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ABSTR.-\CT: In this paper we propose a new use of the complex angular momentum representation 
of the scattering amplitude. In particular we show that it is not possible to connect with a pole - tra
jectory a sequence of compound state resonances . Furthermore the high energy backward peaks in 
the elastic channel are analysed, and we propose a model of the mechanism responsible for these 
backward enhancements . The mathematical formalism of this model, which employs the poles of 
the S - matrix in the complex angular momentum plane, is investigated in detail. Finally, in order 
to test the theory, a phenomenological analysis is performed; the results that we obtain are in 
agreement with the theory. 

RIASSCXTO: In questo lavoro proponiamo un nu~vo uso della rappresentazione dellrampiezza di dif
fusione nel piano del momento angolare complesso. Dimostriamo in primo luogo che una traiettoria 
non puo interpolare piu risonanze nucleari, dovute aHa formazione di nuclei composti nel senso di 
Bohr. Studiamo poi i picchi ::l grandi angoli nel canale elastica ad alta energia, e proponiamo un mo
dello del meccanismo responsabile di questi picchi all'inclietro_ Analizziamo in dettaglio il formali
sma matematico di questo madella, che usa i poli della matrice S nel piano del momento angolare 
complesso. Infine viene sviluppata una analisi fenomenologica i cui risuUati sono in accordo con la 
teoria. 

I. - DiTROD1,;CTIO:,\ 

In the last fifteen years many papers have been devoted to the analytical properties of the S - m~ 
trix, which was analysed both in the complex momentum and in the complex angular momentum plane. 
Humblet and Rosenfeld(l) formulated a theory of nuclear reactions, based on the analytical proper
ties of the S - matrix in the complex momentum plane. On the other hand, the complex angular mo
mentum plane (or J. -plane) polology has been essentially used in order to introduce the so called 
I'pol e _ trajectories", which should connect various bound states and resonances. However this theory 
is mainly employed in its relativistic extension, where olle tr·ieoS to get information from the trajecto-
17 on the asymptotic behaviour of the scattering amplitude in the crossed channel. For this reason 
it has been repeated many times that the A-plane polology can provide an alternative and instruc
tive description in atomic and nuclear physics (and more generally in the direct channel), but has 
not led here to any new physical applications (Ref. (2), pag. 99). 

In the present paper \ve intend to criticize th i s doctrine and to change significantly the use, whi
ch is generally done, of the analytical properties of the S - matrix in the A- plane. In this connect
ion we shall prove, first of all, that the compound state resonances cannot be interpolated by a tra 
jectory_ On the other hand, in Sect. 3 we shall illustrate several phenomenological examples of e
lastic scattering, where the angular distribution presents a forward diffractive peak and also a stron
gly oScillatory enhancement in the backward direction. In this sense we can properly speak of back-
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ward peaks. The main purpose of this paper is to show that this phenomenon can be appropriately 
pictured by a model, based on the A-plane polology. from which one can derive a formula that pro
perly fits these backwards angular distributions . 

lVlany authors(3, 4, 5) explain the backward peaks through a resonance mechanism, which , in 
any case , is quite different from the usual Breit- Wigner model; in fact in these backward enhance 
ments the effect is peripheral and does not involve the formation of a compound state. F r om this 
point of view Ol;€ could argue that the Breit - \Vigner formalism and the). -plane polology are comple 
mental, in t he sense that the former theory is appropriate for t.he compound - state resonances, 
while the latter is proper for the peripheral ones. In any case we want to stress that the compound 
state or Breit-Wigner resonances cannot be connected by an interpolation in the complex angul ar 
momentum plane; on the other hand, the backward peak does not cease to exist abruptly , but it va 
nishes toward higher energies. For this reason the phenomenon is correctly fitted by a continurusly 
rising pole - trajectory (s ee Sect. 5). 

