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" .. Andererseits muss man zugehen, dass der Versuch, die unbezweifelbare
atomistische und Quanten-Struktur der Realitat auf dem Boden einer konse-
quenten Feld-Theorie zu begreifen, auf grosse Schwierigkeiten stosst, von
deren Ueberwindbarkeit ich keineswegs tiberzeugt bin. Ich will dies kurz
erlautern an der Theorie des asymmeirischen Feldes (so wie sie formuliert
ist). Aus dem Bau der Feldgleichungen geht namlich Folgendes unmittel-
bar hervor: Ist gik(*) eine Losung der Feldgleichungen, soist auch gik(x/a)
eine Losung, wobei g eine positive Konstante ist ('dhnliche Losungen'). Es
moge das System der gji z.B. einen in einen flachen Raum eingebetteten
Kristall von endlicher Ausdehnung darstellen, s gabe dann eine zweite
"Welt" mit einem andern Kristall, der genau gleich konstituiert ist,dessen
Linear-Dimensionen aber a mal grosser sind als die des ursprunglichen
Kristalls.

Solange wir uns eine Welt denken, die nichts anderes enthalt als eben

diesen einen Kristall, so liegt hierin noch keine Schwierigkeit. Man sieht
nur, dass die Ausdehnung eires solchen Kristalles (''Massstabes') durch
die Feldgleichungen nicht bestimmt ist, Man denke sich aber nun, dass die
von uns betrachtete "Welt'" aus zwei solchen Kristallen bestehe , die ge-
meinsam in einen flachen Raum eingebettiet sind und die voneinander be-
liebig weit entfernt seien, Fiir die Losungen der Feldgleichungen gilt we-
gen deren Nicht-Linearitat zwar nicht das ''Superpositionsprinzip', Aber
man ist doch wohl geneigt zu denken, dass es eine Losung flir das Gesamtfeld
gebe, derart, dass das Feld innerhalb jedes der beiden Kristalle sich nur
wenig unterscheidet von der Losung fur den Fall, dass dieser Kristall
allein in der Welt vorhanden ist. Dann aber ware dies eine Welt,in der es
zwei korperliche Objeckte gabe, die zu einander ''ahnlich' aber dochnicht
kongruent waren, .,
... Damit also die 'heorie annehmbar ware, ware es notig, dass selbst
weit voneinander entfernte ''ahnliche' Objekte auf Grund der Feldgleich-
ungen so stark aufeinander einwirken, dass eine irgendwie dauerrnde
Koexistenz "ahnlicher' (nicht kongruenter) Objekte nicht moglich ist, Wir
sind weit davon entfernt zu sehen, wie aus den Feldgleichungen eine de-
rartige Folgerung gezogen werden konnte. ., , "

Princeton, 4 April 1955 (63)
A, EINSTEIN,

"In jeden Quark begribt er seine Nase"(gl).

J. W.v.GOETHE, "Faust', 292,



ABSTRACT. - By assuming covariance of physical laws under dilatations, we succeed in descri-
bing strong and gravitational interactions in a unified way. In terms of the (additional, discrete)
"dilatational'' degree of freedom, our 'cosmos' as well as hadrons can be considered as different
states of the same system, or rather as similar systems,

Moreover, a discrete hierarchy can be defined of "universes', which are governed by force-
fields with strenghts inversally proportional to the "universe' radii. Inside each "universe'' an
Tquivalence Principle holds, so that its characteristic field can be geometrized there.

We can thus easily derive the whole usual "numerology', i.e.relations among numbers ana-
logous to the so-called Weyl-Eddington-Dirac large-numbers. For instance, the ''Planck mass'
happens to be nothing but the (average) ''strong charge' of the hadron-quarks. However, our 'nu-
merology'' connects the (gravitational) macro-cosmos with the (strong) micro-cosmoses, rather
than with the electromagnetic ones (as e, g. in Dirac's version),

Einstein-type equations (with "cosmological" term) are suggested for the strong interactions,
which - incidentally - yield a classical. quark-confinement in a very natural way and provide a
priori a field theory of strong interactions.

PART A: HERISTICAL CONSIDERATIONS

1. - INTRODUCTION - WHY CONFORMAL RELATIVITY. -

1.1, - INTRODUCTION (See Also Sect. 4. 1. ):

It is well-known that,when enlarging the world of experience from classical Mechanics to Electro-
magnetism, it was necessary to abandon Galilei relativity in favour of Einstein's. One might now
wonder whether, when in presence also of nuclear forces, another generalization towards a new
Relativity is necessary.

Let us remember that the symmetries of Maxwell equations have not been fully exploited by
Special Relativity. Namely, Maxwell eqs. happen to be covariant (besides under Poincaré tran-
sformations) even under all the conformal transformations'™’,

We want in particular to fix our attention on the space-time (discrete) dilatations:

Xy =0 Xp [#=0,1,2,3]. (1)

As we told before, Maxwell eqs. are in particular covariant under transformations (1).

Let us observe at this point that — if we change our chronotopical measure-units, e, g. by dila-

tating them A
a4 =0 4, (2)

so that x/ =9X‘u , — we should actually have no change in the form of our laws(2). In other words,
we wouldulike to have all physical laws written in a form covariant under transformations (2),

Let us explicitlymention that a contractjon (by a factor 9—1) of our measure-units is comple-
tely equivalent to a dilatation (by the factor ¢ ) of the observed world, and vice-versa., Let us stress
that we prefer to consider unchanged measure-units (asso<iiated with a fixed frame, so as our own
frame of reference), and therefore '"'dilatated' objects(4* 5),

y B
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For our purposes, it is mathematically convenient to choose one fixed set 4 of (chronotopi-
cal) units so that, when passing to dilatated units, we define:

= ) o A
J—KAO;K:A—O. (3)

We can then introduce the '"dilatationally invariant" coordinates(ﬁ):

- . ud
e 8 x| with a = K. (4)

As previously mentioned, we shall prefer to consider a as the 'dilatation factor" - or the "di-

latational coordinate' - of the observed physical system, il

We are ready to explicity assume the postulate : ''All physical laws must be covariant also un-
' . " * ;
der dilatations (1)". We are supposing 0 to assume in nature only discrete values (see the following). ;

Therefore, in analogy to what historically done when building up Special Relativity, we have
now to re-write the laws of Mechanics and Gravitation in a new form(2, 5) covariant also under
transformations (1), with the obvious condition that those physical laws must get their standard
form for a =1.

Our task is made of course easier by the fact that we can refer ourselves to the (already de-
veloped) conformal relativity('?s 2,5), Since we are especially interested in gravitation (and strong
interactions) then we'll refer ourselves to conformal relativity in curved (conformal) spaces(s).

For instance, let us initially consider a (small mass) test-body m,- as e.,g. a pion or a proton, which

can feel all the four fundamental interactions (see the following), - put in the gravitational field
originated by the source(TJM; then, the following equation is in order 5,1),
2 i GM i
d 2"? = 2‘30_177J [1':1,2‘3] (5)
drz l

where "12 = 7, 7?1; quantity 7 = 7_= ar_; t Kt and where Mg, is the conformally invariant

i m
mass(m of the source( '

Moo = oy M, ' (6)

quantities apg, a@p, being the "'scale factors' (or dilatation-factors) of source and test-particle,
respectively, If a,,=1, then eq. (5) reads:

M
S - . . -
i 72 ]
which can be re-written in the form
a7 _ , GM T (8)
at 2 m 1“2 r

v

Of course, if it is also a.,= ayp = 1, then eq. (5) assumes its usual form.

Eq. (5) can be derived from Einstein equations in conformal space(ina whenthetest-particlehasa
conformally invariant mass mgg satisfying the condition mg, «Mgp and a small speed v«c, and
when the gravitational field is spherically symmetric and static. However, eq. (5) is dilatational-
ly covariant (even if not generally-covariant in its present form),

If we want to eliminate the restriction mg, <« Mgg, so that —73) will now represent the relative
(conformal) coordinates: 7 = 1, - 7y then - instead of eq. (5) - we must write (e. g. describing
the motion of m with respect to M):

LE S



2= 2= =
G(m_ +M
TN E Wy (m  +M_ ) 7 [t =t—J -
- . M a E]
aw’  ad n? 1 M
m M

as it comes from a straighforward extension of classical two-body problem; for instance, we can
start from the Lagrangian

m  dy M dT.
M -
L= —2 (—2)2 + =22 2. U@
2 dt 2 dz
m M

Of course, quantity t is the (usual) time as measured by the observer.

Fq.9) can read, in terms of the usual, relative coordinates T E?m -?‘M,
2 m M a m +a M -
d r G 00 00 M oo m o0 .,2 r
g e eSS e e
dt r M m o0 00

In the particular, important case of two bodies with equal conformally invariant masses m =M,

00
r |
d o M_ (a_+a

G M ¥
w o ) 00 m _ (11)

2 a. ay

This case is important for the procedure we shall follow in the next Sections in order to compare
the strengths of the different, four interactions (namely, we shall require to get two equalbodies,
e. g. two protons, at the end of our dilatations). For instance, from eq. (11), if we put @ 1 but

ap 1. we get: "
« G 00
r = g = (12)
4r M
1. 2. - SOME HEURISTICAL CONSEQUENCES:
In other words, we can e. g. consider the two following cases:
a) Let us start from the case a{m): 1, but in general a(rl;,]) # 1 so that initially Moo = M(m) s M.
Then, let us dilatate or contract ™ (i.e. , let us ""scale") the two bodies by the factors
(fin) (fin)
a a
0. .8 M _ a{fin) sid _ m
M (in) M 2 ®m " (in)
“m “m
We shall get, from eq. (11):
. (in),3
M +
iy o & (QM 9m 0"m )
G (in) ! (13)
ar QM gm %
when moo= M00= M, and (in)
Gm e +No «a
3 i o 200( 1 & N(i ) ( M m m )2 (14)
n +
4r E’M ®m %m ) B+
when M =M =Nm
— g0 00 " (in) (in)
For instance, from eq. (13), if we put 0 a = a =1and o__«1, then we get (when
e & m m M
moo = MOO = M,:
M
v, . _G oo _ G M
rs =g = e (15)
) 4r M 4r” m

et
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Analogously, from eq. (14), if we put as before m ar(r:n} =1 and QM(< 1, and if we consider
N» 1, then we get (when Mg,,=M=Nmgyg):
Gmoo 1
e mE B N). (18)
4r M
_ (in) _ (in) _ o _ plin)
b) Let us now start from the case «a = @y, =1, so that initially M, = M = M and also
mye = M= m_ . Then, the last eq. (16) reads:
v, @ 1
B | = 40 fMOOfM=Nm]. (17)
4r M =

Moreover, from eq. (13), if we now "scale'' both objects hy the same factor oN~ 0., =@ » We
== m

get (when M  =M=m =m):
00 00 2GM
i e s s [M=m]. (18)
r

% * b

In conclusion, let us investigate egs. (15) and (16). Eq. (15) means that, under a dilatation of the

(only)field-source M, we have

oM —> S (19)

M
if M =M=m ; and
00 00
1

N

GM—> GM (1 + ) (20)
M
if M =M= Nm

0o 00

With regardtoeq, (19), we can say that, under a "'source-dilatation'' of that kind by the factor 0.
the quantity A = GM is divided by o. One could say for instance that, under a contraction (@ <1) of
that kind, the "universal constant'' G increases by a factor @7 (ef. Sect. 5).

G Mmgo

Now, eq. (15) can be written mgg ' =—— ———— , so that eq, (19) reads:
41‘2 QM
GMmoo
gt = , [en, ] (1)
G moo = QM _ 00
e (in)_ , _ (fin)_
where m_ =m if initially we have also e i am Qm.

It is interesting to observe since now that, for

-40
o ¥10 7, (22)

we can getl transition from gravitational to strong interactions (for the problem of the exponential
factors and of the ranges, see the following Sections).

However, if we want to compare (as we shall do) the final result of this procedure (for instance
eq. (21)) with the behaviour of two pions or protons, which ones experience all the four fundamental
forces, we must: (i) start from a source M = Mgy, a radius Ry~ 1040R(N} ~ 1026 m, of the order of
the universe radius (so that, after contraction, it reduces e. g. to have the radius R(N) of a nucleon)
(ii) attribute to the "conformally invariant mass'' Mg of the source M the value M=Moo=m=mp.quag
tity

oo U 10-27 Kg
being e. g. the nucleon mass (see also sect. 6).

0o



In this way,we can pass from our test-hadron,experiencing a gravitational force, to a test-hadron
experiencing a strong force, « is suggested by eqs. (21),(22) when we set m= moo=mp and M = mp

1. 3. - FURTHER REMARKS:

We shall further develop these points in Section 3; In Section 2, however, we shall first see what
are their consequences, Here, let us only add the following observations. In what precedes, we have
been considering, for instance:

i) initially (before contraction): a test-proton with a=1 and m, ape ) oy ; and a ''source'' with ra-

o
dius R, 2~ 1040 R(N), with a=1 and with Mgo=M"" =M=mp; £
ii) finally (after contraction of the source by the factor 0=10-40); a test-proton, unchanged; and a
Tsource'' constituted by a proton, with R=R(N), @=10-%0 and my =M, “m; so that we got (as is
implicit in eq. (21)): i G
“ p +40 :
rts—P = : (104 Yoo (23)
2 2
4r 0 4r

But, if the final proton (case (ii)) is to be associated to a =10_40, the previous procedure is
not symmetric. For instance, the test-proton itself ought to be associated (since the begining)
with a =10'40. Then, let us choose another procedure, so to have:

(i) initially (before contraction): a test-proton with a =10"40 gnq mg,=m; and a source-object with
radius RM=1040 R(N), with a =1 and with an a-priori unknown mass M,,=M in)=pp,

(ii) finally (after contraction of the source-object by the factor p =10~40): let us use eq. (10), or ra-
ther eq. (14) which yields:

GMoo GMoo 40
r' = 50 = 5 (10 77); (24)
4r 4r

: ; -40
therefore we have finally: a test-proton with a =10 and mo =mo; and an object with radius R =
= R(N), with a =107"" and with the (a priori unknown) mass M, = M.

This second procedure must be equivalent to the previous one: thus eq. (24) must coincide with eaq.
(23). As a consequence, we get immediaty that

_ -2 80
M= mp:ulO m (25)
) A g y ; 40 26
i, e. that the initial object (having the radius of our cosmos, RM”HO R(N)=~10 m) must possess
the mass

0.2

(in)=M o (104) m
00 p

M=M

which is well-known to be just the mass of our cosmos, Actually, eq. (24) was derived be setting
N + 122N, In other words,in this second procedure, the initial, ''cosmological'' object is natural-
ly identifiable with a ""cosmos' like our one. Relation (25) is known as EDDINGTON'S relation (see
the following and ref, (17)).

