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': .. Andererseits mLiss man .lub"l"ben, dass der Versuch, die unbezweifelbare 
atomistische und Qu anten -Struktur der Realitat auf dem Boden e iner konse­
quenten Feld- Theorie zu begreifen. auf grosse Schwierigkeiten stosst, von 
deren Ueberwindbarkeit ich keineswegs ub erzeugt bin. lch will dies kurz 
erlautern an der Theorie des asymmetrischen Feldes (so wie sie formuliert 
ist). Aus dem Bau der Feldgleichungen geht namlich Folgendes unmittel­
bar hervor: 1st gik(X) eine Losun'g der Feldgleichungen, so ist auch gik(x / a) 
eine Lasung, wobei a eine positive Konstante ist C'ahnlicheLosungen"). Es 
mage das System del' gik z. B . einen in einen flachen Raum eingebetteten 
Kristall von endlicher Ausdehnung darstellen. Es gabe dann eine zweite 
"Welt" mit einem andern Kristall, del' genau gleich konstituiert ist.dessen 
Linear-Dimensionen aber a mal grosser sind als die des ursprunglichen 
Kristalls . 

Solange wir uns eine Welt denken, die nichts andere s enthalt als eben 
diesen einen Kristall, so liegt hierin noeh keine Schwierigkeit. Man sieht 
nur, dass die Ausdehnung eires sol chen Kristalles ("Massstabes If) durch 
die Feldgleichungen nicht bestimmt ist. Man denke sich aber nun , dass die 
von uns betraehtete "Welt" aus zwei solchen Kristallen bestehe , die ge ­
meinsam in einen flachen Raum eingebettet sind und die voneinander be ­
liebig weit entfernt s eien . Fur die Losungen del' Feldgleichungen gilt we ­
gen deren Nicht -Linearitat zwar nicht das tlSuperpositionsprinzip". Aber 
man ist doch wohl geneigt zu denken, dass es eine Losung fiir dasGesamtfeld 
gebe, derart, dass das Feld innerhalb jedes der beiden Kristalle sich nur 
wenig unterscheidet von der Losung fur den Fall, dass dieser Kristall 
allein in der Welt vorhanden ist . Dann aber ware dies eine Welt ,in der es 
zwei kor perliche Objeckte gabe , die zu einander "iihnlich" aber dochnicht 
kongruent waren ... 
• .. Damit also die 'l'heorie annehmbar ware, ware es notig, dass selbst 
weit voneinander entfernte "iihnliche t1 Objelcte auf Grund der Fel dgleich­
ungen so stark aufeinander einwirken , dass eine irgendwie dauerride 
Koexist enz "ahnlicher" (nicht kongruenter) Objekte nicht moglich ist.Wir 
sin d weit davon entfernt zu sehen , \Vie aus den Fel dgleichungen eine de­
rartige Folgerung gezogen werden konnte ... , I 

Princeton, 4 April 1955 
A. ElNSTEIN~63) 

PIn jeden Quark begrMbt er seine Nase,,(91), 

J. W. v. GOETHE, "Faust", 292. 
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ABSTRACT. - By assuming covariance of physical laws under dilatations, we st.1cceed in descri­
bing strong and gravitational interactions in a unified way. In terms of the (additional, discrete) 
"dilatational II degree of freedom, our IIcosmos 11 as well as hadrons can be considered as different 
states of the same system, or rather as similar systems. 

Moreover, a discrete hierarchy can be defined of "universes", which a re governed by force­
fields with strenghts inver sally proportional to the "universe,r radii. Inside each "universe" an 
Equivalence Principle holds, so that its characteristic fiel d can be geometrized there. 