The use of the ). -plane polology in the direct channel (with particular attention to nuclear phy 
sics) was tried long time ago(6); then it was pursued on by many authors (see for instance refs.(3, 
13)) in variou s directions. Hov.·ever we t hink that many points remained obscure and need a dee
per theoretical analysis. Moreover, up to now, a phenomenological evidence for a trajectory has not 
yet been obtained. In this work we have tried to fill the gaps of the t heory. The paper is organized 
as follows. Sec t. 2 is devoted to the compound state resonances and, in particular. to the proof t h at 
these cannot be interpolated by a trajectory. In Sect. 3 we illustrate a model of the mechan ism wh ich 
produces the backward peaks; star ting from this model we derive the Sommerfeld poles(:t), which fit 
these backward enhancements. In the same Section the asymmet r y in the angular distrib ution is 
discussed in detail, as well as the il"ajectories of the Sommerfel d poles in t h e complex angu
lar momentum plane . In Section 4 we tackle the question of the Coulomb interference and a n alyse 
the classes of potentials that admit the Watson - Sommerfeld transform (an essential ingredient of 
the model illustrated in Sect. 3). Finally , in Sect. 5, we present a phenomenological a nalysis and gi 
ve an example of a moving - pole trajectory. 

2. - COMPOUND STATE RESONANCES. 

Let us write the usual partial - wave expansion for two colliding particles, which are supposed 
to be spinless, neutral and distInguishable, i. e. 

<Xl 
fiE,,}) = I fa (2 1 + 1) a j (k) Pj(cos ~ ) (1) 

where al (k) = (e 2i d l (k ) -1 )/ 2 i k. The terms can be continued analytically i n to the complex). - plane anI 
the sum in (1) can be converted into an integral over a counterclockwise contour C in the right h alf -
planeenclosingthereal ;.-axis, as follows(13); 

+ _1 ~ 
2i :[ 

sin" a.(E) 
1 

PaJE) ( - cos ~ ) + 
1· 

(2). +1) a().,k) P; ( -cos ~) d). 
sin 1t A 

(2) 

where a i(E) gives the location of the i - th pole of a(J. ,k ) enclosed by the contour C. If, for E=Et, ) 0, 
Re ai(Eo ) is an integer , 1m ai(Eo ) is not too large, and [d(Re ai(E)) / dE] =E ) 0, then we ha\'e a 
strong contribution from the pole term, i. e. (gi(Eo) / sin 1tai(Eo)) Pa. (E )T-cdi,1?-L which can corre
spond to a resonance. In principle the same function a i(E) may origfnat~ several resonances, if it 
happens to come close to several integers for real positive value of E; therefore we should have fa-

( :t ) In this paper we prefer to speak of Sommerfeld rather than Regge poles, since we model our 
theory by the classical one, due to Sommerfeld, on the propagation of the radio waves around 
the earth . 
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mBies of resonance s described by the same function ai(EL i. e. by a trajectory(14)( +), 

As a first step. we prove now the following statement, which turns out to be very illuminating 
in the following. even if it gives a mainly negative result (see also ref. 10)): let a sequence of ela
stic resonances be given (i. e. a family of resonances with increasing angular momentum and ener
gy) and suppose each resonance to have the corresponding antiresonance, 1. e, the phase shift 61 
descends, after the resonance, through tr/ 2 (mod.n). Furthermore let us assume that the reso
nances are spaced far enough, so that each phase shift,after crossing :rc 12 (mod. 1t), in correspon 
dence to a resonance, descends through :rc /2 (mod. 1t) before the successive one. In this case the 
sequence cannot be interpolated by a trajectory ai(E). 

Proof. As is well known, itl correspondence of a resonance at E=Eo' a phase shift 01 c:'osses 
It / 2 (mod.n ) with the derh'ative [dOI(EJ/dE1E=E >0. On the contrary, in correspondence of the 
antiresonances the phase shift descends through 0 n / 2 (mod. :fl, i. e . with a negative derivative. 
Now we know that, in the complex angular momentum plane, when Reui(E) crosses an integer va
lue with the derivative d(Re ui(E)) / dE positive, we have a resonance; on the other hand, in corre 
sponclence to an antiresonance, Reoi(E} is an integer, but the derivative d(Reui(E)) /dE is negative 
(Ref. (15, pag. 110). This implies that each trajectory, after crossing an integer corresponding to 
a resonance of the sequence, then turns back toward the left half - plane to produce the correspon
ding antiresonance; therefore the interpolation of successive resonances turns out to be impossible. 

:"\ow ,\e illustrate the previous statement with a phenomenological example . Let us consider 
the resonances in 4 He - 4He elastic scattering; at low energies we have a rotational sequence of 
three l~esonances, 0+,2+,4+(16) . At first sight one could conjecture that these resonances lie on 
the same trajectory, but this is not the case. In fact these resonances are well separated each 
other and while bo descends passing downward through n / 2, 02 rises passing through n / 2, then, 
when 02 descends, 04 starts to rise. 

