal speed inside the horizon (so that SK frames always describe any free falling bo-
dv as a standard, slower-than-light object). At last, black-holes are shown to be possible sour-
ces of tachyons. Notice that the philosophy adopted in thiszpaper is not the standard one of gene-
ral relativity, but rather the one of "Extended Relativity”( 0),

1. - BLACK-HOLES.
{1 + 5)

It is well known that Einstein eqs. , in the case of a spherically symmetric mass
distribution, allow for the exact solution in vacuum known as Schwarzschild solution(6), The
Schwarzschild metric reads (¢ =1 ):

(1) ds2 = (1 - EGTM ) g . (1 « 2GrM )~1 dr'2 - r'2 (d92 + sinz adp3),
which, in Cartesian coordinates, wr‘ites(z) (G=c=1; X, F ct):
2 Bogeve 1. EM ) 42 N W sy PNETOE S N
(2) ds” = g”v dx ™ dx (1 - = )de- aij + T ,_.2 }dxldx | [1,_] = 1,2.3] :

For r —3> m, egs. (1), (2) yield the flat metric.

The sphere with the Laplace-Schwarzchild r'adiust'?)

(3) R = 2M (e=G=1)
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in the horizon(l':_s)of the spherically-symmetric mass M, Incidentally, any black-hole solution can
be considered a "soliton'! if we call soliton any confined-in-space solution of non-linear equations'?

Moreover, notice that the use of Schwarzschild coordinates does not play any essential réle in this work.

{m)Let us suppese mass M to have a radius r < R. It is quite noticeable that solutign (1)-(2)
holds"  for both r{2M and r >2M. Sometime it is claimed that the coefficient g of dt™ must be
positive since often egs, (1, 2) are derived by putting goo = €¥; but that position and that procedure
are by no means necessary, and one can rather derive eqs. (1, 2) by following ref, (10).

At this point, eq. (1) or rather eq. (2) tells us that, for ry < r< 2M, we should deal (after
having e. g. chosen the metric signature (+ ---))with negatlve ds?. To avoid this task, in the sphe
rically symmetric cases usually recourse is made (in two dlfnﬂlsmns ) to the (unique) analytic and
locally inextendible extension of the Schwarzschild solution which is called Szekeres-Kru-
skal extension(2:4, 5] _ 5o to have a positive ds? both for r > 2M and for r £ 2M.

: ; : : ; 12+16
In other words, in order to escape dealing with space-like intervals, they usually( )
introduce two different sets of Szekeres-Kruskal coordinates, one for r> 2M and one for r { 2M

r 1/2 r i
nly, % s 1) T, empibtee i Cosh (o N
@ M an am Yo e
_ i 1/2 El ;
v-v)={2M 1) exp(4M)Smh(4M),
and
%, 1 2 o t
usu = (- 2M / . exp (m). Sinh (m);
(5) r 1/2 for r< 2M,

vzvg g (1 -=—

2M}

T t
. Tera A h i
exp(4M ) . Cos (4M 1
Let us notice that the change of coordinates (4) —> (5) means a change of reference-frame when
passing from the ''ouside'' to the "inside" region., We shall see the physical meaning of such a change
of observers. Since now, let us however observe that egs. (4, 5) mean interchanging the réles of u and
v when going inside the horizon, in the sense that:

(&) u, (r) = ivy (r)

vy (r) = iug(r),

so that:

2 2
. 2 5 B 8 2

-u, = —(v> -us)=u, - v

Or rather, by defining

—
o, = \ | i ll exp (r/4M), Cosh (t/4M);
——
w = fv'l 5%[- < 1| . exp (r/4M). Sinh (t/4M),
one gets:
Ju,\ (r) = VH (r); uy e = ny bl
\V<(I‘) = u“ (r); ek = Wy (2.

Moreover, the following one-to-one correspondence can be set (R = 2MG):

§U( (R/r) &= v, (r/R);

(7) { ( /R 15 RfepLl )y
,rv<(R/r)1'—) u, (r/R),
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in the sense that(lrf) (with units such ¢ = 2MG = 1):

(1/r) = [ us (r)]
(8) (e il A T

(1/r) =5 w (I')]

where ¥ is the operator changing r — 1/r and multiplying the whole function by ﬂil J)magmary
unit. Similar considerations could be made for other coordinates, as Finkelstein's

In order to conclude this Section about the standard view on black-holes, let us remember
that usually the horizon is considered only a coordinate dependent singularity (i. e. it is not consi-
dered a true singularity), since with coordinates egs. (4)-(5) for r = 2M we have no divergences.
What we can say is that, e, g. for a free falling observer, the Riemann tensor components do not
diverge on the horizon