We can thus easily derive the whole usual "numerology", i. e. relations among numbers ana­
logous to the so-called Weyl-Eddington-Dirac large-numbers. For instance, the nPlanck massl! 
happens to be nothing but the (average) nstrong charge!! of the hadron-quarks. However. our "nu_ 
merology 1t connects the (gravitational) macro-cosmos with the (strong) micro-cosmos~s, rather 
than with the electromagnetic ones (as e. g. in Dirac's version), 

Einstein-type equations (with "cosmological II term) are suggested for the strong interactions, 
which - incidentally - yield a classical . quark-confinement in a very natural way and provide a 
priori a field theory of strong interactions. 

PART A: HERISTICAL CONSIDERATIONS 

1. - INTRODUCTION - WHY CONFORMA L RELATIVITY.-

1. 1. - INTRODUCTION (See Also Sect. 4. 1. ): 

It is well-known that, when enlarging the world of experipnce from classical Mechanics to Electro­
magnetism, it was necessary to abandon Galilei relativity in favour of Einstein's, One might now 
wonder whether, when in presence also of nuclear forces, another generalization towards a new 
Relativity is necessary. 

Let us remember that the symmetries of Maxwell equations have not been fully exploited by 
Special Relativity. Namely. Maxwell eqs, happen to be covariant (besides under Poincare tran­
sformations) even under all the conformal transformations(!), 

We want in particular to fix our attention on the space-time (discrete) dilatations: 

[XI< = PI" ,I [i>=O,j,2, 3 ]. (I) 

As we told before , Maxwell eqs. are in particular covariant under transformations (1). 

Let us observe at this 
tating th em 

point that - if we change our chronotopical measure-units, e. g. by dila-

( 2) 

so that x' = QXI-'- ,- we should actually have no change in the form of our laws(2). In other words. 
we wouldlike to have all physical laws written in a form covariant under transformations (2). 

Let us explicitly mention that a contraction (by a factor p-l) of our measure-units is comple­
tely equivalent to a dilatation (by the factor p ) of the observed world, and vice-versa. Let us stress 
that we prefer to consider unchanged measure-units (asso~iated with a fixed f:-ame, so as our own 
frame of reference), and therefore tldilatated!! objects(4, 5 . 

. {" ,. 
lJ~", 
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F'or our purposes, it is mathematically convenient to choose one fixed set L1 0 of (ch r onotopi­
c al) units so that, when passing to dilatated units, we define: 

.1= K L1 . K = --.!L 
o J Ao ( 3) 

We can then introduce the Tl dilatationally invariant" coordinates(6): 

1 '71"' a-I xI" I; with a-I, K. (4) 

As previously mentioned, we shall prefer to consider a as the 1rdil atation factor" _ or the trdi_ 
tatatiollal coordinate" - of the observed physical system. 

We are ready to explicity assume the postulate: !TAll physical laws must be covari a nt also un ­
del' dilatations (1)". We are supposing Q to assume in nature only discrete values (see the follo'vving). 

Therefore, in analogy to what historically done when building up Special Relativity, we have I 
now to re-write the laws of Me(;ha!lics and Gravitation in a new form(2, 5) covariant also under 
t ran sfoJ'ln ations (1), with the obvious condit i on that those physical laws must get their standard 
form fo r a =1. 

Our task is made of course easier by the fact that we can refer ourselves to the (already de­
veloped) conformal l'elativity(7, 2, 5), Since we are especially interested in gravitation (and strong 
interactions), then we'll refer ourselves to conformal relativity in curved (conform al) spaces(5), 

For instance, let us initially consider a (srnallmass) tes t- bodym,- as e ,g. apion or a proton, which 
can feel all the four fundamental interactions (see the following), - put in the gravitational field 
originated by the source(7)M; then, the following equation is in order(5, 1) : 

d
2 1/ 

2 
dt 

GM 
00 ----

1)2 

I ~2 )i . 
W 1ere ' J :: 1J i '1 ; quantIty ~_ 

mass(2) of the source(8): 

1)i 

') 
(5) 

::'ISnt; and where Moo is the conform ally invariant 

I Moo' aM M, I (6) 

quantities aM, am being the "scale factors " (or dilatation -factors) of source and test-particle, 
respectively , If aM =l, then eq. (5) reads: 

2-d 1) 
2 

dt 
which can be re-written in the form 

a 
m 

1) , 

~ 

r 

r 

O( course, if it is also a m = aM = 1, then eq. (5) assumes its usual form. 