Now the effect by which the phase shift gets down again after its rising at the preceding reso
nance in due to a hard sphere scatterer.In the compound state elastic resonances this effect cannot 
be neglected, because, as is well known, the scattering amplitude is composed of two parts: a re
sonant amplitude and the so called potential scattering amplitude. This second part determines the 
elastic scattering cross section Gel off resonances. 

In other words Gel between two resonances is expected to be the same as that of a repulsive 
sphere of nuclear size. Therefore, in the energy interval between two resonances, the wave funct
ion of the incident particle has a very small amplitude within the target and the minimum amplitude 
occurs in correspondence of the antiresonance. Recalling the previously proved statement we can 
conclude that it is properly the effect of the pot ential scattering which prevents the possibility of 
connecting more resonances by a trajectory ui(E). In this case the resonances are generated by the 
going through n:/ 2 of only one phase shift. Therefore the angular distribution of the compound state 
elastic resonance is symmetric and is correctly described by the Legendre polynomials. The sym
metry in the angular distribution is due to the fact that, in any compound system, the lifetime of 
the metastable state, formed by the incoming particle and the target, is long enough to cause a 
complete loss of memory of the incident beam direction(4). 

3. - BACKWARD PEAKS 1:'< ELASTIC SCATTERIKG 

Now, reasoning in a semiclassical approximation, let us suppose that the target is strongly 
absorptive at small impact parameters, but not at large ones. In other words, we assume that the 
absorption is very strong near the centre of the target and decreases towards its periphery. Of 
course, when the absorption is strong, we observe a diffraction pattern in the forward hemisphere 
with a peak at {} =0, which is t he analog of the Poisson spot in optics. Ho\,"ever in many cases (for 

(+) Many trajectories have been numerically computed for various classes of potentials (Ref. (15), 
c hap 12, and Ref. (13)); unfortunately these numerical investigations result to be not very useful 
and even misleading, since small changes in the potential can produce large variations in the 
analytical properties of the scattering amplitude (see Sect. 4). 
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instance in the elastic 5catt el'ing of a particles from nuclei like 160• 40Ca, as well as in the elastic 
pion-proton collision), at angles beyond 900 , the angular distributions do not present an exponential 
em'elope typical for diffraction scattering. The anomaly consists of a strongly oscillatory enhance 
ment in the back\"ard cross section, which is reminiscent of the optical glory effect( 17), 

The anomaly can be explained s u pposing that, for high values of the impact parameter, i. e. 
l~ k R (where R is t he radiu s of the target), the incoming particl e can rotate around the central 
region of strong absorption and then emerge in the backward direction. This phenomenon is analo
galls to the [ormation of surface waves in the scattering of light by water droplets( 17) . T he surface 
wa\-es, ,vhich travel around the droplet, generate the optical glory effect and are responsible for 
the backward enhancements(l8, 19 . Now let us consider some qualitative consequences of this heu 
ristic model: 

a) In order to picture, in a semiclassical way, the mechanism that produces the backwal~d peaks, one 
could sa," that the incident particle (like an optical diffracted ray in the sense of Levy and Keller(20~ 
descdbes a geodesic around the target without closing its orbit. Therefore, even if one wants to speak 
of t'resonances rr (4), these are necessarily peripheral and do not involve the formation of a compound 
state in the sense of Bohr , l\'[oreover the lifetime is certainly very short and therefore the angular 
distribution can be quite asymmetric, since the loss of memory of the incident beam direction has 
not been completely realized in such a short rotation time. Consequently the angular distribution can 
not be fitted by the ordinary Legendre polynomi;.)ls, but one must recur to the Legendre functions, su 
ch as the Pa(E)(-cos*L which appear in the representation (2), All these considerations make evident 
t hat the usual Breit - Wigner parameters, such as the width r , are not useful here; for analogous rea
sons we need not worry about the effect of the antiresonances . In odeI' words we need a new parame
trization, sHch as that furn i shed by the con"lplex angular momentum polology. 

b) Furthermore there is a shell structure effect on the back angle enhancement of the elastic a - llucleus 
scattering. The experimental data suggest the following picture(21): at the major shell closures, the 
nuc lei all sho,," bacbvard peaks independently of their neutron excess _ T he enhancement disappears if 
we cross the closed shell and it emerges again when we approach the next closure. This isotopic d epeE: 
dence can be qualitath'ely understood at the light of the model. One observes the backward scattering 
enhancement if the a-rotator occupies the next higher shell (for example a - l2C ) or if the target is 
a tightly bound nucleus (for instance 160 ). On the other hand, with an increasing number of excess 
neutrons, there could be a coupling of single neutron excitation to the simple rotator state, and thus a 
blocking effect on the elastic width (for instance a _180)( 22) . 

c) Of :ourse a correct theory should answer the questions \ ..... hether the backward enhancement disap
pears toward higher energies and in which way it ceases to exist. 