2. - BLACK-HOLE INTERIOR, AND KINEMATICS OF A FREE FALLING BODY,

Let us now considerthe speed of afree fallingbody in thefield of a black-hole as a function
of its distance r from the center of the mass-distribution (that for simplicity wa shall assume to
be practically .concentrated in the space-coordinate origin 0), The speed dr/dt determined by the
time t of a distant observer has no direct significance, as shown in ref. (18a). Let us therefore
choose frames measuring a speed with direct physical meamng{ :the best and simplest ones ap-
pear to be those frames f at rest (r, 8, p constant) at the point which the particle is passing, and
with the time coordinate orthogonal to the hyperplane of the space-coordinates.

Let us describe the speed V = dx/dv of the free falling body - for radial motion - from the
frames f, following ref. (182). Remember that, for instance, it is just the speed V that enters into
the expression for the locally measured energy of the particle, E = E e éo m c V2/c2) 1/2
Notice that x # x1, since x,r are (orthogonal) coordinates in the 1oca1 frame " f. In ref (18b) it is
shown that '

1/2
y B ]yt
W& Vi 1- 2M/r ’

where Feo is the radius at which the fall beings (i. e. dr/dt=0).

In the case whenr, = @ (particle droppded from rest at r = w), then eq. (9) reduces to
dx [2M 2 2M
10 VE == 5 j=——= & § Z== =G=1 P
(10) = i : (e=G= 1)

which coincides with the classical, Newtonian expression, By the way, eq. (10) allows setting a
one-to-one coerSpondence(*) between speed-sqares V“ and radia r:

(11) v 2 s { &=2MG =1 )

where V=0&— r=o; V=14>r=1;V =omé—r = 0. Why we wrote also the last corres-
pondence (i. e, we considered also r¢ 1 and v> 1) will be soon clear,

From eq. (9) it is immediate to derive that, for r —3» 2M, speed V —> c¢. We can then
ask ourselves which speed the free-falling body will have for r¢ 2M. Since eq. (9) seems to
predict faster-than-light-speeds' ™ inside the horizon, let us check more carefully such a
prediction,

(%) When the spherically symmetric mass-distribution is concentrated in the origin 0.



In order to see what happens when crossing the event-horizon, let us consider the following.
Our previos frames f belong to the class 3 of the frames ¢ introduced e. g. by Saltzman & Saltzman
(see ref, 21) (who called them frames S), where frames ¢ are defined as the coordinate-systems
at rest with respect to the Schwarzschild metric, or rather as the coordinate-systems in which the
Schwarzschild metric tensor is time-independent :

ag
(12) —L* =
a x0
3
Class 2 is therefore nothing but the set of the local, stationary observers( ) o ; incidentally, we
can call £ also the set of transformations that relate the o-frames one to the other, Let us remem
ber that the total energy E for a test-particle motion is a constant of the motion only in o -frames;

moreover, the very value of E is c¢-invariant (i, e, is the same in any G—frames( i 22)With dTldL),

For simplicity, let us confine ourselves to the o-frames with time element dT grthgggnal
to the hyperplan? %,f) the space elements dL.It can be shown(21, 23) that the quantities dT? and dL2
are ¢ -invariant

g .8 . I o
(13) ar2 (Bl L yantialed (1,5, = 1,2,3);
€00 4
i
dx
2 Eoi
(14) i T .. A
00 gDO

Actually, since
Ly . ar
ofoo ds o\ oo dg; -~

it is enough to normalize gy, to 1 spatial infinity for getting that gg,o is a o-invariant quantity, in the
sense that:

(15) g, (X'i) S (xi)

. . L
where xl and x‘l = x'l(x ) are space-coordinates (of the same point) in any two g¢-frames,
Therefore, also the test-particle speed

L _ dx

dT =~ dv
is g¢-invariant. From egs. (13) and (14) it followe of course that

2 2 2
(16) dT” - dL” = ds°,

so that the proper-time element and energy E can be written:

(17) dsz = d'ﬂz (1- Vz),‘
m YE
(18) g = —2f "o
2
1-V
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Bl



Eqs. (17,18) yield:
2
(19) szl_(_d_g.)_=1_(

To 12
E
(dn>

) o0

The ¢-invariant speed of light, for mD/E —30, is Vl =1

For our purposes, it is interesting to observe that, for any free-falling body, we get again
(so as from eq. (9)) that:

(20) V=31 for: =5 0 li.e,ae v —> 2M)

2
and again, eq.(19) seems to predict faster-than-light speeds for negative ds™, i, e. for negative g
(or, further, for r { 2M). Notice that our starting philt)sojphy is not the standard one of "General
Relativity'!, but rather the one of "Extended Relativity'!2?),

2
3. - ABOUT TACHYONS (AND NEGATIVE ds )

Due to the predictions got from eqs. (9) and (19), let us spend a few words on the possibility
of introducing tachyons in relativity.