(7) 

(8) 

Eq, (5) can be derived from Einstein equations in conformal space(1,5) when the test-particle has a 
conform ally invariant mass moo satisfying the condition moo <<.Moo and a small speed v« c, and 
when the gravitational field is spherically symmetric and static. However, eq, (5) is dilatational­
!i' r.ovariant (even if not generally-covariant in its present form) . 

If we want to eliminate the restriction m oo « Moo, so that 71 will now represent the relative - - -(conformal) coordinates : 1J = 11m - 11M' then - instead of eq, (5) - we must write (e. g . describing 
the motion of m with respect to M): 
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2..... 2-
d '1m d '1M 

--;'2'-'- - -2-
d~ d m ~M 

G(m +M ) 
00 00 

[ • = _t J 
M a ' 

M 
(9) 

as it comes from a straighforward extension of classical two-body problem; for instance, we can 
start from the Lagrangian 

m d;;"{ M 
L=~(~)2+~ 

2 d < 2 
m 

Of course, quantity lis the (usual) time as measured by the observer. 

Eq.(9) can read, in terms of the usual, relative coordinates 1:: 1 - '1 M' 
2....... m M a m + a M -4> m o _..Q.(~+~) ( M 00 m 00 )2. r 

2 2 a a m +M r 
dt r M m 00 00 

(10) 

In the particular, important case of two bodies with equal conform ally invariant masses moo=Moo' 
we g€;t: 

" G r =--2 • 
4r 

M (a + a )3 
00 M m 

(11 ) 

This case is important for the procedure we shall follow in the next Sections in order to compare 
the strengths of the different, four interactions (namely J we shall require to get two equal bodies, 
e, g. two protons, at the end of our dilatations). For instance, from eg. (11), if we put am 1 but 
aM ' 1, we get: 

G 
r =--

4r2 
( 12) 

1. 2. - SOME HEURISTICAL CONSEQUENCES: 

In other words, we can e. g. consider the two following cases: 

a) Let us start from the case a(in)= 1, but in general a';::) F 1 so that initially Moo = M(in) :; M. 
Then, let us dihitate or contracf"1. (i. e. , let us "scale") the two bodies by the factors 

(fin) (fin)--
a a 

Q = ~ - aM (fin) and Q -~ 
M - (in) - m = (in) 

aM am 

We shall get, from eq. (11): 

when m = M 
00 00 

M, and 
Gm 

00 1 N 
-7'''- (-- + -::-"""aC,(7:in") ) 

4r2 QM Qm m 

when M = M = N m . 
00 00 

For instance. from eq. (13), 
(in) 

if we put Pm am 
m = M _ M): 

00 00 

G 'i-' = -2-
4r 

(in) = a 
m 

(J 3) 

( 14) 

1 and QM« I, then we get (when 

(J 5) 
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Analogously, from eq. (14 ). if we put 
N>;>]. then we get (when Moo=M=Nmoo): 

(in) 
as before Pm am =1 and PM4: I, and if we consider 

Grn 
';.,=~ 

2 
4r 

(in) (in) 
b) Let us now start from the case a :: am = 1, so that initially Moo 
moo:: m(m):: moo' Then, the last e~ (16) reads: 

Grn 
2 

4r 
+ NI; r M " M = Nm1 

1_ 00 'J ' 

(16) 

(17) 

Moreover. from eq . (13), if we now 
get (when M = M = rn = rn): 

"scale" both ob jects by t h e same factor PM= Pm :: Q J we 

00 00 

± 

2GM 
r 2 

(J 8) 

In conclusion . let us investigate eqs. (15) and (16). Eq. (15) means that, under a dilatation of the 
(only) field - source M, we have 

ifM 
00 

M:: m and 
00 

if M = M = Nrn 
00 00 

(19) 

GM~ GM( 1 + NQM 

1 (20) 

With regard to eq. (19) J we can say that, under a "source_dilatationlt of that kind by t h e fac tor Q J 

the quantity A = GM is dtvi ded byp. One could say for instance t hat , under a contraction (1'1<1) of 
that kind, the lIuniversal constant 11 G increases by a factor Q-l (cf. Sect. 5) . 