2. - THE FOUR FUNDAMENTAL FORCES; AND A HIERARCHY OF "UNIVERSES'' (AND OF
ASSOCIATED "CHARGES")

2.1 - THE FUNDAMENTAL FORCES:

We essentially know about four "fundamental' forces in physics. In order to compare their
relative strengths, let us consider for instance two equal particles, as two protons, which can
interact both gravitationally, and weakly, and electromagnetically, and strongly. For instance,
the ratio between the typical gravitational and electromagnetic "interaction strengths" s, SEM
can be derived(?) from the corresponding classical forces between two nucleons:




RN C S
> ;

e EM

Analogously, the ratio between the typical electromagnetic, and strong ''strengths'' can be
inferred(?) from the corresponding typical interaction-durations:

Semr O 1970 oy el
= A o _19 .--410 i
Py 1.7 P

In conclusion, when dealing with nucleons (more generally with hadrons), the ratioes among ty-
pical (dimensionless) interaction "coupling-constant squares' can be represented by the follow-
ing set of pure numbers

FORCE RANGE SO HNNGIH
strong short 8g 2 1
elect eti 1 +10~4
ctromagnetic ong SEM i (26)
weak very short sw = 10
gravitational long sg ® 10-40
(10)

Incidentally, let us observe that, - since the typical interaction-durations Ar are . inversally
proportional to the interaction-strengths s, - then for the gravitational interactions we have for

instance:
W 107 g m 1617 5, (27)

(10)

17 10 y ]
Since 100 s~10 'y we get that A7 is of the same order of our universe age . More general-
ly, the quantity [y =yr E year]

Ay =210

c 10

1
10] sﬁc3x109y

can be considered as not far from a 'characteristic time' of our cosmos evolution ("oscillation",
or "decay').

Since the previous, heuristic considerations are not recise(ll) enough, let us put the whole
question on a more rigorous basis by carefully defining 9) dimensionless "coupling-constant squa
res' for the various forces. We know for instance that, in the electromagnetic case, we meet the
dimensionless quantity{g):

2
1 8 ol
dme He 187 (28)
and in the gravitational case the dimensionless quantities
2 2 : g
G P w g1, @, o X S ih 0 (29)
he e

where (4 neo)”l and G are the electromagnetic and gravitational "universal constants' (in vacuum),
respectively. In egs. (28, (29) we chose e and m equal to proton charge and mass, and mnequal to the
(charged) pion mass. As quantity e is called electric charge, so we can call m gravitational charge.

Analogously, we could introduce, for weak and strong interactions respectively, the dimen-
sionless coupling-constant squares 9).

2
£ ~
NS - 15 (30)
and 9
fw. o o712
NW o & 10 (31)

0o



where of course g = gg and By 2re the strong and weak charges, respectively. Quantities NS N.
a: e then the unlversal constants a priori associated (in vacuum) with the strong and the weak

"fields'', respectively. Usually units are chosen so that numerically 13 Ng =Nw= 1, For instance,
in the strong case, it is usually written 9

g ~
e 15 (32)
(9)

which is in fact the standard expression for the square of the ppm coupling constant

The values of the (dimensionless) coupling-constant sciuares in eqgs. (28 + 31) forward the
precise ratioes , approximately represented in eqs. (26).

In this paper, we shall (first) skip considering the case of weak interactions,

At this point, let us define as ""universe'' any (almost isolated) system whose (internal) consti-
tuents . dominantly irteract via one (ancl only one) of the four fundamental forces (see refs, (9),
(10) and (15)). Of course, we shall have "'gravitational universes'',"electromagnetic universes', and
strong universes''(16), We shall use that concept in order to explain e, g. the following, interest-

ing relations(17); e2 9
T 1 33
R(U):R(A):R(h) R 8¢S riSs = Neg ime, Gm (33)
where R(U), R(A), R(h) are respectively the typical radii of our universe (that we shall call "cosmos"

in the following, to avoid confusions), of the atoms, and of the hadrons., We shall call the above
relations the "WEYL-DIRAC large numbers'' relations {even if Dirac's ones were different).

2. 2. - GRAVITATIONAL AND STRONG "UNIVERSES'":

Before going on, we ought to take into account what stated at the end of Sect. 4. 2.

Then let us conflne ourselves for the moment to gravitational and strong universes. In order

to get R(U)/R(h) = N sg / sz) we ought to choose m = my . In this paper, however, let us choose
the nucleon (h=N) as the "representative'’ of hadrons h, so that m = m(N). We want to compare the
two fundamental forces, which govern the (internal and external) interactions of the two "universes',
respectively, one with the other. First, let us observe that both gravitational and strong forces are
always attractive, and associates to non-linear equations (since also their quanta are considered to
be themselves field-sources); in terms of gauge-theories, we would eventually make recourse tonon-
Abelian gauge theories: and, in a sense, what we are attempting in this paper is just providing a geo
metrical interpretation — ante litteram — of the latters.

Moreover, we shall consider in the following our cosmos as a finite object embedded in a bigger
universe (see what follows).

Let us here write down the espressions of the two ''corresponding’ potential energies (in the sta
tic limit) outside those "universes' (cf. end of Sect. 4,2 ):

~ GMm
b ~ - exp [-rch/'ﬁJ 5 (36)
Noeg'
@1——-}— . exp _-rmsc/ﬁ] . (37)

where the gravitational potential-energy f and the strong (Yukawian) potential - -energy ¢ do have the sa
me physical dimensions: [¢ ] = L&l. Quantities mg,, mg should respectively bethe masses of ("exter-
nal") graviton andthe ("external")pion (wherethe "external graviton" mass is supposedto be small,

but not zero): see the following, Expression (37), e, g, is the ordinary one for the scalar potential in the
"strongcase" (staticlimit). Eqs. (36, 37) willbe derived from Einsteinfield-equations of General Rela
tivity, containinghowever a non-zero (evenif very small) cosmological term for the reasons we are goingto




~-10-

(17)

see . In order to show the connection between the cosmological term and the exponential factor
entering e. g. eq. (36), let us anticipate (cf. Sect. 8) the following.

2,3, - WHY A COSMOLOGICAL TERM:

Our cosmos will be considered as a finite object belonging to a bigger universe (cf, end of
Sect. 4, 2. ), Outside (see Sects. 2.5, 3.3, 4. 2) the gravitational universe (cosmos) let us assume -
for the reasons we shall see -that Einstein-type equations {(with cosmological constant 4) hold in
the "big universe”E:f. also Sects. 5 and 8] , which can be written in the form:

1 0 8nG
Ry - = Buy B - Agyy==——— T} 2 TH
wv © 3 Buy ; wy R uy o], o
1 = c _1_ a
Thy =y gom Al 1y~ B Bt‘aﬁ By

or rather in the equavalent form:

8nG 1 0
Ry +Agp,v ¥ miE— (Tuv - 3 Guw TQ Y Af.‘“’ . (39)
c

Notice that, due to our conventions, /1> 0 means attractive A . In eqgs. (38) we have:

+ h (40)

Buv = fuy v

where fyy is a second metric-tensor representing the "infra-gravitational' metric of the "big-
universe'' (see also Sect. 8), and where quantities hyy vanish for large enough values of r, so
that (for r >>R(U)) they are first-order corrections to the components f.u,'v . Since tensor f.w,, 5 dn
the surrondingsof the considered cosmos (in the big-universe), practically coincides with the flat
Minkowski(18) metric, f_m,’—' Myy » We can write in suitable coordinates

Buy g My - hwu (40')
where

hﬂ"’ "I | |:for r»R(U)J . (41)

~

Inthe same coordinates, we can substitute f.'W = Ny into eqgs, (38, 39), Notice that the "gravitatio-
nal" (external) metric-tensor hy, acts (in the big-universe) only on the bodies possessing "gravi-
tational" charge", and not on the bodies possessing only "infra-gravitational" charge: cf, Sect, 8,
By inserting eq. (40') into eq. (39) and under the condition eq, (41), we obtain the linearized Ein-
stein eqs. with cosmological term :

. 16xG 1
a,, o'h 2o lURX a1 e
WO Mo “2Angg K (Tag -3 Map To)
1 (42)
§ M= = I
w25 & h“_

One might have expected (e, g. by considering that the non-zero cosmological term enters our
starting Einstein eqs,in an essintial way) that we had rather to linearize our Einstein eqs. with re-
spect to the Sitter metricgzo'lg as done in our Appendix A, Moreover, our phylosophy will always
be the one of considering curved space-times(see Sect. 4, and Appendix B). However, not only we
can linearize with respect to the flat metric (i. e. we can stick to egs.(42), provided that we take
account of condition (41), | see also Sect. 5| ),but such a procedure seems to be the best one when
considering - as we do — the "exterior' of a cosmos (cf. Sects 2. 5, 3. 2) and when the "bigger uni-
verse' has a very large curvature-radius (see what follows).
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Eq. (42) is a relativistically-covariant, massive equation for a tensorial field, with(20);

_ o TGE (2
2A = ( T 3 (43)

quantity mg being the field mass (in this case, the "external' graviton mass:cf.also eq.(50) inthe following).

If we now restrict ourselves to the case of stationary sources, then the only non-vanishing
component of T,y is Tgo = rcz, where y is the mass-density; so that e Too. Therefore (as
previously done in eq. (36)), in the case of static field, i.e. when g, /at =0, we can confine our-

selves only to the scalar field % =g,,; and eq,(42) will read(18). B
Vh - 24n  =-S%S, | (44)
0o 00 ‘

In the case of a point-particle M at rest at the origin of the space-coordinates, a spherically sym-
metric solution of eq. (42) is

m_c
- 2GM
veg @ 1-emf—x— r| , (45)
cr
) . o . . (21, 22) .
provided that A is positive, Quantity vy = €50 18 known to be essentially the scalar
gravitational potential V = ¢ /m , so that for test-particle low speeds and for weak field:
' 2V 2
o B §1+—%; (46)
90 c mec

we shall again discuss these points in Sect. 7. We can see immediately, however, that - within our
theory - the previous approximations are practically equivalent to neglecting the spin-2 character
of gravitons (cf. Sect. 9. 1),

Egs. (45)-(46), in any case prove - under our assumptions - the connection between the expo-
nential factor in eq. (36)and the presence of anon-zero cosmological term in the field equations,

At this point, let us go back to egs, (36),(37), Let us observe that eq, (37) is known to hold
- in the static limit - only outside hadrons, i. e, outside the ''strong universes''; therefore, in our
philosophy, eq. (36) was required to hold only outside our cosmos,i. e, outside the ''gra-
vitational universes'' (see Sect. 2. 4 and Sect. 4). However, the previous derivation of eqs, (45), (46)
suggests that eq. (36) might hold (''outside' any mass M) even inside our cosmos.[Actually, eq. (36)
yields the usual GMm/r behaviour for not too large values of r, as shown in the next Sub-Section; con-
temporaneously, condition (41) limits the validity of eq. (45) for not too small values of r (i, e, for
r3 2GM/c?).]

But, strictly speaking, egs. (36),(37) are required to hold - in our philosophy - only outside the
gravitational and the strong ''universes', respectively. As regards the interior partof those "uni-
verses'', in Sect. 5 we shall derive the suitable, exact solutions of Einstein eqs. with cosmologi-
cal terms, We shall find, by the way, that for very large values of r a term of the type Ar*2 do-
minates, which yields cosmos-costituent confinement (within the gravitational universes) as well as
an interesting hadron-constituent confinement (within the strong universes): see Sect. 5.

2.4 - THE TWO SETS OF "UNIVERSES' AND OF ASSOCIATED 'CHARGES':

Let us now start from eq. (36) and consider a contraction (by a factor 0€1) of the system 'gra-
vitational source M plus its field" (leaving the second particle m unchanged); then, due to egs. (21,
22),(6) and (13,15), we shall get:

) GMm rch
95‘ = or + €exp [___-_Q'ﬁ ] (36")

0J
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It is interesting that, for 0 210-40, eq. (36') coincides with eq. (37) since it is

GMm _ i
0 = NS gg', (47)
and we can identify (see the following)
m
—E-,(-}— = mg (48)

Or, vice-versa, we can start from eq. (37) and consider a dilatation (by a factor @' > 1) of the
system ''strong source g plus its field" (leaving as before the second strong-charge g' unchanged):
we shall then get:

N i rhlie
Bz -ng. ex |-_ _._..._SiJ (37
= P gl ‘Fl .

o'r

It isinteresting that,fore' = 1/¢ =2 1040, eq. (37') coincides with eq.(36) since it is (remember-
ing eqs. (29, 30)):

Nogg'
—=— = GMm (47')
and we can identify (cf, eq. (6)): e
m
Q,S = m. (48")

At this point, since mg is the mass of the external strong-field quanta, it can be chosen
to be of the order of the pion-mass:
mg ¥ my (49)
we shall discuss later (see Sect, 9) the fact that gravitons and pions have actually different spins
(see ref, (23)), atleast "inside' and ''outside'' their correspondent"universes) respectively.

Then, we can predict for the "external" gravitation mass mg a value(24) of the order of

16720 m o 10'65g. (50)

m =
This very low value agrees withthe upper-limits set in ref, (25). Incidentally, the value (50) predicted
by us for the graviton mass is of the same order of the one predicted on a similar g.ound in ref (26).
From eqs. (50) and (43) one gets for the cosmological constant a value of the order 4 = 1077"em™7,

Since this value can be considered slightly too high, we shall discuss this point in Sect. 9. 1 (although
some authors'28) consider that value an acceptable one for closed, isotropic, homogeneous cosmo-

ses).

In the case of gravitational universes, the cosmos-cosmos interaction potential, given by
eq. (36), will practically vanish (due to an exponential factor of the order of e-10) for distances d
of the order of cosmos-radius itself:

dzloloi-y-_vloze m, (51)

In other words, its ''effective r'ange” r'n can be considered (in correspondence to a factor 1/e) to be
of the same order: '

~ (52)
ro = d.
Quite analogously, in the case of strong universes, the hadron-hadron interaction is known
to have an "'effective range' of the order of 1 Fermi, which is given be the interesting ralation:
-40 -13
roR 10 rG'z 10 cm . (53)

The previous considerations lead us to write a ''potential energy'' in dilatation-covariant form,
Let us start by writing it as follows:

0¢f -
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rm_c
GMm G
$la) - S e [ | ik
a5 (in) (in) (in) )
where (see Sect. 1) itis: M= M= Mys mem  =m_; and mg = mG - (mG)Oo. Or rather, using
explicitly dilatation-invariant quantities:
pla)=——C v oekp | - r—=t— |, (54')
ar afi

which should be associated with the initial (dilatation-covariant) egs. (5,10). Egs. (54, 54') are al-
ready dilatation-covariant, but they can assume a more suitable form, In fact, by comparing eq,
(54') with egs. (36,37), it is immediate to clarify the physical réle of the dilatation-invariant mass
for a # 1. Namely, we have for aaxz10-40, if we set G = Ng = 1:

Moo Moo

- g - g, [G=ng-1]. (55)
Vo Vo S '
so that the quantities My /f@ and mgg /ff@ play the réle of strong charges g,g' forazz 10°
(i.e., when we pass from afield withthe mass mg of the 'graviton'to afield with the mass mg=mg/a = 1 040y
xm*m ;. of the"pion’). By the way we have thus answered the problem set at the end of our footnote ( 13).