Now we try to elabor a te the mathematical theory of the model, starting from the representation 
(2). In this connection let u s assume that 

I Sr i, ,k I - I I IAI-> ': 0 (+1 , Re A ~ a (31 

where S(? ,k ) is the analytic continuation in the complex A -plane of Sl (k) =e 2i 01 (k); we shall return 
with much more details on the assumpion (3) in the next Section. If the condition (3) is satisfied, 
then the contour C of the background int.egral in the representation (2) can be deformed to run along 
the imaginary axis and we get the Sommerfeld Watson transform, i. e . 

f(E, # 1 
g(EI N 

2: 
i = 1 

1 

sin "0, (EI 
1 

Pai(EI (-cos#l + 

)

-1 / 2 + i 00 
+ ~ (2 }, +l)a(!.,kl P; 

2 sin .1t' A 
-1 /2-ioo 

(-cos#1 

(41 

d), 

The representation (4) is composed of two parts, a sum over poles and the background integral. 
For large values of # , the regularity of P A (-cos#1 and the fact that (sin"AI- I (" ~ -1 /2+i 1m A I 
acts as a very powerful cutoff, suggest to neglect the background term in comparison to the sum 
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o\'el' the poles . Furthel'l110re, if w€" assume that the contribution of one pole is dominant, then we 
can write the following appr oximation for the scattering amplitude 

fiE, til"" p) (-cas ,? 1 
g sm .na (51 

\\'here the term at t1w right - hand - side of formula (5) will be called SommerfeJd pole. Of course 
t his formuJa can work only at back\vards. sincE', for 11 ::: 0, Pa (- cos tJ) presents;)' b r anch - cut 
(the finiteness 0: fir~.1'}) IS gl~fH'anteed by the compenHation of th(' two terms of repl~esentatiQn (1)). 

:'~exl we use the following as.ymp~otic fOl'mula, which holds fol' Jar;;;e values of Rea and Irna 
(R-=i, (?2) pag. 288): 

Pq (-c0; ,?1 ~ ( 2i 11/ 2 [.( ~ _l-I.'l 
• ..... ' . '1. exp 1 a ') v 

SIn rr a n a !::H11 'U '- _ 
(61 

(foL~n1Ula (6) does not hold in small neighbourlioocls of the antipodal pOints 1} =0 and {} ::: 1t ) . From 
fOl' m ul a (6) we obtain the factor e- 1m a . t}, which gives the breaking of the rotational symmetry 
in the angular distribution. 

Xow we want to r elate t his symmetry breaking f actor to the rotational damping of the surfa 
ce \\-a\-es around th e absorption volume. In this connection, foHowing Nussenzveig(23)and Fuller(4~ 
\\-e writ e the partial wave expansion for the wave function (see also ref. (24) pag. 299): 

21'k 1/ 2 -1 cc 1 
1jJ (k , rl~( :r I (4"krl 1~0(2l+1)i VI (k, rlP

1
(casrpl (71 

where .u is the reduced mass and (}Jis the angle between the momentum k 
be decomposed as follows: 

and r . Next 1JJ
1
(k, r) can 

1jJl(k,rl~ 1'2 ei ("/2)(1+11 [f~-I(k,rl - e -i"lSl(k) f~+I(k,rIJ 
(t) 

\Vhere f1 (k, r) are the Jost solutions, defined by 

(xl ti kr 
lim fl (k , r I ~ e 

r _ cc 

Substituting formula (8) into (7" we get 

2 1' k 1/2 -1 
1jJ (k , rl= (-,,- I (4"k r l . [r~-I( k' rl-

(+1 ~I 
Sl(kl fl (k,rI

J 
PI (cos 'I' I 

1 
Recalling t hat P

1
(-cas g: I ~ (-II P

1
(cos '1'), we obtain 

-inl 
e 

21'k 1/2 - 1 i 
1jJ (k,rl=( - ,,- 1 (4"k1'1 "2 . 