G Mmoo 
Now , eq. ( 15) can be written moo [.1 =-- , so that eq. (19) reads: 

4r2 QM 

GMrn -----7 
00 

GMrn 
00 

where m = m if initially we have also 
00 

It is in teresting to observe since now that, for 

I - 40 11M :::::10 , 

(flO) 
a 

rn 

(211 

(22) 

we can get transition from gravitational to strong interactions (for the problem of the exponential 
factors and of the ranges, see the followin g Sections). 

However, if we want to compare (as we shall do) the final result of this procedure (for instance 
eq . (21» wit h the behaviour of two pions or protons, which ones experience all t he four fundamental 
forces , we must: (i) start from a source M :;;: Moo a radius RM-=::t l040 R( N ) ~ 1026 m , of the order of 
the universe radius (so that, after contraction, it reduces e. g. to have the radius R (N) of a nucleon) ; 
(ii) attribute to the llconform ally invariant mass ll Moo of the source M the value M=Moo=m =m) , qua!:!. 
tity I 

rn =< 1,6 x 10- 27 Kg 
being e. g. the nucleon mass (see also sect. 6). 

U v 
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In this way. we can pass from our test-hadron,experiencing a gravitational force, to a test-hadron 
experiencing a strong force, Ci '" is suggested by eqs. (21). (22) when we set m = rnoo=mp and M = mp' 

1. 3. - FURTHER REMARKS: 

We shall further develop these points in Section 3; In Section 2, however. we shall first see what 
are their consequences, Here, let us only add the following observations. In what precedes, we have 
been considering. for instance: 

1) lmtlally (before contraction). a test-proton with. ~=1 and moo=m(in) =mp; and a "source" with ra­
dius RM"" 1040 R(N), with a=l and with Moo=M(m =M=mp; 

ii) flnallyTafter contraction of the source by the factor p.::::::lO-40): a test-proton, unchanged; and a 
"sourcel! constituted by a proton, with R=R(N). a=lo-40 and m' =M =m' so that we got (as is 

00 00 p' 
implicit in eg. (21)): Gm Gm 

';-, =~ --f. (10+
40

) (23) 
4r g 4r 

But, if the final proton (case (ii» is to be associated to a =10-
4°. the previous procedure is 

not symmetric. For instance, the test -proton itself ought to be associated (since the begining) 
witha=10- 40. Then, let us choose another procedure, so to have: . 

(i) initially (before contr action): a test-proton with a =10- 40 and moo=mp; a~d a source - object with 
radius R

M
-1040 R(NL with a =1 and with a n a-priori unknown mass Moo=M(ln)=M; 

(ii) finally (after contraction of the source-object by the factor () =10- 40): let us use eq, (10), or ra­
ther eg. (14) which yields: 

GM 

r' =-T Q 

GM 
_--*~o,,- (10-40); (24) 

4r 4r 

therefore we have finally: a test-proton with a =10-
40 

and m = m ; and an object with radius R = 
= R(N), with a =10- 40 and with the (3 priori unknown) mass ~oo=PM. 
This second procedure must be equivalent to the previous one: 
(23). As a consequence, we ~ immediaty that 

thus eq. (24) must coincide with eq. 

I Moo = g-2 mp'>! 10
80 

m p ' ! (25) 

i. e. that the initial object (having the radius of our cosmos, 
the mass 

40 26 
R M"'10 R(N)",,10 m) must possess 

M = M(in) = M "'" (1040)2 m 
00 p 

which is well-known to be just the mass of our cosmos. Actually, eq. (24) was derived be setting 
N + l~ N. In other words,in this second procedure, the~. "cosmological" object is natural­
ly identifiab.l e with a "cosmos" like our one. Relation (25) is known as EDDINGTON'S relation (see 
the following and ref. (17)). 