= 40
Conversely , as mentioned in Sect. 1. 2 and in footnote (13), we could set NS =a-l G210 G

and then

M =g; m =g, [NS= a‘lG-I- (56)

l.et us stress that, on many respects (as we shall mention), this choice would be simpler,

With the choice (55), we can write down the same formal expression:

B qq' GXP[M], [G=N =—J (57)
r il S ’

for both gravitational and strong cases, where charges g, q' can be either gravitational or strong
charges and contemporaneously the field-mass m represents the mass either of the gravitation
quanta or of the strong-field quanta.

exch

With the choice (56), on the contrary, we can write down the analogous, 'unified" expression:

Moomoo "Mexch® [ «] ]
= S ——— e e =Q i
=N - exp[ 7 ] i Ng G (57bis)
where N can be either G or N and, contemporaneously, the field-mass mexch can be either the

gravitation or the strong-f-i-;,-l quantum,

Let us explicitly notice that the form ofeqs, (54, 54') is dilatation-covariant only if we do not
scale the distance r, which is actually the case considered by us (remember our procedure in con-
structing relations (26)).

J L
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2. 5. - CONCLUSIONS OF THE SECTION:

In a sense, we thus succeeded in describing in a unitary way gravitational and strong forces.
In particular, the same eq.(57bis), will hold for interactions in the static limit both among gravi-
tational universes (like our cosmos) and among strong universes (the nucleons, and more general-
ly the hadrons). In Sect. 5we shall see in a more rigorous way that the same fact is true also for
the interactions among constituents of the two sets of "universes".

(27, 28)

As it is clear, we are considering (and we can congider) our cosmos as a ''gravitational
universe' belonging to a larger entity(9, 10, 27) fo'_r—"big universe''), as suggested also by HOYLE
(see refs. (28),(29)). Here we are speaking of interior and exterior of our cosmos so as we speak
of interior and exterior of a hadron; however, cf. also Sects. 7 and 4. 2.

Moreover, let us mention that the interactions between two "universes' of the same kind might
be possibly derived also as due to Van-der-Waals-like forces(30); cf, Sect. 3.2.

An interesting result of our "dilatationally-covariant'' procedure is that -through our dilatations
or contractions - we have associated to our cosmos and to hadrons (nucleons), respectively, radii
R(U) and R(N) which are connected by the relationl R(N) = nucleon radius] :

R S
2 100 S ' (58)

R(N) SG

thus actually explaining a relation gsimilar to one of the so-called (heuristical) ''Dirac large-num-
bers" relationsﬁ 7). Egs. (54') and (57) will be investigated more in detail in the following.

Here, let us repeat that in eq. (54') the guantity s(a) = GMoomoo/ {afi ¢) can be identified with
EG = 1] :

GMoomoo Mm I
s (1) = - =—Hc a=1 (59)

in the caseof gravitational universes (e. g. our cosmos) associated to the radius R 24 R(U); and with
[_NS = 1] §

N_gg'
-40. _ 8 _&gg l" -40]
s(10 ) =T "xe _a ~10 (60)

in the case of the strong universes (e. g. nucleons), associated to the radius R &¥ 10—40R(U)§R(N).

In the case of two equal neutrons - or protons, as considered in Sect, 1,- we have:

s(1) =8
-40
10 = 8
s( ) Sg
Therefore, let us repeat, the quantity m b
=20 I:G =Ng = 1]
q 5 B 2 Wa s
can represent in general the (gravitational, strong,...) chargeof the considered body proton] in
the (gravitational, strong, ...) field characterized by factor a .

31
The connections of the present theory with the strong-gravity one( ) are evident (see Sect.9.1)
A problem left open here - of course - is the one of explaining why nature did not realize a
"continuity' of universes, but only a discrete hierarchy of ''universes'' as:
cosmos (a~x1); atom (a= 10‘%); hadron (a= 10-40);. ., ..

The discreteness of the scale-factor a should follow from the proper'quantizatiod' of this theory,
for example through the methods indicated in ref. (32).

0 g
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3, - EQUIVALENCE AND MACH PRINCIPLES EXTENDED TO ALL "UNIVERSES''; EDDINGTON
NUMBER; INTERACTION BETWEEN TWO "UNIVERSES".

3.1 - INTRODUCTION:

From the previous Sections, it follows that we can now consider that the interactions acting
inside the gravitational universe (i, e, among the cosmos-constituents) and inside the strong uni-
verses (i. e. among the hadron-constituents)are governed by the same dilatation-invariant laws. In
other words, strong forces - either among hadron constituents or among hadrons - can be deriv-
ed from gravitational forces - either among cosmos constituents or among cosmoses - by a con-
traction (see, also,the following), Merely for briefness' sake we shall sometimes write that ''any
hadron can be considered as deriving from a contraction of the cosmos'' instead of writing that
dilatation-transformations bring the physicallaws holding inside (outside) the hadrons into the phy-
sical laws holding inside (outside) the cosmos, That will be a shorthand, without further meanings,
Cf. eqgs. (54,(55),(57). We shall explicitly show the above connection between cosmos and hadron
interiors in Sect. 5.

We said (as we showed in the previous Sections) that also test-hadrons interact strongly with
other source-hadrons.We canunderstandthis fact by considering that also the constituents of the
first hadron are able to interact strongly with the constituents of the second one. This hasbeeninterpreted

(at the end of Sect. 1) as meaning that even the test-hadron itself must be considered as deriving
"

from the ''collapse'' (with ¢« 10-40) of another object like our cosmos.
Let us then
a) first, summarize the demonstration of what claimed in this Section with regard to the

interior of hadrons and of the cosmos;

b) second, re-derive the results of Sect, 2 (with regard to the external interactions - of hadrons
and of '"cosmoses') by starting directly from two universes like our cosmos, and then by contrac-
ting both of them,

3.2 - COSMOS AND HADRON INTERIOR:

Let us clarify what we did in Sect. 2 and what we are going to do with respect to cosmos and
hadron interior (case (a)).

The heuristical considerations that previously guided us require that egs. (36), (37) - with expo-
nential terms - hold (only)outside hadrons and outside our cosmos, in the static limit,

Actually, in Sect.7 we shall consider the exact solution of the "Einstein equations" (with cosmological terms)
for spherically-symmetric (gravitational or strong) sourcesinside cosmos or hadrons; and we shall find
the constituent-confining metric-component Ec: = G=Ng~ 1T 3

20M A
goom_ - 00 G og rz (61)
30
in spherical coordinate$, which yields a potential of the type V= -( AOO/BQ 2) r2 when ris large.EI‘he
last addendum in eq, (61) is known to correspond to the De-Sitter correction to flat metric, since our
"cosmological ' models tend for large r to be De-Sitter spaces(19:21), Therefore, one expects that, by
linearizing our Einstein equations with respect to the De-Sitter metric, only a potential of the type
Ve - QMOO/I‘ remains, In fact, if we confine to the universes-interior and refer toframesinwhich
the metric appears time-independent, then(33) we just get that potential Vas - 0 MOO/I‘, for g, & ﬂl

In other words, let us consider e. g. two cosmos constituents, one of them being for simplicity

a test-particle (with gravitational charge m = m"'™ = mgg) and the other one a source M = Molél .
Then under the contraction by a factor g%/ 1040, we pass from the potential-energy (54)-(54') with
a=1,[r4<10+25m o
oo™

Biln] me 20098 D |:G=c=1:l, (62)

r r

' W
(o
>
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to the potential-energy l:c: =Ng = l]

M m
6(10'40) ——991:—9-(2 X 1040=1040¥ . [r(“-lﬂ-lgcm:[ p (63)

where the esponential terms are absent in the universes interior, in this paper(34). In any case,
with regard to point (a), we are going to show that - under a contraction by the factor 0 2 10-40 _
the cosmos reduces to have the radius of a nucleon, and simultaneously the gravitational forces
(acting inside the cosmos) transform into strong (acting inside the nucleon)(34),

Before going on, however, let us emphasize once more that the equations in Seect, 2 with expo-
nential terms (strictly)hold only when M represents the mass of the whole cosmos and g represents
the strong-charge of a whole hadron(nucleon), Let us moreover underline that, when we consider
the interactions between two hadrons (or two cosmoses), we mustlinearize FEinstein-equations
with respect to fiat metric, since in such a case we are outside the Einstein-De Sitter "univer-
ses'' under consideration, Only in that case we get the exponential term shown in Sect. 2. 3.

Now,following eq. (55), we can write eq. (63) - according to our postulate of dilatational cova-
riance - in the same form of eq. (62):

I
s(10~4% - 28 [r«m'IB crn-] ; (64)
where units are chosen such that Ng = 1, provided that we define the strong charges as g"—“-lO2 M;
g 1020m, Let us explicity notice that, under the considered contraction, the cosmos-radius R(U)x%
1026 m goes into the nucleon-radius R(N)zy 1028x 10740410~ 13em; we already noticed that such a
relation is better satisfied in the ''pion case'(19), i e, when we choose the second eq. (29), so that

0 ~10°40 hecomes o :;10'41.

At this point, let us furthermore notice the following:

i) I we scale only the (initial) cosmos (and not the measure units) - as done before, - then we pass
from gravitational interactions to strong interactions;

(ii) If we however scale not only the initial cosmos, but even the measure-units, then - of course -
nothing will change: in other words, for the observer, who contracts together with the cosmos, eq.
(62) is not only covariant but even invariant, It means that a small 'Lilliputian'(35), inside a nucleon,
using units contracted by the same factor 0= R(N)/R(U), will describe the forces acting inside its
universe (the nucleon) exactly so as we describe the gravitational forces inside our cosmos: that is
to say, he willfeel as gravitational the interactions that we call strong. (Incidentally, we expect also
the corresponding quantum theories to be dilatation-covariant; i, e, we expect quantization to be pre-
sent both inside hadrons and inside cosmos, but with properly dilatated ''Planck-constant'. Cf. the
following, especially Sects. 5 and 6). See Fig. 1.

(36)

It is therefore possible to generalize the Mach Principle to the interior of hadrons (nucleons)
by saying that - for an internal observer - the 'inertial mass' of any nucleon-constituent is origina
ted by its interactions(37) with all the other constituents of that 'universe' (nucleon). Therefore, the
inertial mass my; possessed by nucleon constituents inside the nucleon coincides - in our language -
with their strong charge (see the following). This is analogous to the fact that, in our cosmos, the
cosmos-constituents show to us (who are "'inside-observers'') an inertial-mass coinciding with their
gravitational charge. We have thus generalized even the Principle of Equivalence to the interior of
nucleon. It means that, in our language, and in our approximations, inside the "strong universes'' (ha
dron, or nucleons) it holds:

1 -
F=ma=ga=N,6 -S& [r'<<10 13ch (65)
I § af
so that
a=glee ] [NS - 1:| (66)

-
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Eq. (66) is obviously analogous to the gravitational relation a = M/r?2, I:G = 1]. It is then clear

that we can geometrize also the strong field inside hadrons(9) since - let us repeat - inside the ha-
drons the réle of inertial mass is played by the strong charge.

38
lLet us notice that, when a hadron-constituent comes outside (from inside{ )), then its "iner-
tial mass' decreases by a factor Q'l 2 N 1020 since we have l:rn = gravitational charge]

m, =gt === m1 ='m, [g' = lozom:l ; (67)

However, it is necessary to stress that the previous consideration (in the previous form) hold only
if we make recourse - as usually done - to the equation:

ma’&ﬁjg— (65")

where, in the outside case, for simplicity we have assumed exp[ rm g c¢/h ]| ~1. The use of eq.
{65') is standard when considering the interaction (in our cosmos) of two hadrons; we shall call eq.
(65') the "outside" equation, and such a use the "outside view-point'. We adopted till now the "out-
side viewpoint'' only for comparing our theory with the experimental results, which are commonly
interpreted just on the basis of eq. (65').

But, especially in the interior of hadrons, we ought to substitute eq. (65') with the "inside"
equation: 9 9
m a=zga=gg/r = a=g/r", (66')

It is clear that, if we use (more correctly) eq. (66') instead of eq. (65'), we get that the strong-char-
ges g' of hadron-constituents are related (inside hadrons) to their gravitational-charges m by equa-
tion:

gy 1040m. (68)

Within this second (more correct) "inside viewpoint', we can say that when a hadron-constituent co-
mes outside (from inside(SS)), then its inertial mass decreases by a factor o 21040, since we pass

40
from m =g' to m =m, ]: g'~¥10 m ] : (67"

In the following, let us go back to the "outside viewpoint',, for practical reasons,

For instance, as usually each quark(ag) is conventionally attributed a barionic number B=1/3,
50 we can tentatively assign to each quark the '"(average) strong-charge' g'~(1/3)g, quantity g be-
ing the outside'hucleon-strong-charge, whose order of magnitude can be derived from eq. (32):
g2ific a 15 \:NS=1] .

We are thus led to claim that, if (inside the nucleon) the inertial mass of the quark is conside-
red - within the outside viewpoint - to be:

= gl & = F =
m =g e, [G Nsl], (69)

then outside the nucleon that quark will have the inertial mass (now coinciding with its gravitatio-
nal charge)

10'20
m} = mz—B—g . G=Ng=1 |, (69')
(31)

Notice that such considerations are different from the known ones
fect"'.