20
9 9 Let us start from the usual postulate( )

of (Special) Relativity, without assuming however
Nda . ]

20
Due to the fact that the light-speed is still invariant in the "'extended relativity”( ), given a
certain frame s_ the class (I) of the inertial frames can be exhaustively divided into the two non-in-
tersecting classes (s), (S) of subluminal (U24c?) frames, respectively.

The (Generalized) Lorentz transformations (GLT) connecting two frames I

12 have been shown
to be linear and such to preserve the quadratic forms excpet for the spintzo*

1’

o % .8

xllu’ !1’ :‘_"%"vxp'x'V:_ds (£91-. U§ ¢ ).

(21) ds'zeg;w X

In fact, a usual object (bradyon) with respect to a frame s will appear as a tachyonic object with
respect to any frame S, and vice-versa; so that under a Superluminal Lorentz transformation (SLT) ,
time-like quantities must transform into space-like quantities, and vice-versa, By the way, the
""equivalence principle' still holds since (even when in presence of both bradyons, B and tachyons, T),
any particle will follow the same trajectory in a given gravitational field independently of its proper-
-mass: such a trajectory depending only on the particle (B or T) four-momentum .

If we confine ourselves for simplicity to Special Relativity, then the group G of GLT's is (whe-
(rle"I\:v);e( é"g);?resent by the 4 x4 matrices A< the usual, proper, orthochronous Lorentz transformations

(22) G E (A<) U (-11<) U(+a) U (-14),
where A4 =4 (32< 1) and A=A (,82( 1), with " f= Ule. In other words, G is the extension(25)e of
the usuai, proper, orthoéhronous Lorentz group & by the "discrete'(26) operations CPT and K :

(22bis) G = s{¥, CPT K)

; 27
where K is the ogerator( ) changing § —>1/8 and multiplying the whole transformation by the

imaginary unit. Eqgs. (22), (22bis) tell us that the SLT's are connected to the (both orthochronous
and non-orthochronous) LT's along the same direction as follows 20 g

(23) SLT(1/3)=K|:LT(B)]; (52<1,-1/f12>1) ;

(B
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The last equation should be compared with eq. (8); and eq. 411) should be remembered, It is clear
that the problem of considering objects inside horizon (in general relativity) is mathematically ana-
logous to the problem of considering space-like objects (in Special relativity).

4. - CROSSING THE EVENT-HORIZON. PHYSICAL MEANING OF SZEKERES-KRUSKAL
COORDINATES. -

Since in Extended Relativity (ER)(zo)a meaning was given (with the signature (+ ---)) also
to negative dsz, - as recently clarified e, g. in ref. (24), - now we are ready to interpret the
Sxhwarzschild geometry for r ¢ 2M and what egs. (9), (19) predict about the speed inside the hori-
zon of a free falling body. First remember, however, that ER, through its "Third Postulate" (the
"Reinterpretation Principle''), allows eliminating any motion backwards in time and any negative
energy by reinterpreting them in terms of antiobjects (moving with positive energy forwards in ti-
me): so that no causality problem was left open

We easily see from eq. (2) that (in the frames o) if the Schwarzschild metric describes a
bradyon (tachyon) for r» 2M, then it describes a tachyon (bradyon) for r { 2M.

Moreover (with respect to the frames o) egs, (9), (19) yield that a free falling body with ar-
bitrary initial radial-speed reaches the light-speed for r = 2M and then travels faster-than-light(20)
for r < 2M, It should be noted that even if V—> ¢ when r —3 2M, the total energy E is finite, since

B 0 for r = 2M.