2. - THE FOUR FUNDAMENTAL FORCES; AND A HIERARCHY OF "UNIVERSES" (AND OF 
ASSOCIATED "CHARGES") 

2.1 - THE FUNDAMENTAL FORCES: 

We essentially know about four "fundamental" forces in physics. In order to compare their 
relative strengths, let us consider for instance two equal particles, as two protons, which can 
interact both gravitationally. and weakly. and electromagnetically, and strongly. For instance, 
the ratio between the typical gravitational and electromagnetic "interaction strengths" sG. sEM 
can be der ived(9) from the corresponding classical forces between two nucleons: 
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Analogous:y J the ratio between the typi cal electromagnetic, and strong "strengths" can be 
infE' rrcd(9) from the corresponding typical interaction-durations: 

SEM 

Ss -19 
10 s 

JI1 concl usion , when dealing with nucleons (more generally with hadrons ), t he ratioes among ty­
pical (dimensionless) interaction !lcoupling-constant squares " can be represented by t he follo w ­
ing setof pure l1umbers(9): 

FORCE RANGE STRENGTH 

too, short s8 ';:-: 1 
electromagnetic long sEM.' 1 0- 4 

( 26) 
weak very short sW " 10-

13 

gravitational long sG " 10- 40 

lncidentally, let us observe{lO) that, - since the typical interaction-durations Lit" are . inversally 
proportional to the interaction-strengths 5, - then for the g r avitational interactions we have for 
instance : 

A 1040 10- 23 
S ::::: 10 17 s. LJ'C"G':::j x ( 27) 

. 17 10. (10) 
Slnce 10 5""'-' 10 Y we get that LI't"G IS of t he same order of our universe age . More general-
ly, the quantity [ y == yr :: year] : 

17 9 
10 s,,-,3x10 y 

can be considered as not far from a 'characteris tic time" of our cosmos evolution ("oscillation", 
or "decay"). 

Since t he pr evious, heuristic considerations are not precise(ll) enough, l et us put th e whole 
question on a more rigorous basis by carefully defining(9J dimensionless "coupling -constant squa 
res " for the various forces. We know for instance that, in the electromagnetic case, we meet the 
dimensionless quantity(9): 

2 e _ 1 

4,,, 
o 

~-137 

and in the gravitational case the dimensionless quantities 

m 2 ? 

G · --01 6 x 10- 39 ; G· ::'e5 :::' ·1,3 x 10- 40 , 
~ e " 

(28) 

( 29) 

where (4 J'Ho)-l and G are the electromagnetic and gravitational "universal constants" (in vacuum). 
J·espectively. In eqs . (28 , (29) we chose ~ and ~ equal to proton charge and mass, and mnequal to th e 
(charged) pion mass. As qua ntity! is called electric charge, so we can call ~ gravitational charge. 

Analogously . we could introduce..{ for weak and strong i nteractions respectively, the dimen­
sionl ess coupling - constant squar es{~): 

and 

2 
N JL~ 15 (30) 

S -tic 

gw
2 

c : '" 10-
12 

-fie 

>, , 
\J J , 

(31 ) 
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where of course g ;:0 gs and g are the strong and weak charges, respectively, Quantities NS ' NW 
are then the universal consta~ts a priori associated (in vacuum) with the strong and the weak 
!!fields tt , respectively. Usually units are chosen so that numerically(13) NS=NW =1. For instance, 
in t he strong case, it is usually written 

~ 1 5 (32) 

which is in fact the standard expression for the square of the ppn coupling constant(9). 

The values of the (dimensionless) coupling-constant squares in eqs, (28 + 3 1) forward the 
precise ratioes(14), approximately represented in eqs, (26). 