, based on ""Archimedes ef-

Let us observe that, in order to do explicit calculations, we must pay attention to use the sui-
table units(40), so that G=Ng=1. For instance we have, from eq. (32),
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g6 XA cm 0,5 x 105D ; (69")
P

) 41) |
:)'f course in agreement with our egs. (55), as well as with eqgs, (29), (30), and always within the
cutside viewpoint'’,

Eq. (69') then tells us that - under our hyphotheses - we should expect gravitational and iner-
tial mass of a quark (outside hadrons) to be

.

o
m'!¥
[~ o8
Vice-versa, if we assume the last equation for quarks, then we immediately derive that (inside
hadrons) quarks are expected to have an inertial mass (identical to their strong-charge) given
within the outside viewpoint by egs. (69'),(69"):

m_ = v, X emay 3 x 10° o B 8 e anck-mass.
g'ay 2 10 3 % 3,/?: Planck (70)

This interesting result tells us that, if we assume either (outside) m! =~ mp/ 3, or (inside) g'=
=m_ 2 g/3, then the inertial mass of quarks inside hadrons is nothing but the ""Planck mass". In
other words, Planck mass can represent the quark (average) strong-charge, within the ""outside

viewpoint', And we do not expect to find new particles with rest-mass equal to the Planck mass!

Our model, moreover, explains also the reasons why(42)(within the "outside viewpoint'):
Planck-mass = yé = O-I/meylozom ; (71)
G P P
6 x 10-39
In fact, we have that | cf. egs. (29),(30), so that g% e
2 sz
15 ey B N =1] (71')
he ohe [: S ‘

wherefrom (putting @~ 1;\51040):

m
4(% 8 =B 1/@'1 w1070 wm (72)
f\fls P

(Following a slightly different philosophy(sg), the Planck-mass may be considered as the
strong-charge of the whole nucleon) ,

Incidentally, we can get the definition of G in terms of other constants(42)

2 = 2 -

sl =atble. - B B [ i =

G =0 s gxhe if N —1] A (73)
w?  mflEM R _: S

wherem = m, M

M(U); ¥ = R(N); R = R(U): cf. ref. (51) and Sects. 7, 8 in the following. Of course, i
suitable units G =

=

Eqgs. (68) and follows are based on a very naive assumption, However, accordingto our previous
{naive) approach, we can conclude that Planck-mass yHhe/G = 2. 1x10‘5g can be considered as abou
1/3 of the 'hucleon strongcharge' and it can therefore be associated to quark strong-charge within
the outside viewpoint.

We shall discuss the problem of quark binding-energy(sg) later.

Less na'ivelx, the hadrons can be e. g. considered with total strong-charge zero, each quark ha-
ving a strong charge sjg where 2s;=0. Quantities s; play the réle of the strong-charge signs, but
(instead of being +1, -1) they cane.g. correspond to the numbers - {3/2 +i/2; A3 /2 +1/2; -i.
In such a case, antiquarks would possess one of the following strong-charges: +ig; (§3/2-i/2) g;
(rﬁ‘/z-i/z)‘ g, as one can easily guess by depicting the strong-charge signs on the complex plane.
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It is self-evident that the sign of quark-strong-charge can a priori be identified with colour. Usual
"strong' interactions should then derive from ferces of Van-derWaals type. (We shall touch again
these problems in Sects. 5 and 7).

EBefore passing to the new Sub-section, let us notice that, if an hadron-constituent possesses on
the contrary (inside the hadron) only an inertial mass mp=m /3, then it would possess outside the
hadron the inertial mass m;» 10-20 m /326 x 10“45g. In such a case, that hadron-costituent wou-
1d not be easily detected (when possibly emitted by the hadrons). The last considerations, of course,
are still within the "outside viewpoint'.| We are left with the problem of investigating what the ha-
dron-constituents exchanfe among themselves when (strongly) interacting. Let us remember that
the internal, Lilliputian( 5) observer should see that they exchange nothing but gravitons; we must
translate this in our language (without forgetting that, inside hadrons, the correct equation should
be the eq. (66')). )

We might suppose that (inside our cosmos) gravitational interactions are mediated by
spin-two gravitons having about the same gravitational charge as the spin-zero "gravitons'' whichmust
carry the gravitational interaction in the surroundinggof the cosmos itself (cf.eq.(50) in the static limit:

) int : ext -40 -120
m(§=2) m (=0 w10 mgx10T UM, (74)
where M is the cosmos-mass.
In our theory, one might analogously say that "strong quanta' inside hadrons (let us a priori

call them "strong gravitons" or "spin-2 gluons'(39)) are expected to possess conformally invariant
masses equal to 10-120 times the conformally invariant mass of their "universe' (i. e., of the hadron
as seen from inside).

It means that hadron-constituents (e.g., quarks) might interact via spin-2 "gluons" with
strong-charge [G=NS=1J :

40
8gq R 10" 'm_ (75)
42bi
where SG means "strong-graviton"( “E). Notice that we need here a factor 1040 (instead of 102?

as in egs. (55)) since, in the interior of the hadrons, we must substitute the "outside'' equation
(65') with equation (66'), strictly speaking,

Even in the immediate surroundingfof the hadron, when dealing with strong charges, we ought to
use eq. (66') rather than eq, (65'): in such a case, we ought to say that even the strong-charge of the
"external" strong-quanta is 1040 times m . In order to comply with the usual, physical procedures,
we can however go on writing (so as in Sect. 2. 4) that within the "outside viewpoint'":

gnf\\jlozo My [outside hadrons} ;

Let us repeat that the theory would be simpler, even from the viewpoint of physical-dimension
theory, by adopting the choice in eq. (56).

3. 3. HADRON AND COSMOS EXTERIOR:

Let us now come to point (b) of Sect, 3. 1. Namely, let us consider two cosmoses, i, e, two objects
with the same size and mass of our cosmos®), Since we - for simplicity - are assuming them to have
the same mass Mgo=M'M=M, we are supposed to use eq, (11). Actually, let us consider the gravita-
tional interaction between the two cosmoses when they are close one another (in the same way as
when considering the strong interaction between two hadrons). Initially we have [a&nka%l) = a =1]:

SGMoo 2GM00

. B e—— S e—— = = = 1

r 3 5 5 ELM @ =a 1] . (11")
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Then, if we scale both cosmoses by the factor p , from eq. (18) we get:

L [a]e] N {Hl): i
P —52 o, [MOOM M] : (18")

-40
Ifo=x~10 , then the two cosmoses reduce to nucleon size, and at the same time we have:

2GM | 10-40-

2
i

i
Y

-40
But, at the end of Sect. 1, we have already seen that such a contraction (by the factor g 210 )
transforms gravitational interactions into strong interactions. So that it must be mp= nucleon mass}.

2GM
2GM P -40
g & " 3% ‘ E sk ‘J o
A g r
wherefrom
-2
M= ¢ "m , (77)
P
that is to say:
Mzmgom ; m = 1080 M } (25)
P p
We have thus demonstrated Eddington's relation(l {), which expresses the relation (in the past

noticed only heuristically) between cosmos-mass and nucleon-mass, Namely, we have derived, with-
in our conformal theory, that cosmos-mass M must equal about (1040)2 mp, We shall re-derive agair
this relation in the following, within a more detailed model.

At this point we might ask ourselves the following: the nucleon strong-charge and interactions
can be explained as deriving from the postulate of dilatation-covariance applied to the cosmos cha-
racteristics and laws (i. e., briefly speaking, by contracting a "gravitational universe' like our co-
smos); then, why nucleonspossess also a gravitational-charge m_? The answer relies on the fact
that nucleons, besides being (strong)universes, canbelong themselvesto a "higher-order universe,
i. e. to our own cosmos (that we see governed by gravitational interactions, andin which inertia coinci-
des with gravitational-charge. In our cosmos, moreover, inertia comes from gravitational interact-
ion with all the other bodies of the cosmos, according to Mach principle).

Analogously, we can start from two nucleons, and then dilatate both of thern(43) by a factor
o'~ 1049, thus obtaining two ""cosmoses'. Such cosmoses will be governed (inside themselves) by
gravitational interactions, if the two initial nucleons are governed, inside themselves, by strong
interactions. Moreover, those two cosmoses will mutually interact (when ''close' to each other)
through eq. (36), in the static limit. Such a gravitational interaction between the two cosmoses, which
corresponds to the potential-energy (36), is completely analogous to the strong-interaction of two nu-
cleons, which corresponds to the potential energy (37). Eqgs. (36) and (37) were written in the static
limit, but these statements should hold also in the non-static cases.

In other words, for an observer who dilatates together with the two initial nucleons, the two fi-
nal cosmoses interact via ghort-range strong-interactions,

Let us notice that the characteristic time of such two-cosmos interactions (e. g. with subsequent
gravitational decays) would be given by eq. (27):

Asz 107 S 3 x 10 y (27"

so that we should very scarcely realize interactions of such a kind of our cosmos with other (possible)
cosmoses,

However, if the two cosmoses belong themselves to a ''universe’ of even higher order, then
they will posses (besides the gravitational-charge) also a new infra-gravitational charge (or mass),




-21-

due to their interactions -via an infra-gravitational field - with all the bodies of the "big-universe"
(always in accord with Mach principle). See also the end of Sect. 4, 2,

We are therefore led to enlarge, a priori, the possible hierarchy of "universes'', with their asso-
ciated fields and characteristic''charges'': we might call the hadron (and strong-charge) the zeroth
order universe (and charge); our cosmos (and gravitational-mass) the first-order universe (and
charge); the "big-universe' (and infra-gravitational mass) the second order universe (and charge).

If we start from a cosmos (containing very many nucleons, according to eq, (25)) and contract it by
the factor 02 10-40, then each initial nucleon will go into a universe of minus-one order(-1), asso-
ciated to a hyper-strong charge (of order -1), And so on, We can add the observation that we are

much easily able to discover the fields stronger than the gravitational one, rather than the fields
associated to possible universes of order larger than one.

Therefore, we may even further generalize both Mach principle and Equivalence principle, in
the sense that - briefly speaking - : Inside a universe of order n, (n=0, ¥1 42,...), the inertia coin-
cides with the charge of the same order n, so that (only) the same-order field is geometrizable.

Let us now go back to egs. (33), which suggest to us that, if we now contract a cosmos by the
new factor 0 & 1p~"% (so to pass from the cosmos-radius to about the atom-radius), then we pass
from the gravitational interaction-strength to the electromagnetic intera-cqgn-strength. This looks
true, but the correspondence strong gelectromagnetic interactions cannot be developed much furth-
er (at least at the present level) for the following reasons:

a) gravitational and strong interactions correspond to non-Abelian gauge theories (see e,g.ref.(39)),
since those fields act as sources of themselves (and even their quanta feel their corresponding
fields).Onthe contrary, Maxwells theory canbe an Abelian gauge theory: for instance, photons do
not carry electric charge;

b) gravitational and strong interactions seem to be always attractive, differently from electroma
gnetic interactions.

For these reasons it appears difficult to define a "universe' inside which the electromagnetic
field is geometrizable; so that we confined ourselves to gravitational and strong interactions. Of
course, other approaches are however pussible 44 .

4. - DIGRESSION: THE SIMPLEST COSMOLOGICAL MODEL (AND MACH PRINCIPLE),

4.1 - OUR PROGRAM:

On the basis of what previously explored, we are now in the condition to be able to derive, for
instance, the value of many physical quantities from a few input-data: (i) the experimental value
G = 7x 10711 Joule x m/kg2 ; (ii) the experimental value of the ratio
gravitational-interaction strength over strong-interaction strength s /SS 2 10740, and (iii) the
values of the age t o IOmy of our universe and (at a certain extent) of the light-speed c 24 3 x 108m/s.
Moreover, we shall assume as known essentially: (a)the Newton gravitation-equation;b) the experimen-
tal behaviour of Yukawa potential; (c) Einstein equations with cosmological term,

Then, our "dilatation-covariant' theory allows us to derive for instance: 1) radius and mass of
the cosmos; 2) the nucleon mass; 3) the radii of nucleons and other hadrons; 4) the strength of Yu-
kawa potential; 5) the value of quark strong-charges; 6) the graviton mass; and so on.

In order, to accomplish the previous program, we want now to '"particularize' our previous
theory, by choosing specific models for the gravitational and the strong universes. Actually, we
are going to consider Einstein-fype equations associated to both gravitational and strong inter-
actions, together with their Schwarzschild solutions. We shall thus deal with (gravitational) black-
-holes and with ”strong-black—holes“(9), instead of dealing with generical universes,
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4, 2. - DIGRESSION: A VERY SIMPLE COSMOLOGICAL MODEL:

Before performing that program, let us however introduce in this Section a very simple co-
smological model (which apparently accords with the big-bang theory(45}), so to fix our ideas - fir-
st of all - with regard to our own cosmos. As a first, elementary result we shall calculate radius
R and mass M of our cosmos, Notice, however, that such a model is not essential to the econo-

my of the present work.

If we accept the reasonable philosophy that our 3-dimensional cosmos is finite and, roughly
speaking (i. e. apart from local deformations), with constant curvature, then such a curvature must
be positive. Namely, we are led to a 3-dimensional spherical hyper-surface, embedded in a four-
dimensional (Euclidean), outer, "abstract' space whose fourth Cartesian axis may be called the
"abstract-coordinate'' axis. Cf. also Appendix B.

In order to explain Hubble law, our cosmos can thus be imagined as the "surface'' of a hyper-
balloord46,47) which started with a radius(48) Ry% 0, is expanding untill a maximal radius R, and
then will contract again to RyA~ 0. For instance if galaxies are like dots on the balloon hyper-sur-
face, then during the universe expansion they will recede far away from each other, All the points
of the cosmos are equivalent (the "center' of the cosmos belongs to the abstract space, and not to
the cosmos itself!). Moreover, the fact that the older the detected galaxy-image is, the faster the
galaxy appears to move, suggests that speed f{(t) is decreasing with time, For further details, cf.
refs, (10,49); here let us remember that any observer P will see everything ''projected' onto his
tangent space (extrapolation of his local, flat space) (25). See also Appendix B,

Since in its expansion the universe is slowed down by its own gravitation (that acts something
like the surface tension in a bubble), roughly speaking we can assume its radius R to change with
time as follows:

2
= t- — @t
R Vs 5 at, (78)
where the initial speed v, is, and remains, the maximal speed (in the abstract space), and can be
assumed to be the light-speed c¢g at that time, We shall assume moreover c, to be not far from
the present-time light-speed c (cf. eq. (89) in the following),

The maximal radius R = R () will correspond (if c, & ) to

Rxc -Aatmec-at =0, (79)
whence: N
co c 9 o
E:T:‘J__ =2 10 m/s - (79")
t
so that
et - -
0 gt =_ 2R
= 4 Hi i ¥
R 3 =~ ) e x (80)

Stictly speaking, the negative acceleration - a is however a function of time, As we shall see,
we can assume our cosmos to be not far from its maximal expansion (R4 R), and eq. (78) to hold
at least in a certain range R- AR < R'%£ R of values R' = R(t'), where now Vo = vo(t') 2¢. In this
last case, we are fully authorized to assume that vq(t') is not far from present-time light speed.