cc 
}; (21+11 If(l-l(k,r l -e-i,,lSl(kl· 

1=0 

(+1 - , 
. f] (k , rl_ P I ( - cos '1'1 

(81 

(91 

(101 

( 11 I 

Then we perform an analytic continuation in the compl ex ). -plane, recalling that fei") ()., k, 1') are 
entire functions of )_ at fixed k and r( 14) (at least for a very large class of potentials); so we can con
vert t he sum (11) into an integral over a counterclockwise contour C in the right half -plane enclos 
ing the real }_ - axis. We obtain -

I 2,u.k 1/ 2 -] 
1j! (K,rl=T (--nl (4" krl . 

[ (-I -i"A (+1 ] N q.(k,rl 1 (121 
(2).+11 f (). ,k,rl - e SIi"kl f (!.,k,rl 'p)'(cosrpl d) +}; -':-'_ -r:..,.(cosrpl 

sin.r&"A, . 1""1 sinnai 
.\ ,( 
L Jc 

08 ' 
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where the sum is over the S - matrix poles lying in the domain enclosed in the contour C. This con
tour can be deformed to run along the imaginary axis (if we assume a suitabl e asymptotic behavior, 
in the ).-plane, for the background in tegrand in formula (12)), so that we can wr ite th e Watson-Som 
merfeld transform for the wave funct ion: 

1 21'k - 1 
Vi Ik, r) = - 4- 1,..--) (4nk r) 

-\- 1/ 2+i OO ( _) - in; f+) 
12}.+l) [ r ( }. ,k,r) - e "s(A,k) (!.,k,r) ] 

sin n}. 

_/-1 / 2-ioo 

c.lk, r ) 
1 

sin lta . 
1 

I 13 ) 

Pai lcos <pJ 

Now it is convenient to perform the subst.itution cP = n - gJ. fr om which it fo llows that Pa (cos cp) == 

=Pa ( - cos cp ). Therefore small values of <P correspond to the upwind, while values near n: corres
;:>ond to the shadow or downwind region. Then, using the same arguments illustrated above, concern 
ing the scattering amplitude , we can neglect the background integ ral contribution for cp near 1t, i. e. 
in the downwind side of the interaction region rel ative to the incident beam (see also refs. (4 , 5)). 
Next, according to the suggestions of ref. (4), we use the following a sympt:Jtic formu l a, which holds 
for large positive values of Rea (see ref. (25), pag. 14 3) : 

Pa I - cos <1» 
r ia + 1) 

na +i-) 
1 ) 1/ 2 . 

2 Jf sin cp 

t elm a In -<1» e -i [ ( Re a + + )( n - <1» - Zle -Ima In - <1» ei ITRea ++)(tt - <1»- ~]}, 
( 14) 

If < <I> ( n - f ) 

The equality (14), like formula (6) , does not hold in small neighbourhoods of the antipodal points cp = 

= 0 and cP = :rt • Let us observe that we are using now an approximation which is similar, but less 
drastic, than formula (6). In fac t , for what concerns the c ross - sections, we intended only to give 
a rough idea of the breaking of the rotational sym metry ; then starting from a formula like (14) , we coul d 
neglect the second term in comparison to the first one for 1m a large enou gh (rec all that the scatter
ing angle {} is confin ed to the inter val (O ,.iT ) and formula (6) does not hold for f} = :rt). On the other 
hand, w e want now to analyse .;in detail the surface waves , which tr avel around the central absorption 
r egion , therefore \ve must retain bot h terms which appear in formula (14). Mor eover , in order to 
consider t h e tim e evolution, \\r e have to multiply the wave function by the factor e-iEtETI=l). Therefore 
from the first term of (14) , neglecting proportiona lity factors, we get: 

1 )1 / 2elmaln- <I»e-i ~Rea ++)( n-<I» -: + E tJ 
Sln (p 

(1 5) 

which represents a wave trav eling in the direction of increasing cp, Analogously, from the second term 
of (14), we obtain 

I 1 )1 / 2 - Imaln - <1» i I (Re a +-+)(n-<I» - T- - E tJ ( 16) 
sin cp e e -

which represents a wave t raveling in the direction of decreasing <1> . 