In this paper, we shall (first) skip considering the case of weak interactions. 

At t his point, let us define as 11universe!! any (almost isolated) system whose (internal) consti-­
tuents dominantly irit~ract via one (and only one) of the four fundamental forces (see refs. (9), 
(10) and (15» . Of course, we shall have "gravitational universes","electromagnetic universes'~ and 
"st rong univeroos " ( 16). We shall use that concept in order to explain e. g. the following, interest-
ing relations( 17): 2 e 2 2 

R(U):R(A):R(h) ~ sS:SEM:sG = NSg : 4"" :Gm (33) 
a 

where R(U), R(A), R(h.) are respectively the typical radii of our universe (that we shall call "cosmos" 
in t he following, to avoid confuSions), of the atoms, and of the hadrons. We shall call the above 
relations the "WEYL_ DIRAC large numbers!! relations {even if Dirac I s ones were different). 

2.2. - GRAVITATIONAL AND STRONG "UNIVERSES": 

Before going on, we ought to take into account what stated at the end of Sect. 4. 2. 

Then, let us confine ourselves for the moment to gravitational and strong universes. In order 
to get R(U) / R(h) = Nsg 2/ (Gm 2), we ought to choose m = m", . In this paper, however, let us choose 
the nucleon (h1!N) as the "representative'l of hadrons h, so that m • m(N). We want to compare the 
two fundamental forces, which govern the (internal and external) interactions of the two "universes!!, 
respectively, one with the other~ First, let us observe that both gravitational and strong forces are 
always attractive, and associates to non-linear equations (since also their quanta are considered to 
be themselves fie1d-50urces); in terms of gauge-theories, we would eventually make recourse to non­
Abelian gauge theories: and, in a sense, what we are attempting in this paper is just providing age!!,. 
metrical interpretation - ante litteram - of the latters. 

Moreover, we shall consider in the following our cosmos as a finite object embedded in a bigger 
universe (see what follows). 

Let us here write down the espressions of the two "corresponding" potential energies (in the st~ 
tic limit) outside those lIuniversesTi (cf. end of Sect. 4.2 ): 

~ ~- - GMm . [ / J ~ r exp - rm G c -II , 

N gg' 
S q, 0=. _--"_ 

r 
exp 

(36) 

(37) 

where the gravitational potentia!.-~nergy ~ and the strong (Yukawian) potential-energy cP do have the sa 
me physical dimensions: [¢] = lwj. Quantities m G, mS should respectively be the masses of (llexter-­
nal 11

) graviton and the (lIexternal") pion (where the lIexternal graviton II mass is supposed to be small, 
but not zero): see the following. Expression (37), e. g . is the ordinary one forthe scalar potential in the 
IIstrong case 11 (static limit). Eqs. (36, 37) will be derived from Einstein field-equations of General Rela 
ti vity, containing however a non-zero (even if very small) cosmological term for the reasons we are going to 
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see (17) In order to show the c onnection between the cosmological term and the exponential factor 
entering e. g. eq. (36), let us anticipate (cf. Sect. 8) the following. 

2. 3. - WHY A COSMOLOGICAL 'TERM: 

Our cosmos will be considered as a finite object belonging to a bigger. universe (cf. end of 
Sect. 4. 2.). Outside (see Sects. 2. 5, 3. ~2) the gravitational universe (cosmos) let us assume 
for the reasons we shall see - that Einstein-type equations (with cosmological constant A) hold in 
the !1big universe!!~f. also Sects. 5 and 8J which can be written in the form: 

or rather in the equavalenl form: 

8n;G 
4 (Tl'v 

c 

1 

2 

[It) 0 ], 

Notice that, due to our conventions, 11> 0 means attractive 11 . In eqs, (38) we have: 

(38) 

(39) 