Within our approximations, if the negative acceleration, -a, of R = R (t) in the abstract space
is due - as previously said - to the gravitational effect of the cosmos-mass M on itself, then(50):

am S (81)
=2
But, since a =~ 1/2 (cz/ﬁ), then it ig(51)
3= D=
1 QL t o A GUR
o =S ; 82
iy G 2 G (82)
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the fact that, from the value of G, we can calculate the cosmos-mass M is in full egreement with
Mach's principle, Vice-versa: G=1 c? R/M= S #/M2, (see eq. (115", Sect. 6)_‘51%
2 2

Our model, though very rough, forwards acceptable results. For instance, using as input-da
tum only the cosmos expansion-time t, we can derive both the cosmos expansion-radius R and the
cosmos-mass M:

1026

R

1R

m (83)

and 25
M=10" Kg (84)

Moreover, let us underline that eq. (82) can read( in full accord - as we see - with the standard
estimations of modern astrophysics for cosmos radius and mass):

- 2GM
R= T (85)

which yields for the cosmos maximal radius R exactly the cosmos "Schwarzschild radius" 2GM/02;
cf. the following(52). . 5 g

We thus predict, incidentally, that the mean density in the cosmos isp g M/cs‘{ 210 Kgm'a
1 O‘zgg/cm3; moreover let us notice that the condition, set recently by Cook within the Mack-Ein-
stein-Sciama-Dicke explanation of inertia(53),

C
R = %

2nG R t8e)

| wo

GM
TR

0o |

(where R is the present-time cosmos-radius) is quite natural in our model, - and consistent with
our own assumptions,

Owing to the fact that, during expansion, R=R(t) is an increasing function of t, we could choose
the axis R as the axis of a certain ""cosmological time'" = R/c_. One might thus interpret why we
can stop our movement in space but not our "'movement' in time (i. e. along the "abstract'' radial
axis), Such a suggestion to consider the "abstract', fourth dimension of our model as a time-coor-
dinate (except for a multiplicative constant with the physical dimensions of a speed) is in agreement
also with the considerations in notes(54, 55),

Let us emphasize that our simple model yields the ""Hubble law' - as expected - with an Hubble
constant not far from the usually accepted value, Namely, let us start by considering two different
observers A and B, and call B0A=g , where 0 is the ''center' (belonging to the abstract space!)of
the hyper-balloon, Then, during the cosmos expansion they will appear to move each far away from
the other along a straight-line with the speed

d (AB) dR
Htyeg=——= = go—==, Blc =ut) (87)
which reads o e .
u(t) = Be (88)

as soon as we adopt the physically self-clear identification:

’

¢ =y -8t R, (89)

where fl;f{(t) means the valueof R at the present timet, Eq. (89) tells us also theinteresting result that
the ligh-speedis connected to the expansion speed of the cosmos inthe abstract space‘ﬂs@. Actually this
result is consistent with the fact that Relativity seems to predict (by extrapolating theusual '"'Dragg-
effect" formula)(SB' 57) what detailed in note(57). In other words, this result is consistent with a
model where our cosmos moves with the light-speed relative to the (four- d.imens_ional) abstract-
space, such a motion introducing no anisotropy in our cosmos since the speed R = c is directed
orthogonally to our 3-dimensional space. This seems to explain why nature suggests(17)as notices e. g.
by Minkowski, that 1 second = 299,792, 500 meters, or rather:1second=i(299, 792, 500) meters.

In our approximations, one could write, remembering eq. (79'): :
c c(1+ t/f)ay2c; (90)

U % o
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notice that the alternative approximation c,g (1 - t/’f)'1 yields e.g. c % 3c forgﬂa)t:s(z/s) t. More-
over, we_connected by eq. (80) the light-speed ¢ with quantities t, R; if we (instead of deriving the
value of R from our theory) borrow or extrapolate the values of bothT and R from experience, then

we can heuristically calculate even the value of the light-speed. In fact, from eqs. (80), (85) and
(90) one can write

c A ﬁ/{ 2 2GM/(c2 t)

- 26

ey (2SN U/, By MO, o st m /e (91)
i t i 17
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In conclusion. from eqgs. (85),(88) and (89) we get

+nd then calculate

u(t) = u =,8'(c0 - at) = B.c(t) = Be,

and from the expression d(t)=d=g- R(t)z 8-R of the distance d(t) of the two observersA, B one gets
immediately the Hubble law:

u=(c/R)d, (92)

with the Hubble constant ¢
< ,
H, = — & —:— B (1010 years) , (92")

as follows from egs. (83) and (89).

The present model is essentially a Friedman model, or rather an Einstein-De Sitter model
with non-zero cosmological constant but nevertheless non-static,

For the following of this work we have to retain from this Section 4. 2 only these points: (i) that
we got cosmos radius and mass from the age of the cosmos (and from the value of G); (ii) thal our
cosmos may be considered asa "'gravitational black-hole(27) embedded in the "big-universe'(28),
For simplicity, the previous considerations about hyper-space can be forgot in most cases, in the
following, and we shall often be able to refer to "Newtonian' models (in three space-dimensions);
thev are however important to satisfy the Copernican principle.

Here, let usexplicitly clarify that the point (ii) above means merely that: (a) according to
the previous model, our cosmos can reach (in the "big-universe') the maximal radius R given by
eq. (85); (b) inside the "surfacg" corresponding to R = 2GM/c? the radius R of our cosmos oscil-
lates periodically from R, to R, and then from R back to Ro’ and so on.

Refore going on, let us clarify that, - if we assume for the spatial part of our cosmos the mo-
del of a spherical hyper-surface, - then the same model must be adopted for the ”big universe' (as
well as for hadrons), and so on. Therefore, the intersection Z of our cosmos with the ''big universe'"
will be a two-dimensional spherical-surface (as well as the intersections z of hadrons with our co-
smos: see Sect. 7). As a consequence, the expression "inside a hadron'' will have a meaning analo-
gous to "in our cosmos". On the contrary, the expression "outside our cosmos' will have the mea-
ning "outside Z, in the 'big universe'', (and will be quite analogous to ""outside z, in our cosmos'');
cf. also Wheeler, ref.(41). As we adopt Einstein equations - with cosmological term - in our co-
smos (for gravity), so we adopt scaled ('"contracted'') Einstein equations in hadrons (for strong-'field
and scaled ('"dilatated") Einstein equations in the "big universe' (whose spatial part is still 3-dimensi
nal!), for infra-gravity. For instance, we can have a priori (gravitational) black-holes in our cosmos
strong black-holes in hadrons, infra black-holes in the "big-universe', etc. Notice - however - that,
even if we consider each whole cosmos (intersecting the 'big universe'') as a '"'gravitational black-ho
le'" and each whole hadron (intersection our cosmos) as a ''strong black-hole'', for the surroundinggof
such particular 'black-holes' (in the "big universe' or in the cosmos, respectively) we ought to mak«
recourse to equations of the type of egs. (38),(39), - yielding an exponential damping - due to the inter
ference of their characteristic (strong, gravitational) field with the gravitational, infra-gravitational)
"field" of the "embedding', higher-order universe (see Sect.5),
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PART B: FORMALIZATION OF THE THEORY

8. REFORMULATION OF THE THEORY.

Within our philosophy (cf. e, g. Sect. 4, 1), we wrote FEinstein-type field-equations in corres-
pondence to gravitational or to strong "'fields'', respectively. Generalizing it, we shall write Einstein-
type equations in correspondence to any one of our n-order fields (i.e. fields associated to n-order
universes). Such equations will admit black-hole-type solutions, so that we can deal with gravitat-
innal (or first-order) black-holes, strong (or zeroth-order) black-holes, and so on, Before going
on, we ought to remember what stated at the end of Part " A.

From Sect. 4, we can infer that our cosmos itself may be considered not only as a (generical)
gravilational-universe, but more particulariy also as a gravitational "black-hole'(27), intersect-
ing the ”big-universe"(za): see end of Sect. 4. 2. ; so as hadrons themselves can be considered as
"strong black-holes' intersecting our cosmos.

With regard to the gravitational case, let us base ourselves on General Relativity. Letus startfrom
Finstein field-equations with cosmological term, which read (when only gravitational interact-
ions are present):

8aG

. v TR L. (93)
Ry - 8, Bo = "Buy 4w
where(58) Tigar & (P+QM02) u, u, -Pg,,is different from zero only inside the source mass-distribu-

tion; and where 24 = (mge/f)2, quantity mg being the graviton-mass (see eq, (43)) and quantity @y
bring the mass-density, g '

/A

A priori, eq. (93) holds inside, rather than outside, our cosmos (see Sects. 4. 2. and 2, 5). With
regard to the "inside' case, for every spherically-symmetric mass distribution eq. (93) yields a
"Sehwarzschild solution' with cosmological term (see Sects, 6 and 7). As we shall see, such a solu-
tion (for bodies gravitating inside our cosmos) has a quite good behaviour, since it gives the poten-
tial Gm/r for not too-large distances and the "confining' potential c24r2 for very large distances
(see refs. (59+61)). However, the situation becomes different when we consider the whole cosmos
as a ''black-hole'’, hecause our cosmos is then embedded in a higher-order universe (the "big-uni
verse(28) and no more in a gravitational universe: let us call "infra-gravitational" the field charac
teristic of the "big-universe'. To get the gravitational potential nearby our cosmos (in the big-uni-
verse), we must proceed as in Sect. 2. 3 (where we had to refer to a flat background); we can explain
the origin of the additional terms in eqs. (38), (39) of Sect. 2. 3 eitheri_ngeometrical terms(as we did,
and shall do (Sect. 8)], or as due to the interference between the gravitational field (present nearby
the cosmos) and the "infra-gravitational'' field gu,u“FR ~ 17, (typical of the "big-universe", and re
presenting itself a De-Sitter infra-background deviating from the flat space only over big distances
in the big-universe), The last explanation is analogous to the procedure recently followed by Salam
(see ref, 42bis) when considering the same problem at the next lower "hierarchical' order (i. e, when
considering the surrounding of a hadron in the gravitational universe).

Eq. (93) characterizes(m* 58) incidentally a gravitational universe with radius R=

At this point let us postulate that the field equations for gravitational and for strong interact-

ions are respectively given by the corresponding Einstein eqs, with suitable cosmological constants,
as follows fG = Ng = 1] z
1 04 8 " B

va'EngRe' Buv = = oE _T!W. 2‘4:(.-‘5 ), (94)

for the gravitational case; and
m._c
v 1~ ~ & _ 8z o 2
R,u,'p 2 g‘u,-p R’g ngﬂv Cr Sll.l”l" 2H 1(_‘5 ) {95)
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-40
for the strong case; where eq, (¥4} goes into eq. (95) under a contraction(sz’ 63) by a factorpg 210 .

Quantities mg, mg are the masses of the gravitational quanta and of the strong quanta, respectively
(see Sect. 3. 2 and 9. 1). Analogously, let us assume egs, (38+46) outside our cosmos{in the "'big-
~universe') and the corresponding, scaled equations outside hadrons (in our cosmos) : cf, however,
also Sect. 8,

In particular, we shall call A the "ecosmic' (rather than cosmological) constant, and

- 40 2° -1 -25
H=@2A¢:(10); H =10 c

the ""hadronic'' constant, Tensor SFW is connected to the strong charge distribution, For instance,
in the ""static' case, we have

m2=0. 1 barn (96)

2 2 2
N = w8 nMp C (97)
TOO s ‘-G c e ‘?M 3 “o00 A=

1
0

where @g = gy and Qg are respectively the gravitational and the strong charge-densities, In

other words, the "strong-matter" tensor Syy is essentially Sup= o-1 .T|u.'v¥1040 Tyy » where T

is a priori the ordinary matter tensor (containing e. g. the Dirac spinorial functions). Let us
remember that, owing to what precedes, we shall use egs, (94) and (95) in connection to purely gra
vitational interactions or purely strong interactions, respectively. Let us observe that, as in our
cosmos we have E = mc2, where m is the gravitational charge, so inside "strong universes'' (ha-
drons) we shall have (within the "inside viewpoint) E = gc2y 1040 mc2, quantity g being the strong
charge evaluated within the 'inside viewpoint" (g4s10%4%m), for all objects having a strong charge (i.e
with scale factor a=¢ 210‘40).

In all cases, i.e. in all 'universes'', we can write for all bodies possessing a non-zero charge

of the corresponding order:

D) =mIc2 (98)

where my is the inertial mass in the universe considered (cf, egs. (66'), (67')).

Let us first consider the gravitational case, i, e, usual Einstein egs. with cosmological
constant(64) (or rather with "'cosmical constant"), For a stationary, spherically symmetric mass di-
stribution M, we get““in vacuum the Schwarzschild metric | G=c=1 3

2 2
2 2N A 2 2M -1 _2 2 2
e s +—3‘° Jelt”-(1-== +—%‘"—J a2 p2(d0 + gin"6 ¢ dp), (99)

Let us now write, in an explicitly dilatation-covariant way (see Sect, 1):
2M A 2M . -

2_ 00 00 2. .2 00 el 2 2
do =(1 7 +——3 N)de " -(1- 7 + 7 n) “dy -1 dQ, (100)
where da2§d'q'“’ dnu; eq. (100) can read (cf. Sect, 1):
oM 3N 1
AL o 2~1 2 2
de”=(1-—22 ¢+ A°2° P9t (1 —22 g+ —-r) dr” -p 4@ , (101)
30 30

where 6 =1 in the gravitational case, and 0 2 10-40 in the strong one.

Then, in the strong case, for a stationary, spherically symmetric distribution of strong-char-
ge, we have in vacuum the 'strong Schwarzschild metric" ENS=C=1] given by eq. (101), where
A oo/ QZE Hh

Before going on, let us once more underline - with respect to eq. (101) - that we started from
a spherical, gravitational mass-distribution and then we "collapsed" the whole system "source plus
test-object'', so that we proceeded as in eqgs. (10), (18). However, let us remember that we could

have "collapsed' only the source (plus its field), with the convention of testing both the initial and
the final field by the same test-object (like ahadron, i, e. an object sensitive to both gravitational
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and strong fields)(65), In this case we would proceed asin eqs. (15), (20). By comparing those pro-
cedures, in the case when one starts from the whole cosmos, - eqs, (38+46),- with mass M=M(in =Mgg, and
then uses as test-particle a nucleon, with mass m(p)=m_ and strong-charge m(p)/e within the "in-
side viewpoint'' , we got in Sect. 1 that m(p) & 10-80M, Since in Sect. 4 we calculated the value M2z

1 053Kg, then our theory yields also the nucleon mass, as already claimed: m(p)srnp:‘:IO'z’? kg.