Now let us suppose t hat we are in a region where the term ( 15) is strongly predominant over the 
term ( 16), so that we can approximately write the following probability distribution: 

d V e' 
2 Imal'" - <1» 

e d <l> (1 7) 

which implies that the wave, represented by the term ( 15) , decays for increasing values of f./> ,i.e. 
in the direction of propagation . ?-Jext, if we force a little bit the mathematics of our approximation , a! 
suming that it holds for any value of ~, and suppose that we are in a region where the term ( 16) is 
predominant over the term (15), then we obtain the following probability dis t ribution: 

'> 8 
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-Ima(n-<PI 
e d<P ( 181 

which implies that the wave represented by formula (16) decays for decreasing values of cP , i. e, 
in the direction of propagation. Finally let us assume 1m a large enough to practically forbjd the 
propagation of surface waves across the shadow; in this case the symmetry breaking in the angular 
distribution is very large and we observe an exponentially decreasing envelope at angles beyond 900 , 

On the other hand, for decreasing val ues of 1m a , some surface waves pr opagate acr oss the shadow 
and emerge at backwards. 

4, - REMARKS ON TilE SOMMERFELD-WATSON TRANSFORM, 

Firstly we recall that in many cases the colliding particles are charged and we must rewrite 
the expansion (1) as follows: 

where the Rutherford amplitude is given by 

("I ~ ('I' 2,J 2' I fc v = - 2ksin2(,J/ 21 exp -1 ogsm 2+ '00 

v being the velocity of the incident particle) and 

2io 1 
e = r (l+I+i'11 

r(l + 1 - i ~ I 

(191 

(201 

(21 I 

Kow, if Z and ZI are not too large and the energy of the colliding particle is high, then the Coulomb 
effect at backwards is small and can even be neglected (see Sect. 5). Otherwise one must perform 
lilt:: ~uutractiol1 of the Coulomb effect; in fact the repulsive Coulomb field distorts strongly the beha
viour of the pole trajectory(26) . Of course the subtraction procedure has the great disadvantage of 
requiring a phase - shift analysis of the experimental data (see, for example, ref. (27)). 

Another more subtle pr oblem is related to the assumption (3), concerning the asymptotic behaviour of 
Sp., k) in the complex A-plane. The property (3) has been proved only in the case of a superposit
ion of Yukawa potential s. On the other hand, the potentials that are generally used in nuclear phy 
sics have the Woods - Saxson shape(l3) . For these potentials one can only show t hat 

ImJ. ---+ +00 
(221 

Q8 
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5. - P£iENOi\lENOLOGICAL ANALYSIS. 

In this section \ve present the phenomenological analysis of ;1t+ -p backward elastic scattering in 
the momentum range between 3. 55 and 7.00 GeV/ c; the data considered have b een determined at 
CERN by Baker et a1. (28) and at Saclay by Banaigs et a1.(29, 30), The choice of these experimental 
data has been forced by th e following arguments : 

a) the great accuracy and richness of the data at very backward angles, i. e. in a region which is 
ct'ucial for t esting our theory.: 

b) t he smallness of the Coulomb effect; in the momentum range consider ed t he paramet er 1] appear
ing in formulas (20) and (21 ) results to be les s than -- 0. 78 x 10- 2, 

We ,\'ere not able t o find equally satisfactory and accurate data in a - nuclei scattering. Further 
more in this case the Coulomb interaction is not negligible and therefore we need a precise phase 
shift analy sis, i n order to extract the quasi - nuclear phase shifts (i. e. to perform a Coulomb sub
traction). 

Of course the n+ - p interaction must be treated relati vistically and th e spin of the p r oton has 
to be t aken into account. However th e main results of the previous Sections, for what concerns th E: 
scatter ing amplitude, can be extended to our case. L et!s consider the amplitude 

... ... 
fls,t , u) "gls , t,u)+i a· nhls , t,u) (23) 

where g(s, t, u) and h(s, t , u) are the non - spi n-flip and spin - flip amplitudes reSpeCll\ ely, s , t , and u 
being the :'vIandelstam \'ariables. Now we can expand these scattering amplitudes into partial waves 
and th en perform a Sommerfeld - Watson transform. At this point, following the same ar gum ents il
lustrat ed in Sect. 3, we can negl et the background integrals at backwards . For a more detailed ana
lysis of this point, the reader is referred to ref, (31). In conclusion, the backward differentia l cross 
section fo r elastic scatt ering of pions f rom an unpolarized proton target turns out to b e g iven by (see 
also ref. (7)) : 

~: '" A I Pals)l - cos~) 
\vhere Pal is an associated Legendre function(25) . 