(40) 

where fllV is a second metric-tensor representing the !linfra-gravitational l1 metric of the "big_ 
universe" (see also Sect. S), and where quantities h/Lv vanish for large enough values of r, so 
that (for r >')R(U)) they are first_order corrections to the components f,uv . Since tensor fp,v, in 
the surrondingsof the considered cosmos (in the big-universe), practically coincides with the flat 
Minkowski(1 8) metric, fli'v~1JJ.Lv' we can write in suitable coordinates --

gl'v ~ 'lI'V + hl'v (40 ') 
where 

[for (41 ) 

In the same coordinates , we can substitute f/Lv ~ 'IJ,uv into eqs. (38, 39). Notice that the "gravitatio­
nal" (external) metric - tensor h,u1' acts (in the big-universe) only on the bodies possessing "gravi _ 
tational " charge!!, and not on the bodies possessing only uinfra-gravitational tl charge: cf. Sect. 8 . 
By inserting eq. (40') into eq. (39) and under the condition eq. (41), we obtain the linearized Ein­
stein eqs. with cosmolOgical term( 19) : 

{ ~."., +2 Aha~ 
• l6nG (T 1 TQ) ---4- ap 2 1}a~ Q 

c 

il hI'" ilv h~. I' v 2 

(42) 

One might have expected (e . g. by conSidering that the non-zero cosmological term enters our 
starting Einstein eqs. in an ess~ntial way) that we had rather to linearize our Einstein eqs. with re­
spect to the Sitter metric~20, 19) as done in our Appendix A. Moreover. our phylosophy will always 
be the one of considering curved space-times(see Sect. 4. and Appendix B). However, not only we 
can linearize with respect to the flat metric (i. e. we can stick to eqs . (42L provided that we take 
account of condition (41), [ see also Sect. 51 ),but such a procedure seems to be the best one when 
considering - as we do - the !1exterior" of a cosmos (cf. Sects 2. 5, 3. 2) and when the "bigger uni­
verse" has a very large curvature-radius (see what follows). 
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Eq. (42) is a relativistically -covariant, massive equation for a tensorial field, with(20): 

211 
m Gc 2 

=(~), ( 43) 

quantity mC being the field mass (in this case, the "external" graviton mass:cf. also eq.{ 50) in the following). 

If we now restrict ourselves to the case of stationary sources, then the only non-vanish ing 
component of Tf.L1I is Too = YC 2, where y is the mass-density; so that T,f = Too. Therefore (as 
previously done in eq. (36», in the case of static field, i. e. when ogaa/at =0, we can confine our-
selves only to the scalar field tp =goo; and eq. (42) will read(18!, p 

Vh 
00 

- 2Ah 
00 

( 44) 

In the case of a point-particle M at rest at the origin of the space-coordinates, a spherically sym­
metric solution of eq. (42) is 

2GM 
--2-' 

c r 
(45) 

provided that A is positive. Quantity 'tp:: goo is known to be(21, 22) essentially the scalar 
gravitational potential V;: P 1m , so that for test-particle low speeds and for weak field: 

g =< 1 + 2V • 1 + U ; 
00 c2 mc2 

(46) 

we shall again discuss these points in Sect. 7. We can see immediately, however, that - within our 
theory - the previou·s approximations are practically equivalent to neglecting the spin-2 character 
of gravitons (cf. Sect. 9. I). 

Eqs. (45)-(46). in any case prove - under our assumptions - the connection between the expo­
nential factor in eg. (36)and thepresenceofanon-zero cosmological term in the field equations. 

At this point. let us go back to eqs. (36). (37). Let us observe that eq. (37) is known to hold 
- in the static limit - only outside hadrons, i. e. outside the "strong universes"; therefore, i n our 
philosophy, eq. (36) was required to hold only outside our cosmos, i. e. outside the "gra_ 
vitational universes!! (see Sect. 2. 4 and Sect. 4). However, the previous derivation of eqs. (45).(46) 
suggests that eq. (36)might hold ("outside" any mass M) even inside our cosmos. [ Actually, eq. (36) 
yields the usualGMm/r behaviour for not too large values of r, as shown in the next Sub-Section; con­
temporaneously, condition (41) limits the validity of eq. (45) for not too small values of r (i. e. for 
r» 2GM/ c 2).] 