Another way to get this resqlt has been put forth by us in connection with eq. (77).

Since the present point looks to be important, here let us briefly reformulate the related proce-
dure, remembering eq. (19) and eq. (54'). Namely, we can consider the initial, gravitational masses
as actually invariant:

M=M_ ; 2 U= oy NP
00 00
and call them the "charges'' (or the '"'masses'’) tout court of the initial bodies. Then, after a dilata-
tion, we can include the factor g entering the expression GMgo/o (cf. eq. (19)) or GMoomDO/Q (ef,
eq. (54')) into the universal constant G, so that:

&
G— G' = T (102)
as already suggested at the end of Sect. 2, 4 (for an alternative convention, see eq. (56)). For instance,
with 0210740 we should pass from the gravitational potential-energy GM m /r (let us for simpli-

city forget about the exponential factor appearing in the "'external' case) ?gth%ostrong potential-ener-
gy

NM m
S oo oo G 40
—T———,[iNss- 0 v 10 Gjl. (103)
where we do not introduce any moreboth gravitational and strong charges, but only the charges (or mas-
ses) myg, Mgp. Of course, this procedure assumes G # Ng # 1, in agreement with the ""Generalized
Theory of physical dimensions'(66)(and with our Sect. 1.2, Sect. 2. 4 and footnote(l¥). In such a new
context, we may call G the gravitation universal-constant and Gg=G'=Ng the "'strong gravitation' uni-
versal-constant; for instance, in . S. units:

30 3 -1 -2 hec
=N_& 10
GS g~ m Kg s m-ﬁz'n (104)
(67) _ : . . " " . . .
where of course [GS] = [G] and the strong field is considered as a 'strong  gravitational-field
acting(throughthe constant Gg) on the usual masses (or charges) m00=m; Moo =M;...

Going back to the "inside''case, in this new formalism (GfGSlNS,*I;[GSJ = [G] ), for the strong
case we get the metric:

2G_m 2 2G_m 2
2 =
da” i1 « S oo 5 Hr yat2-(1- S 00+Hr ) ldrz—rzd.Q ‘ (105)
Czr 3 ¢ r 3

where mgq refers to any hadron-constituent, in analogy to the gravitationa equation (101) which read

2 2
2GM r 2GM A
2 _ oo . 4oo 2 00 o0’ -1 2 2
ds =(1- - + 3 )dt _(1-T+—3—F—) dr -r dQ' (106)

where M, refers to any cosmos-constituent,

The new flormalism is preferable also because it allows assuming for instance c=i=1, so to have
[M] = LL ] in agreement with eq. (6); on the contrary, when assuming (as previously) G=c=1, then
we have fM = L] » Which is a dimensional relation that does not fit elegantly into our "dilata-
tion-covariance' philosophy. o
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r> - GRAVITATIONAL AND "STRONG' BLACK-HOLES AS PARTICULAR REALIZATIONS OF
LL\IVT‘RHF‘%"

In Sect. 4 we saw how our cosmos can be considered (at least under- some approx1mat10ns) as
a gravitational "black-hole’” (cf, end of Sect. 4, 2) with radius rb!G (U) = R~ 2GM/c2~ 10%6m, By
exir aunl;;tin: for a moment eqs. (99) or (106) to the whole cosmos, in correspondence to M=21053 Kg;

MY 107%Kg; (@ 10740), also our reformulated theory yields the unique solution
r{SG) (g) & R & 1026 m, [(G ) = gravitationalJ 3 (107)

in agrzement with eq. (83). Of course eqgs. (99),(106) are not to be used for deriving the metric both
inside! %) and outside our cosmos (in the ' 'big-universe' (Z8); but they can be here enough for our
"m poses, On the contrary it is always possible (by using suitable coorumalea;\--‘s} to de.‘:cnbe in an
"orthodox' way the Einstein-De Sitter space constituting in our philosophy the "interior' of the co-
smos,

With regard to hadrons (e, g, nucleons) they can be considered as "'strong black-holes' (see
eq. (101)), e. g. extrapolating to the whole ' strong universe'' the eq. (101) andthe Einstein-type equat
ions (95). Namely, we can look for (strong) ''black-hole'' solutions of eq. (93), that is sosay of eq. (101)
or (105). The "(str ong '}y Schwarzschild radii), that we find out in this way, will represent the nu-
cleon radius (more generally the hadron radii), as shown by hadrons in strong interactions, in the
limit when we choose moozm(p)=mp-

Let us start by fixing our attention on eq, (106) for the gravitational case, in the limiting case
when Mg,=M=cosmos mass. To get the Schwarzschild radii, we need essentially solving the equation

m._.cC
2GM 1 G P Bin)
1--—§-—C el ( 5 Y (108)

which always admits only one solution (cf. eq. (107)). In dilatation-covariant form, eq, (108) writes

2 GM , 4 -
o I - Ml e (109)

G

713+6 { o
m

where as usual 7= r/o ., Inthe strong case, it is ¢ &/ 107 40, so that - if we remember that eq,
(107) is the solution of eq. (108) - one might expect thenucleons to have radii r & 2 10740x 104 26m o

2 10-14m, However eqs. (108), (109) were of course derived in the case when the fields are test-

ed by small test-objects: in other words, they hold for cosmos-constituents and (only) for the
possible, small constituents of nucleons, respectively. On the contrary, when considering quarks

- which in any case are not a negligible part of the nucleon - the eqs, (101), (105) are only appro-
ximate; and we could heuristically proceed as follows, When quark consideration is essential, then
in egs. (105) (108) - for instance - we should have to compare, with the gravitational term
Z(rI\IODm/c r (where m is the negligible mass of the test-object), strong terms as 2G8(mg'mq)mq/(c2r)
(where mpem(p)=mg,, and mq¥ < (1/3) mp is the quark-mass) rather than as ZGsm m/(c

Roughly speaking, we thus get an extra factor of the order of 2/3-1/3 & 0, 2, with respect to
the "negligible-test-object’' case, which enters the second term of eq. (109). For the nucleon-ra-
dius r(SS (N), the eq.(109) then yields - also in our reformulated theory - the unique solution

r(S)(N) 3 10" e 107> ol [{s) = strong] : (110)

re detailed calculations will follow (they partially appeared in ref. (9)).

» =
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(68)

In this model ( which, incidentally, is a realization of the MIT bag model ), the quark con-
finement is an automatical consequence of considering hadrons as "strong black-holes''- at least
when neglecting hadron spin and electric charge. Notice however, that our clagsical confinement
inside the black-hole horizons(which, incidentally, acts only on objects with scale factor a = @ =
~ 10740, i, e, feeling the strong field), can moreover be partiel, a priori, due to possible quan-
fum effects(ﬁo).

Here let us add that within our model the hadrons can be considered - loosely speaking - as be
ing something like cosmoses (which are gravitational black-holes), but with much smaller radii be
cause they possess in their interior much stronger forces. But let now start from a nu
cleon with its radius given by eq. (110) and endowed with its (internal) strong-field, If the nucleon
(let us call my = m(p) its unknown mass) had to be a black-hole internally governed by the gravita-
tional field, thenits internal distances ought tobe reduced by another factor %10 in order to obtain
the same effects as by the strong field. It means that the gravitational Schwarzschild radius of the
nucleon should be

I‘S(G)(N) ~1040 10740 rLG)(U) . (111)

By comparing eqs. (107) and (111), since in the gravitational case the Schwarzschild radii are pro-
portional to be masses:

(G) 2GM

-
e, BT ¢
then it again follows that it must be
-40.2 : z
m(p)a (107 )7 M(U) 2 10 80 gt Kg= 10 27Kg. (77)

We have therefore derived eq. (77) also within the reformulated theory, and in particular within
our'black-hole"model.

If we want to imagine hadrons as produced by contraction (by different factors) of the same
"reference hadron'', then egs. (4) and (6) yield:

r m
N 112
4%, (112

i
where 1y, mj and ¥, @ are respectively radii and masses of the hadrons considered and of the "re-
ference hadron', The 'reference hadron' can be e, g. the neutron, If r=v 10-15 m and m & 10-27
Kg (as for nucleons), then:

F m~ 10'42ng. (113)

If we identify T m = fifc, so to be able to write the Compton wave-lenght-relation of Quantum Mecha-
nics

r. & ——@/—_. s (112')
i rnic
then we are able to calculate that:
% 10y ., (114)

Analogously, we could proceed in a similar way when considering various cosmoses. In such a
case, we should have:
R M
i~ 115
Ri ~ Mi (115)
120

where M, R refers e. g. our cosmos (the'reference cosmos''), so that M R&10" " i ¥, and we can

write I:xf’/c = MT{] R X {11557}
i Mje




If we agsume that the same ¢ = erg both egs. (112') and (115') - sinceunder dilatationthe speeds do
not change - then we get for the cosmological correspondent of Planck-constant (i, e, for the "cos-
mical quantum of action'') the value:

w31020%, (116)

If we consider our own cosmos as "corresponding'’ not to a generical hadron, but just to a spin

1/2 baryon (e, g.nucleon), then according to our model it would be expected to have an angular mo-
mentum

3 = K 10120 —ﬁ (117)
2 2
: -20 -1
wherefrom it would follow that our cosmos rotates with the angular frequency @A 10 B .
This attributes to the cosmos the following rotation-period and frequency:
20

T 2 10" 5
(118)

-3 -1
v x 10 “(cosmos age) .

These results, - derived in correspondence with the analogous, semi-classical evaluations of pe-
riod and frequency of the hadrons themselvers, - are only indirectly associated with its upper limit,
evaluated to be very low(69), Nevertheless, if we disliked results (118), we might then "agsociate"
- within our model - the cosmos to a spin-0 meson (as the P_i(ll_l.(lg)), rather than to a nucleon (mo-
del of the Super-pion). In such a case, we should meet the nice feature of considering our cosmos
as having a structure similar to the ""quark-antiquark'' structure of mesons. In other words, our
theory - when taken seriously - would possibly lead to the known model where our cosmos is essen
tially consituted by two ''sub-cosmoses' or ''Meta-galaxies', one of matter and the other of anti-
matter. Moreover let us recall - as already mentioned - that many "numerological' relations are
well satisfied just by the pion-mass; for instance, from our eq. (25), the second eq.(29), eqgs. (85),
(86) and eqgs. (92),(93), one can derive Weinberg's relation(w{}:

2
KH
cG

m3’.".

It must be explicitly remembered, however, that the'quantum version' of our present model is
still an open question. Again, we shall only remember that, due e.g. tothe celebrate Hawking effect
(see refs. (60) and (70)), Schwarzschild black-holes are predicted within quantum field theory to
"evaporate(70) by emitting particles with a thermal spectrum corresponding to the Hawking tempe-
rature: £ 3 £ P h 1023 &

Teoro— 5 —

= 119
8 wGMk ¢ 2%k M o ( )

quantity k being the Boltzmann constant and M the black-hole mass. In other words, temperature T
is proportional60) to the "surface gravity' % of the black-hole,

In the case of strong black-holes we should have to deal with the much higher temperatures
[:since, e. g., quantity X has to be substituted by the "'surface strong-gravity"l:

TH = — [@;310'401 : (120)

and therefore with much higher evaporation rates. For instance, if an unstable cosmos (MaM(U))
has an ""evaporation' time of the order of Ta41017s, then an unstable hadron (24 10-40) is expected
to "evaporate' in a time of the order of

- -23
vy (1017 s)x 10 W 10 . s, (120")
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in agreement with the experimental life-times of unstable hadrons in strong interactions. Or rather:
for M M(U) from eq. (119) we derive T =y 10-30 0K; therefore for hadrons we immediately predicta

temperature T'sy 1010K,
More precisely, from the relation:

4 c 2GM
= —_— = 1
L dmkr_ [rs s ] ’ (1%
we immediately get in the case of hadrons (rg & 10-13¢m):
11
Ta2x 10 °K (121)

which corresponds to an evaporation-time of the order of the strong-interactions decay time (see
refs, (60).

We meet then the problem: if cosmoses and hadrons are (gravitational or strong) black-holes(71),
why some hadrons - and possibly some cosmoses - donot evaporate and are stable? A possible answer 'is
that the "quantized' version of this theorymust contain some assumptions analogous to the one set by
Bohr with regard to electron-orbitsinatoms. For instance, Salam42bis) put forth that the Hawking
temperature becomes zero (no thermal radiation) if a certain Regge-like relation holds between
spin and masses of hadrons.

By a quantization-condition of that kind we will get not only discrete (stable) hadrons, but also
discrete (stable) cosmoses,

With regard to hadrons, let us add that they should correspond to Kerr-Newmann (strong)black-
holes(47), rather then to Schwarzschild's. In that case, we shall meet naked singularities(47) : see
the following. Mdreover, stationary black-holes are generally believed to be characterized only by
mass, angular mom?ntun'. and electric charge, but they can actually be associated even to other

(72

guantum numbers

7. - ON QUARK CLASSICAL CONFINEMENT. THE "INSIDE' CASE,

As already mentioned in the previous Section§, we need considering eq. (99)+(101), (105, 106) and
(108, 109) inside the (gravitational or strong) universes, i. e. inside the "cosmological' (gravitational
or strong) "black-holes'. (For instance, we are considering our whole cosmos as a "black-hole"),
An interesting point arises in this connection, since crossing the Schwarzschild horizon (in General
Relativity) seems to be a problem mathematically very similar to the one met in Special Relativity
when "crossing'' the light-cone in four-momentum-spacel73), See also Sect. 4. 2.

Let us start considering eq. (106), for the gravitational case, keeping into mind that similar re-
sults will hold for eq. (105), i, e. in the sirong case. In the stationary (and small speeds) case, the

goedesic equation is [_-i, §=1;23] ¢

i -
x| oy 27 _? (1. 2mG +Ar2)( 2mG _ 24r )? -
a2 2 8 Epo,j dt2 2 clr 3 c2r2 3 'r

where m is now any source-mass (not the cosmos mass!), and the second eq. (122) holds
in the spherically symmetric case.

rs rs ;
In the case of "weak fields', i. e. when we can assume g 2 7 , then we simply get

dz-r‘m 0_24 e mG B czAr)_? (123)
dt2 - VEpo¥ ré 3
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so that a test-particle m', for very large values of r, will feel an attractive, confining force propor-
tional to r:

2
P - 8mG 1/3
Fay-m'Ad 5~ T [rz(—czA—) b R(Uﬂ : (124a)

In the strong case, we are therefore finding th Tzagne kind of confining forces as found e, g. by
Nambu and Parisi within the quark-monopole ’Lhet:}ryF 2) Let us remember, however, that a whole
quark cannot be considered as a test-particle inside hadrons; so that the result (if we define F=g'a,
according the "inside viewpoint'')

2 6N_g
FYy-gH %— r Ez( 023 )1/3m r(Ni[ (124b)
10)

holds a priori for the possible quark-constituents( , but it is only approximatie for quarks.