Let us remember that (in the frames o) the total energ E is a constant of the motion for
a free falling body, For r ¢ 2M, in eq. (18) both g , and 1 - V“ become negative, and E remains
real; if you like, you could e, g. write:

o | goJ

(18bis) L A (for r § 2M) .
i 11-v2|

In the case of free fall from infinity, eq. (10) forwards a result iden:ical tothe Newtonian one
(except that in general relativity V = 1 can be got only at the horizon)t*)

To explain(zl) way in the framesono divergent energies are associated with light-speed, let
us observe, that frames ¢ are locally inertial only when their origin is at asympotic distances. In
other words, the frames o considered by us are locally-flat, but not locally inertial . This fact ex-
plains way the frames o on the horizon would observe V=c but finite energies, provided that one ta-
kes into account that inertial (free falling) frames would themselves reach just the speed of light
on the horizon with respect to the frames g, which are at rest relative to the horizon(*),

In fact, it should be explicity remembered that the well-known (G-covariant) expressmn(zo)
(c2-V'2)/ c22(c2-V2)(c2-U2)/(c2-UV)2, which holds when U ||V, in the limiting case V=c - e —>¢
and U=c - & — ¢, with ¢ =pe, yields:

1 -@

I =
(24) v e~ Tn

2

(%) To satisfy our intuition (with regard to the assertion that V=c for r=2M), let us remember that,
even with a (fixed) point-like charge, we would get that any (point-like) test-charge reaches the
light speed at (and uniquely at) the "Coulomb singularity'. (In that case, a way to avoid infinities
was considering the finite dimensions 29)of elementar ZY particles).

Moreover, if we remember the correspondence V°4—1/r in eq. (11), then:we might exclude
the frames o with their origin just on the horizon, so as we excluded in ER the "luminal'(U = c)
frames as ''unphysical'(20),

(+) If you want, you might say that in such non-inertial (N, I, ) frames the formulas of SR can be
forced to hold only when redeflnmg mN = g m . Moreover, notice that the free-falling

bodies do not become ''photons'' on the horizdn, even if their speed is V=c there,

&t
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which a priori forwards any possible real value; so that, for instance, if €= 0, then V! —3 ¢; but
if @ # 0 (as in our hypothesis) then lim V' # c. For example, if 2= 1, then V' —3 0.

We have also to add that, when assuming existence of both bradyons (= slower-than-light
particles) and tachyons, it is meaningfull to consider also what happens inside the horizon, since
we can get informations from the interior part of the horizon (see also the following),

We want now to explain why it is usually maintained that bradyons ramain bradyons both in-
side and on the horizon. In fact, e,g. from the definitions eqs.(4),(5 of the Szekeres-Kruskal coordina-
tes(14+16) it is immediate to get that:

(1) egs. (4) define a time-coordinate v and a space (radial)-coordinate u which constitu :
that, with respect to frames ¢, is moving with slower-than-light speed for r > 2M and with the
light-speed for r = 2M. In fact, let us consider(21) a fixed point of the Szekeres-Kruskal frame,

so that:
du
= P
(25) i 0.

Let us then consider, in general, a particle moving radially with respect to frameso ; its ra-
dial speed Vp = V is given by eq. (9), which can be also written

2M -1 dr
' g ] —
(9" V o= = at
. ’ . (14+186) .
on the contrary, its speed relative to the (u, v) coordinates of Szekeres-Kruskal (SK) is,

by straightforward calculations,

du,  V-w

(28) E;) = e

wi-v)/u>

For simplicity, let us choose any radial direction (@ = constant; $ = constant, in both ¢ frames
and SK frames); then(zl) eq. (26) assumes just the form of the velocity composition law of SR.
The relative speed w of the Szekeres-Kruskal (SK) observer with respect to frames ¢ is how-
ever a function of the coordinated u,, vy (or of the Schwarzschild time t) 21 . Actually, if we
insert eq. (26) into eq. (25), we get that any fixed point of the (u> , vy ) frames has the o-in-
variant (radial)-speed

(25bis) V=ws AL (—t—)
is w = U Tanh v

and thatl WI.“_ 1. It this formalization, the sign minus means inward speeds;

(2

—

egs. (5) define a time-coordinate v and a space (radial)-coordinate u, which constitute a frame
that, with respect to the frame defined by egs. (4), moves with the light-speed for r=2M and with
faster-than-light speed for r < 2M.

This is immediately got by comparing eqs. (8) with eqgs. (23), For instance, we can proceed
as follows. Let us considere for simplicity a free-falling body starting from infinity and moving
radially, Then eq.(11) holds, and eqs. (8) can be rewritten (c=2MG=1):

2 2
§v<(1/V)=K_u wh] g

(8bis) 9 9 (Ve e l/V2> 02)
u((l/V ) = K[V (v ):I:

\

where we wrote now K instead of & since the exchange r — 1/r transformed into the exchange
vZ— I/V2 (compare eq, (22bi_s))(27). Briefly, eqs. (8bis) can be written (cf. eqgs. (23)in ref. (20)).