( 24) 

)Jo\\, \\'e fit the experimental data by the formula (24), using a::Rea, b:: 1m a, A and B as free 
parameters. In our numerical analysis \ve are faced with a nonlinear least - squares fitting problem, 
which \ve solve by t he "grid!! method. More precisely, w'e compute l~s)( - cOSi1'j) ! 2 a nd ) pd(s)(-cos~) 1 2 
(denoting by i1' ' the j - th angle where the differential cross section has been measure d) for ordered se
quences of va~ues of a and b; these sequences form a grid in the complex angular momentum plane. 
Then for any value of a, where the squared moduli of the Legendre functions have been evaluated, we 
determine A and B through a linear least - squares fitting program. As a last step, we select those values oj 
a , b,A, B , which minimize the 1. 2. 

In F igs. 1,2,3 we present the fits of t he backward peaks at three different beam momenta ) i. e . 
3. 55 , 5, 20 and 7. 00 GeV I c . The results of th e fits a r e summarized in Table 1. These results are 

TABLE I 

pIGe\) c) S [IGev) 2] a b A~b/ IGev/c)2J B~b/I GeV/ C) 1 7.
2 

3. 55 ) 7. 57 5. 0 O. 70 133.818 O. 508 13. 07 
5. 20 

I 
10. 66 7. 1 1. 34 3 9. 650 O. 016 17. 6 

7. 00 14 . 04 8. 7 1. 39 16 . 871 0.000 48. 89 

much Irore complete and more precise and clear than those previously obtained by one of 
liS(11) . 
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FIG. 1- ll-p elastic scattering at s= 7. 57(GeV)2 
and for O.796<.-costtm 1. The parameters of the 
fit are a=5.o, b=o. 70 A=133 . 818I'b/(GeY/c)2, B= 
=0.508 ,ub /(Gev/ c)2. TheX 2 value is 13.07 and 
the X2 test gi\'es a probability of .......,44%. 
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FIG. 2- :rl - p elastic scattering at 5=10.66 {GeV)2 
and for O. 80( -c osi1-c . m . 1. The parameters of 
the fit are a=7.1, b=I.34 A=39.65I'b/(GeV/c)2, 
fl=0.016I'h/(GeV/c)2. The 7. 2 value is 17.6and 
the 7.2 test gives a probability of ......... 85%. 
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B=0.000I'b/(Gev/ c)2 . The 7. 2 value is 48.89. 
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-10-

Next we fit by a straight line the values obtained for He a : a (see Fig. 4). Fig. 5 shows the value ob
tained for 1m a ;: b;these points might be connected, for instance, by the dashed line drawn in the 
same Figure. The values of b cannot be fitted by a straight line; this is consistent with the fact that 
the height of the backward peaks versus s cannot be fitted by a single exponential. 

The graphs of Fig, 1,2,3 indicate that, even if we are in a relativistic region, the backward 
enhancements can be fitted by the Sommerfeld poles, which were introduced in Sect. 3 in a non
relativi stic framework. At this point let us remark that our model i s considerably simpler than 
the theory based on the exchange of baryonic Regge trjectories(32) , which is usually adopted to ex
plain the n+-p backward peaks. Furthermore the graphs of Figs. 4 and 5 show that a(s) and b(s) are 
increasing functions of s and a (s) does not turn back towards the left half-plane. Moreover the fact 
that b(s) is an increasing function of s implies the lowering of the backward peaks towards larger 
values of s, as the experiments confirm . In other words our theory gives a relationship between 
the asymmetry in the angular distribution, which is described through the Legendre functions 
Fa (::::os 1?-). and the asymptotic vanishing of the backward peaks. For this reason the mathematics 
of our model seems to be much more appropriate than the one used by Bryant and Jarmie( 17), who 
work with Bessel functions . From these considerations it follows that the backward enhancements 
which appear in the low energy nuclear physics can be explained by the same model; however, in 
this case, the clearness of the phenomenon is obscured by the strong Coulomb field, whose effect 
can be hardly subtracted in a satisfactory way. 
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