If we eliminated the weak-field condition, then from eq. (122) we would have that, for large
enough values of r: 9 9 3
dr ) A r Ar

) 9 +'3—+.... . (125a)
so that we would get an even stronger confinement, Analogously, in the strong case we'ld have
2 2. 3
_jjsl“g,al’-é_f_ +_‘13£ e oy (125b)

but in our model the conditions (r> R(U)); (r > r(N)) for the valiaity of egs.(125a,b) are almost never
satisfied, neither inside the cosmos, nor inside the hadrons; and therefore we are mainly left with
eqs.(124a,b), except when the hadrons - for instance - start deforming due to very high energy col-
lisons.

As previously mentioned, eq. (124b) should hold for small hadron-constituents(19) {let us call
them partinos), strongly interacting with the other hadron-constituents, rather than for quarks.
Analogously, eq. (124a) should hold for small cosmos-constituents (like galaxies, stars and usual

bodies), gravitationally interacting with the other cosmos-constituents, rather than for big portions
of our cosmos' ' =,

=47 be
Let us notice that eqs, (124a,b)yielda classical confinement which however¥partial, due for instance
to quantum effects (cf, also ref, (73)).We should moreover remember that only strongly-interacting
objecis are a priori expected to be (partially) confined inside hadrons (so as only gravitationally-in-
teracting objects oughtto be deemed as confined inside our cosmos).

If we particularize our philosophy by considering our Sect, 6, then - when describing our co-
smos and hadrons as ''blackholes'- the confinement of their constituents can be understood as due
to the horizon properties. Even in this case, however, the confinement can be partial, e, g due

to quantum effects; in any quantum theory, however, quarks can be again "totally'' confined by asso
ciating to the classical horizon a suitable "barrier'' of super-selection rules and of super-conserva
tion laws,

The fact that hadrons are ''colour singlets' may then be explained as in Sect, 3. 2, by identify-
ing quark-colour with the sign of quark strong-charge (cf, Sect. 3, 2), Hadrons would then have zero
total, net strong-charge (nevertheless, they would strongly interact, so as atoms can electroma-
gnetically interact), Something similar should then happen for the "Meta-galaxies' (sub-cosmoses)
constituting our cosmos (remember e. g. the modd of the "Super-pion''),

We already mentioned (Sect. 6) that, since hadrons can bear e, g. angular momentum (spin, J)
and electric charge, e, we ought to deal with Kerr-Newmann 47 "'strong black-holes'', rather than
with Schwarzschild's. But electric charge e of hadrons is very large in comparison to their mass
(see ref, (75)), so that the corresponding (axially symmetric) solutions of Einstein-Maxwell equat-
ions in the Kerr-Newmann case seem to show - if we accept them - that hadrons should be ''naked
singularities'" rather than Schwarzschild strong black-holes. In such case, we'ld still have quark
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(partial) confinement due to eq. (124b), and the (''dilatation-invariant') spirit of our theory would

not he affected; but we'ld have to modify our model accordingly. However,{ ?ince hadrons carry
futher quantum—numbersmz), it might be convenient (evenif not necessary)_.( 2) to generalize our
model by looking for (solitonic) solutions 1) in Yang-Mills theories, e, g. following Salam 2bis),

In such a new approach, hadrons still behave like strong black-holes (or rather "strong solitons''),

- in most cases, - even when endowed with spin, electric charge, eic, And, as we anticipated, stable

hadr&rk%,m%ght correspond to zero Hawking ' temperature', e. g. to a Regge-like relation of the
18 ),
ol

JAT+1.)

2 2
+N # = M
) Ng e I(I+1) Ng (126)

where I is the isospin. Relations of the kind of eq. (126) look a priori to be able to play in hadron-
structure-understanding the same réle played by Bohr conditions in atomic structure,

At this point, let us add the following. If we consider the hadron interior as being an Einstein-
De Sitter-type universe, or rather as having a geometry of Schwarzschild or Kerr-Newmann type,
then the SU(3)-symmetric nature of hadrons can possibly be derived just from their internal geome-
try. In fact, the Schwarzschild and Kerr-Newmann geometries (even with cosmological constant) cor
respond(21) to Petrov D spaces; and it seems that Petrov D spaces automatically lead('?) to SU(3)
symmetry. The same should thenbe translated in "'gravitational' language, for the cosmoses.

Let us moreover notice that, if the space-parts of both our cosmos and the ha-
drons are (3-dimensional) hyper-surfacejembedded in a four-dimensional space, i, e, if they are
the surfaces of four-dimensional spheres, then the intersections of hadrons with our cosmos
would be two-dimensional spherical-surfaces. Such ordinay spherical surfaces should just be what
we see of hadrons(77), Let us moreover observe that, if we accept that our cosmos expands untill
it reaches the maximal radius R = ZGM/CZ’N 1026m (cf, Sect. 4. 2, eq. (85)) and then recontracts,
the whole period being of the order of 4 x10  years, then each hadron would undergo a similar in-
ternal oscillation with maximal radius r=2NSmp/’c2 2/ 10" 1%cm (cf. eq.(53)) with a period of the
order of 10”%% seconds only. Of course, by usual experiments we should measure the average
radii of hadrons. The possible réle of such a "zitterbewegung'', predicted by our theory, with re-
gard to the properties and the quantum behaviour of elementary particles willbe considered elsewhere.
Here let us simply observe that our theory seems to support some "extended-type' models of ele-
mentary particles”a), particularly the ones where the particle-trajectory is defined only by discre
te points (connected by a periodic function 7 ), 80 as in Caldirola's model.

To conclude this Section, we have to consider the behaviour of a "universe-constituent' for small
values of r. Let us e. g. consider the case of a ''partino'(10): the geodesic equation in the strong case
writes [N B Ns:l i . 2H Nz 9 v 2H2 3

g, SR g3 ging € P (1227)
r 3 clr 3 9

where a is the radial acceleration. We already discussed in eqgs. (124b) and (125b) the yield of eq.
(122') for very large values of r. For small values of r, on the contrary, the attractive term

o -1/r2 dominates (as in the gravitational case). Notice that the repulsive term oc + 1/r3 effecti-
vely works only at extremely small values of r, so that a0 only for r= 10-33 em (and, in the gra
vitational case, we'ld get a= 0 only for r':ﬁGrnfcz'. ). However, we can comply with the requirements
of the so-called asymptotic freedom by attributing a kinetic-energy (and an angular-momentum J with
respect to 0) to the considered Eartino(lo), i. e. by adding the "kinetic-energy term'' to the potential
corresponding to eq, (122'); so that for small r, [r« r(N)| ,and with the choice (56) :

V:ﬂg'_)z__(ﬁg_l\l_zgi C2H +....)g__l:{g. +£ﬂ_2gﬁ
r

r a2 g
cr

r 2 ¥

where g' is the strong-charge of the "partino'. Of course the same approximately holds when consi-
dering a quark (and its required ""asymptotic freedom''), instead of a partino. And in the quark case
(g'=~ (g-g')/n', with n' = 1,2), one gets V¥ 0 for r& 10 x J2/(Ng3). If we e. g. borrow from quantum
theory the suggestion that J2 n Ji, then we obtain:
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i

2,2 _
n 2 i~ =
r&% 0&>r - 22 x 10y n° % 6,1 Fermi , i_“ = Y o)

so that quarks are expecled (in the more "stable" states) to stay at relative distances ra10-1% ¢mfrom
each other, and in such conditions to behave aspractically non-interaction (free) objects, Notice thatthe
the assumption J&4 corresponds to sttributing a revelution-speed ¥ ¥ ¢ to the moving quark.

Our eq. (122') seems therefore tu give account both of quark confinement "infrared divergency")
and of their asymptotic freedom,

Static "partinos", onthe contrary, wouldtend - as we have seen -to a relative position with r«1 o~ cry

At last, let us consider e, g. the baryons' case (N ¥ 1040 G). If we assume the quark "stability ra
dius" to be of the order of 1/100 of the "stronz Schwarzschild radius” r,* 2Nm/c? of our hadﬁon (con
sidered as a strong black-hole), then - after Castorina - we get the Regge-like relation J%Nm /(1005-)

where m is the baryon-mass in Kg; this relation also reads, with m now measured in GeV/c*®,
5 L
JAi ~ m

8. - THE "OUTSIDE'' CASE; AND HADRON RADII.

In Sects. 5 and 7 we have been considering the field equations holding inside hadrons and in-
side cosmoses, respectively., We are left with the more difficult problem of writing down the fields
equations describing (for instance) the metric of our cosmos in the neighborhood of hadrons (i. e.
in the neighborhood of their "intersections' with our cosmos, that we call "hadrons'' tout court:
cf. end of Sect. 4. 2 and Sect, 7). Such field-equations will hold for the bodies with "scale factor"

@ =0210"40; i, e, such a metric will be "felt" by objects possessing both strong-charge and gra-
vitational charge. We already approached that problem in Sect, 2. 3, where we tackled the analo-
gous, "next-higher-order" case of the neighborhood of our '"cosmos'' in the big-universe: see egs.
(38),(39).

To describe the space-time metric of our cosmos both afar and in the surroundingsof hadrons
we need a ''bi-scale' theory (rather than a "bi-metric' theory), since the metric deformation cau-
sed in our cosmos by the hadron-'intersections' has to act strongly — as we already mentioned al-
so in Sect. 2.3 — only on the bodies with "hadronic charge' (besides the gravitational charge
"due to'' the Mach principle). That deformation, on the contrary, will act only "gravitationally'' on
the possible particles possessing only ''gravitational- mass' (i. e. with @ = 1). Incidentally, let us
observe that, by analogy, even our cosmos might be crossed by objects — entering it "from outsi-
de'' - devoid of gravitational charge (and possessing only the "higher-order' infra-gravitational
charge).

We want here to exploit a little the philosophy followed in Sect. 2, and particularly in Sect. 2. 3.
Before going on, let us remember that according to our theory in the cosmos the Einstein (gravi-
tational field) equations hold:

R + 1 £ IT b g Tg I i | G=1 I
which can read - as wellknown -

1 0 8nG
Ruv™ 28uv Ro - Aguy= 7= Tuv (94')
since Rg =R = (87 G/c4) TQQ - 44 . Let us moreover remember that inside a hadron the strong
field-equations hold [Ng3 G o~! = 1040 G] : e

~ - 8 1 ~ 0 £
Ryy+ HE,yy = - —4 [Sy,v -3 EwSe] - [sm, - NSTIW}
N i
which can read, since Ry =R = (8@ /c )Sp -4H, as follows:

] 3 v A 8
Ruw - 5 8uw R - HEyy = - —7 Spy (95')

c
where, with the choice (56), one has S, = NcT,y [NS#G] :

Od ¢
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v
In the surroundings of a hadron we can assume fluv:': Ny for the gravitational metric-tensor,
in suitable coordinates. However — let us repeat — arouncﬁa hadron (in our cosmos) we have al-

so the "'strong-gravity', acting there (only) on the particles with a=0 = 10-40, In such a region,
when the test-object possesses (also) strong-charge, we can neglect T, in comparison with S[Lw 5

a(nctl posziibly the gravitational-field energy-momentum pseudo-tensor 79) ty‘,‘, in comparison with
t(strong) DR e :
Y

uv )
In the surroundingsof any hadron in our cosmos, therefore, when taking account of both gravi-
tational and strong fields, we can assume (in suitable coordinates: cf. eq. (40)):

a

itk

~ ~ ~
Suv = f,wv * hlu,v % Muy P
where the components of the strong metric tensor hm, have to vanish for r »» 1 Fermi. The total
deformation of the cosmos-metric due to the "intersection' with a hadron can be represented by
the superposition (around any hadron) of the two abovementioned fields. Such two fields, of cour-
se, can also interfere each other. The terms containing A can in any case be neglected, and on-
ly the "hadronic (cosmological) constant' H =024 ~102% cm™? will enter. Let us moreover ob
serve that the strong field (completely geometrizable inside hadrons), can still be geometriza-
ble in their neighborhood — in our comsos — provided that we go on attributing to the (hadronic)
test-object an inertial mass coinciding with its "strong-mass' or "strong-charge' (see what pre-
cedes, particularly Sect. 3. 2). Of course, the strong-mass of objects as photons or leptons is
zero (or practically zero) there.

(127)

The previous considerations lead us to assuming in the surroundings of a hadron — in our .
cosmos — the following field-equations valid for test-objects possessing both gravitational and
strong charges [remember egs. (127), and Ng = GQ'I;SIM, =NSTm,] <

~ 8 1 o
n +thm,"—" ‘CT(S#W' 3 Suw Sp ), (128)

R

where the "cosmological (strong) term'’ with the hadronic constant H takes care of the geometric
properties of the strong field around the "source hadron'' (and has to be effective in a region with

linear size of the order of 1 Fermi). Eq. (128) writes in suitable coordinates:
~ 8z 1 e
RH”” +H(glu,u- nlu.‘lf )-— - C_é'(s.u,v‘agﬂysg ) 3 (39')

which is essentially eq. ( 39) of Sect. 2, 3, re-written for the case of strong interactions. This -
therefore - justifies algso eq. (38) assumed in Sect. 2. 3, which in the next-lower hierarchical case
reads (remember eqgs. (94'),(95")):

1 0 g a ~ B8
R,LW' 3 Euw Rg = H(gy,'v+ M = 3 Buw & Bnaﬁ)“ = S,t.w , (38')

and which can be considered as a particular case (i. e. resulting after elimination of the terms
negligible in the present case) of the gereral (''bi-scale'’) equation that describes the simultaneous
presence in the neighborhood of the source-hadron of two fields of different hierarchical orders,
provided that we remember the relation 'fa ‘-‘_—‘ﬂaﬁ in suitable coordinates. The quantity(l/Z)Hng galgfqaﬁ
appears in our approximations to play the réle'of the interference (mixing) term.