(27) v

s

=Ku>,' u‘,\=Kv> i

ot
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20, 24
where Kisthe tipical(so’ 27) Superluminal Lorentz transforma‘tion(as ’S%IO)WH in eq, (23). In other

words, eq. (23)tells us that K transforms ohbservations made by subluminal frames into observa-
tions by Superluminal frames. Thus eq. (23) tells us that the "internal" (r«2M) SK-frames move
with faster-than-light-speed with respect to the "external" (r%2M) SK-frames(and therefore with
respect to frames ¢ ),

It is than clear why with SK coordinates, one describes always bradyons. In fact, as al-
ready mentioned, a tachyon (with respect to an s frames) appears as a bradyon to any Super-
luminal frame S. Analogously, if we pass from s frames to S frames when passing from consi-
dering bradyons to considering tachyons, then even in SR we shall always to describe bradyons
(see refs. 20, 24),

(27,30) (30)

Of course, the transformation K operates in two dimensions the transitions

x(f)—> t(1/B);

(28) t LB —5 =(1/8).

5. - CONCLUSIONS,

Therefore, the so-called "exchange of the réles of time-coordinate and radial-coordinate",
that we meet in eqs. (26), merely means - according to Ext ended Relativity - that (with respect to
framesa) any ''outside'’ bradyon become a tachyon when crossing the horizon and any "outside'' ta-
chyon become a bradyon when crossing the horizon, )

) .
We don't need, therefore, speaking about any collapse of the Schwarzschild geometry( ) in-
side the horizon. On the contrary (with respect to frameso ) we shall interpret those usual consi-
derations (see e, g. ref. (5)) in the following way ( B = bradyon; T = tachyon):

a) any infalling B transforms into a T for r<2M; tachyons T, of course, must go on moving along
their radial direction towards 0 (since tachyons by definition are never at rest). Moreover,"in-
side"tachyons (or antitachyons) T cannot(5) come out from the horizon;

b) any infalling T transforms into B for r< 2M; such inside bradyons (or anti-bradyons) B can come
out from the horizon, then transforming again into T's, Therefore, black-holes are expected to
radiate out tachyons (with respect to frames g ).

However, with respect to any internal SK frame, we can say that:

¢) any inside bradyon B cannot(5) go beyond the horizon;
d) any inside tachyon T can go beyond the horizon (transforming into a B, if we goonrefering every-
thing to the initial, internal SK frame).

To sum up, for frames ¢ the horizon behaves as a (out — in) one-way-membrane with
respect to outside B's only. .Conversely, for internal SK frames, the horizon behaves as a non-
-permeable membrane only for inside B's. The same holds for the respective anti-particles (where
antiparticles have been shown since long to be equivalent to ''negative energy particles moving back-
ward in time'')(31,28),

All what precedes demonstrates that the event-horizon is, in a sense, a ''singular'' surface,
even if there no divergence of Rieman tensor is met. This agrees with what suggested about exis-
tence of coordinate-independent "singular surfaces'' e. g. in refs. (32) when considering perturbed
Schwarzschild problems, We have shown that crossing the horizon transforms B == T (and pho-
thons #&=* photons): such a crossing, therefore, can be considered mathematically as a "catastro-
phe'(24), In our theory, the type of the geodetics does change on the horizon.

Moreover, it is known that - considering a 'classical" space-time coupled to quantum mecha-
nical matter-field - Hawking(33) showed that the particle-creations near the event-horizon cause
position and concept of horizon to be somewhat indeterminate; namely, the wave-packets (pjn) and
(an) provide a complete basis for the solutions of the wave-equation everywhere except on the
horizon. In any case, the horizon actually behaves as an irregular surface in space-time,

Let us conclude with the following observation, Firstly, let us remember that what we said

)
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in this paper holds not only in two dimensions, but also in four-dimensions (compare e. g. egs. (2)
and folls. ). On the contrary, it is easy to interpret within Exended Relativity 20) the meaning ot
the spin-change ds2 — - ds? only in two-dimensions, due to the difficulty in interpreting the im-
maginary units(34‘ 24) entering some SLT-components.

However, we have shown that exactly the same problems will be met when considering non-
-radial motion or even more non-spherical black-holes. We think, therefore, that once solved
such problems in general relativity, also the problems of Extendend (Special) Relativity will be
solved too. In fact, our feeling is that we have not yet well understood the réle of space and time
(see ref. 35), so that possibly a complex space would be useful(35),

The authors acknowledge some discussion with A, Agodi, C. Berritta, P, Castorina, R.
Mignani and K. T, Shah, ‘
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