~
Since| hya I « 1 for r » 1 Fermi, by following a procedure similar to the one in Sect. 2. 3
in the static limit (and for the strong case) we get [NS=G=1] :

g 2 1- —2—2-g— © exp ’:— rmsc/}ﬁ] (45")

where actually g, —> 1 for r>} 10713 ¢m,

Before going on, let usg observe that eqs. (39') and (38') can provide a classical field theory
of strong interactions, where the strong field is the second-rank tensor (1/g)d, = {1/2)hup®1/2%

x(g”,,,— nlm,).
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l.et us now introduce also an alternative approach, following the spirit of refs. (9, 80), even if
we shall have to deal with approximations. For test-objects witha = p ¥ 10'40, and therefore pos-
sessing both strong and gravitational charges. in the surroundings of a hadron, in our cosmos, and
in suitable coordinates, we can write the field-equations NS = 9'1 G

R L g o R

1
wy -3 Buy Fg = g g Tuw Ftuy ) theal

where: (i) we eliminated the negligible terms; (ii) NST,LW SF"” represents the ''strong-mass' teg
sor: and (iii) in our approximations the quantity tfstrong) is the energy-momentum tensor of the
sirong !‘1e1d{ 9), By comparing eq. (129) with eq. 38'), we get that it must be

(strong) 02H

1
fu ¥ - Tgm v Ty - 3 By g Tag -

If we remember that g, should rather be subst:l)tuted by f , we realize that t'&strong) can be con-

sidered as a tensor (and not a pseudo- tensor I Moreover let us notice that, when approaching

the source-hadron surface, g, — th (and that "asymptotlcally Suy —> ?',wv , as we already
know). As a consequence, if we put:
(strong) _ (strong)
NS T,wv +tuy = Sypy + tuw = S"'“, ;
then we may suppose tobeentitled to write eq. (129) not only in the form
1 & 8ar
RP""’-Eg!-W Rp = o 3 S (129')
but also in the equivalent form:
_ 8 1 0
R#,ty ok~ C_4 (S£LV + 5 g'um S‘Q ): (130)

to be compared with eq. (128). However, now we must heuristically introduce 'from the outside"
the supplementary notion that

tl(us;,tr‘ong) «1 for r'>>10"13 ¢m

since Sy now contains both the usual S, , and the "hadronic (cosmological) term'', and the inter-
ference term.

Let us for simplicity consider the case of a spherically-symmetric distribution of strong char-
ge. Then, in the vacuum and for a static (strong) field, we can evaluate tg%trong) by an iterative pro
cedure, following refs. (9, 80):

(strong)
oo /g )+ ulr)= 2

where [gbagp i Ng=1; ﬁsmsc/ﬁ]

00
u(r) -;;T [I V.;p' IQSI] T IIv(g -1)l +#|g -1|2] (131")

In the static limit, for the first iteration we can take g__ equal to its zero-order approximation (so-
lution of eqs. (38) after linearization), and write [Ns=c= :

t (g 1) ulr), (131)

r

1 - i el y
SE D= Byt S exp [- r#] -

where such a solution — let us repeat — is valid only "asymptotically' (i. e. for r>1 Fermi). The-
refore:
2 n A
il & -ex22£~2#-!‘](L2+%‘.+2,12) (132)

8m 5
r
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] & 1 7
/ ¥ e ~ = 1) = 5
As usual [¢oo/g 5 hoo = 5 (goo 1) = exp [’v (1 )] b
e ¥r)
e Alr)
AR =2 5 .
ey 2 €5 %0 8 (133)
\ -r2 sin2 2]

where », 4 are functions still to be determined. Notice that we are essentially looking for "strong
black-hole' solutions, considering of course the horizon exterior, in our cosmos.

By insterting eqs. (131),(133) into eq. (129), in the vacuum we get — among the others — the
equation (see refs. (80, 9)):

2
2 )y exp l;l(r)](l Ay (134)
i

m1202 2 r dr r2

2
where for instance g”/#f ¢ & 15, and where the test-particle mass m' can be choosen to be m'sy
¥m = quark-(average)-mass, (the test quark being considered a priori as situated outside the
horizon), Notice that, as expected, in eq.(134) the "strong" quantity g /m'2 substitutes the gra-
vitation constant G (remember that, when Ng=1, then [GJ = ’_gzM"z_] ). The exact solution of eq.

(134) i5(80.9
-
Yeql 2L | k| o X A
exp [-MHJ 1= = + ” exp[-2,ur]+ 7 exp [—ZPJr]‘, (135)

where k = g4/c4m'2 and ¥ is an integration constant with the dimensions of a lenght{Bo'g):
L= g2ul/02m'2, quantity m being the hadron mass (e. g., m& m(p) = mp).

Obviously, in correspondence with the strong "Schwarzschild radius" s S rsss) of our strong
Schwarzschild geometry, we shall have:

exp I__—}.(r)] =0, (136)

Eq. (136) yields values of rg slightly depending on ,t'i . If we assume fi » myc/h or 0 we get
almost the same results, In the simple case u%0, we arrive at the equation

r2 -20r +k=0 (1.37%)
= s

which for the nucleon yields e. g. the solutions
15

r '310— cm;
2 (N)‘E’ -r}/z2 ol & /’ 1 s
A ~ r,¥0.8x 10 “cm.

Many alternative interpretations might be suggested for the smaller value r,. But, since our theo-
ry (Sect. 6) yielded only one solution (of the order of 10~ 13¢m) when "extrapolating” the inside case,
we must rather neglect the value ry as possibly due to the approximations of the method used at the
end of this Section; so that we remain with:

rS(N):: 0.8x 10‘13cm. (138)

In the case of pions, eq.(137) yields (with m'%y average effective mass of pion-quarks):

00 .~
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r (7)) 1.4 x 10” 3cm, (139)
and, in general [NS:{I z gzm . gzm p
r (hadron) = h + /| ( h)2_ g N
8 =i 2, 4, i
cC m e m e IIn
2g2m o~ 4g2/(q2m ) for mesons;
Yy 5= ¥, e (140)
c m' - 6g" /(¢ mh) for baryons;

where m, is the hadron-mass and m' the average, effective mass of quarks in the hadron conside-
red.

From eq, (133), let us write the line element in the strong case:

d52= exp I}(rﬂ czd‘c2 - expl:l(r)] dr'2 - rz (t:lG2 + s:‘m2 0 d 362). (133")

(81)

The Laplace-Schwarzschild radii previously calculated have been derived from the condi-
tions exp [}.(r)] = oo; we ought nokv to verify that on the Laplace-Schwarzschild horizon it is also
exp [w(r)7] =0, but the calculation 80) of function » (r) can be performed only with further approxi-
mations, Therefore, we limit ourselves to verify that, in the present case of hadrons, we actual-
ly have, as required, that 9

-1 2g m,
exp [V(I')-J-U{exp [J.(r)]} 1 g e (141)

It is worth while to notice that our "strong" metric (133') together with egs. (135) and (141), has
been shown by Mignani(g) to be identifiable with t'Hofft monopole metric (in curved space-times
(see refs, (82)(83)).

9. - COMPLEMENTARY REMARKS.

9.1 - AGAIN ON STRONG AND GRAVITATIONAL QUANTA:

We already noticed many times that our eq. (50) is approximate, since we ought to relate "in-
ternal'' ("external') gravitational-quanta with "internal' ("external'') strong-quanta, rather than
"internal' gravitons with ""external'’ pions,

The settlement of this problem in our theory is as follows: (i) both gravitation and strong fields
are represented by tensorial quantities: cfr. egs. (94),(95); (ii) the Yukawian field is merely the ¢ g
component (in the static limit) of the strong-field tensor qs#"’ . (Cf. also Appendix A).

This means (as previously remarked) that our theory predicts hadron-constituents - let us call
them "'partinos': cf, Sect. 7 - to interact by exchanging spin-2 strong-quanta, corresponding to the
spin-2 gravitons(84). Such ("internal") spin-2 strong-quanta can be identifield with spin-2 "gluons",
or even with f0-mesons, Such an identification shows the connection of our theory with the "strong-
gravity" theories(85),0f course, things can — however - be generalized in the spirit of Super -gravity.

Let us remember, at this point, that the ''dual theories' of elementary particles have brought to
understanding hadron structure in terms of "strings'’, and that "'closed strings' can be associated
to spin 2,

00 .



_39-

Conversely, we can relatethe (spin-0) pions (\gié)h (""external") spin-0 "gravitons'' transmitting -
in the static limit - the gravitational interaction'”>® between two close cosmoses in the "big-univer-

se'', and associated to the ¢ oo COmponent of the gravitational-field tensor pﬁpw ;

At the level of numerical evaluations, therefore, our egs. (30),(32) are only approximate; as a
consequence, we could frequently calculate only the orders of magnitude, In order to perform mo-
re precise evaluations, we ought to choose for the quantity g, inste?é:lsg)f the value Epps the value
of "coupling constants" as the "partino-partino-(spin-2)'gluon' " one'“?/, Analogously we may, have
got in Sect. 2. 4 a slightly too high (4107 96 ¢m=-2) value for the cosmological constant A, (alth-
ough — let us repeat - that value to some authors(26) seems a good one for closed, homogeneous,
isoiropic models).

It is clear that we can easily comply with the possible requirement that "internal" (spin-2) gra
vitons - and internal (spin-2) gluons - have exactly zero rest-mass; in fact, our egs, (43), (48), (49)
have to hold only for the "external" quanta, i.e, for "external gravitons" and for pions: cf, eqs. (36)
and (37).

At last, let us mention the following problem. When "quantizing'' our theory, we might be wor
ried by the fact that the forces mediated by spin-2 quanta are always attractive between like parti_—
cles. In the strong case, and precisely inside hadrons, this can be accepted for "partinos'" but
does not seem to be true for quark-quark interactions. However, a solution is offered by the fact
that hadrons may be constituted (besides of bradyons) also of tachyonic quarks (see Refs(87)); and
tachyons have been shown to suffer a repulsion when usual particles feel an attraction(8 . If we
choose this way out, incidentally, then the sign of the cosmological (hadronic and cosmical) con-
stants might be accordingly changed for the inside cases.

9.2, - WHY BIG-BANGS?

Lastly, let us put forth a possible hint for understanding tl%e lg_ig-bang "explosion'' within the
presznt theory, After any cosmicz expansion and recontraction 88 , we are probably left with a
big, collapsing ensemble of 1080 neutrons.

If neutrons are strong black-holes, we can imagine that the ""Second law of black-hole termo-
dynarnio::s”(89 holds even for them: i, e, that, when a couple of neutrons coalesce, they form a new
"strong-black-hole' whose horizon-surface is larger than the sum of the two initial horizon-surfa
ces (=neutron-surfaces).

80
It is easy to calculate, then,that the 10 neutrons constituting our cosmos, when coalescing
all together, will form a new, Super '"strong black-hole' with horizon-surface:

2
s >108%r? 3 10°'m? (142)

where r = r(N)¥ 1()-13 cm,

It means that, due to neutron "melting" during the final period of cosmos-contraction, we have
a process that builds up a new cosmos which (at the end of such a process) must have a radius

2
R>10°°m (143)

as follows from eq. (142). The previous consideration may constitute a starting point for investi-
gating the big-bang ""explosion ' that supposedly create a new cosmos.

The fact that we pass from a gravitational®black-hole" (old cosmos) to a ''strong (Super) black-
hole'' should not be misunderstood, since - due to our theory of the hierarchy of 'universes' - in-
side each new "cosmos' the (internal) observer would just feel what we usually call "gravitational'
interactions.
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APPENDIX A

Einstein's equations with cosmological term can be written

3 Y SIS 1 :
RM =% glw Ro - “guw = - o TP’”’ Ei) 0:] (A1)
or in the equivalent form:
y; BaG i 0
R,wv + Ag‘[w = e C4 (T,u,'v %5 gm’ TQ ). (A2)

Let us linearize eqgs. (A2) with respect to De Sitter (non-static) space. To this aim let us put

20
g”v = e ((5!1,1,: + h“‘v), [d.um = ﬂ#:p] (AS)
where eza éPW is De Sitter-space metric tensor(gm with e=9 = A+Ax, x*/12, and where the quan-
titieshlwp are first-order corrections to the components 6lwp =diag(1,-1,-1,-1). In other words, we
require that

| hu | & 1. . (Ad)

By inserting eq. (A3) into eq. (A2), under the conditions (A4), we obtain, following the procedure
in ref, (90), the linearized Einstein equations (with respect to the De Sitter background):

w v 167G 0
(G, 0"+ 24)p ¥ o TR Tp (ABa)
w, 2 . 16 G I 0
(8,0 + 3 A)wa|6~ rpe o (’I‘aB % daﬁ Tp ). (As5b)

where v
Y :d# h‘ufu =3
(A6)
2 1
Ypg= e G(haﬁ - 7 Yagh).

Eqgs. ( \5a) are relativistically covariant massive equations for scalar and tensorial fields, respec-
tively, with(gmz

m
2 As | _;C i, (A7a)
g RRaOas ol
sAs (——)°, (ATb)

where m is the scalar-field mass and my the tensor-field mass.

If we restrict ourselves to the case of stationary sources, then the only nonvanishing compo-
nents of Taﬁis Tog= ?czwhere?isthe mass density; so that TS = Tgo. In the case of a spherically
symmetric mass-distribution we get from eqs. (A5a), (A5b) the following solutions (holding outside
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the spherically symmetric mass M):

(v - 20 o [fon'e]
\) (A8)

-

\

i order to find the correspondence between y, y _ and the gravitational potential V = 6/m, let us
calculate the acceleration 2 in the case of stationary field:

)
k]
[
1
=9
ur
=
i
n
[}

> m . .
5 #‘ uru gDO,S 3 l",S_ 112'3 ’
v =0,1,2,3
- 2 -»
or equivalently a = - (¢ /2) 4 €50 On the other hand, from eq. (A3) we obtain
20 20 2V
= 4 =1 + .
€oo  © ¢ hoo c2
Now let us split V = VO+V1 and let us identify
2V
20
__21 i e (A9)
00
c
ZVO 20
= e -1, (A10)
4
c
Further, from eq. (A6) we have
20 1 2¢
= + — .
© hoo woo ! € v

therefore eq. (A9) becomes:

2V
Tl=_351¥[ exp ’:f ]+e—rexpt)/2.{1j (A9'")

where we have taken into account the solutions (A8). In the special case A= 0, eqs, (A9') takes the
form of the usual Newtonian gravitational potential

- =_mSM ) (A11)

When &/ 2A r —> 0, at the moment t = 0, eq. (A9') tends to the same form (A11).

To study the general case, let us rewrite eq. (A9') into the form

2V

Czl = czr' exp[ f ](e exp[ ZA r(l-)v,l—_\] -3). (A12)

When r —> oo, eq.(A12) at the momentt =0 tends to

b 3GmM 24"
= === Wps el I
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APPENDIX B

For briefness' sake, we do not include hare this Appendix B. It will appear in the printed ver-
sion of this report, and will deal with an introduction to '""Projective Relativity' and to "Conformal

Relativity''.
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