But, strictly speaking, eqs. (36), (37) are required to hol d - in our philosophy - only outside the 
gravitational and the strong "universes", respectively. As regards the interior part of those rtuni_ 
verses", in Sect. 5 we shall derive the suitable, exact solutions of Einstein eqs. with cosmologi­
cal terms. We shall find, by the way, that for very large values of r a term of the type A r+2 do­
minates, which yields cosmos-costituent confinement (within the gravitational universes) as well as 
an interesting hadron-constituent confinement (within the .strong universes): see Sect. 5. 

2.4 - THE TWO SETS OF "UNIVERSES" AND OF ASSOCIATED "CHARGES": 

Let us now start from eq. (36) and consider a contraction (by a factor!:?( 1) of the system I gra _ 
vitational source M plus its field I! (leaving the second particle m unchanged); then, due to eqs. (21, 
22), (6) and (13,15), we shall get: 

GMm 
Qr 

, ,. 
OJ,. 

(36') 



-12-

It is interesting that, for Q ~10-40, eq. (36 1
) coincides with eq. (37) since it is 

GMm 
g - NS gg', (47) 

and we can identify (see the following) 

r--~m~Q-G_--_-m-s-,-I' 
(48) 

0,·, vice-versa, we can start from eq. (37) and consider a dilatation (by a factor ()' > 1) of the 
system ltstrong source g plus its field!! (leaving as before the second strong-ch arge g' unchanged ): 
we shall then gel: 

N gg' 
<1>', _ ----'S':-_ 

Q'r exp [- ( 37') 

It is interesting that, for pI 
ing eqs. (29,30)): 

I / O ~ 1040, eq. (37 ' ) coincides with eq. (36) since it is (r emember-

a,!.1q we can identify (cf. eq. (6)): 

N gg ' 
S 
g' 

GMm (47') 

(48' ) 

At this point, since mS is the mass of the external strong - field quanta, it can be chosen 
to be of t he order of t he pion-mass: 

(49) 

we shall discuss later (see Sect. 9) the fact that gravitons and pions have actually different s pins 
(see ref. (23)) , at least "inside" and "outside 11 their corresponden t "universes~ respectively . 

Then, we can predict for the "exte rnal n gravitation mass m G a value(24) of the order of 

(50) 

This very low value agrees with t he u pper - limits s e t in ref. (25) . Inc i de ntally , the va lue ( 50) predicted 
by us for the graviton mass is of the same order of the one predic ted on a similar g.ound in ref (26). 
F,'om eqs . (50) and (43) one gets for the cosmological constant a value of the order A::::: lO-56 cm -2 . 
Since this value can be considered slightly too high , we shall discuss this point in Sect. 9. 1 (although 
some authors(26) consider that value an acceptable one for closed, isotropiC , homogeneous cosmo­
ses). 

In the case of gravitational universes, the cosmos - cosmos interaction potential, given by 
eq. (36), will practically vanish (due to an exponential factor of the order of e - lO ) for distances d 
of the Ot'der of cosmos-radius itself: 

m. (51) 

In other words, its ," effective range" rG can be considered (in correspondence to a factor l i e) to be 
of the same order: 

(52) 

Quite analogously. in the case of strong universes, the hadron -hadron interaction is known 
to have an "effective range" of the order of 1 Fermi, which is given be the interesting ralation: 

-40 -13 
rS~10 rG~10 cm . (53) 

The previous considerations lead us to write a lIpotential energylt in dilatation-covariant form. 
Let us start by writing it as follows: 

> ,. 
OJ 
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ar 

rm c 
• exp [ - a{,G J, (54) 

GMm 

(in) 
where (see Sect. 1) it is: M:: M = Moo; m 

(inl 
- mG - (mC)oo' Or rather, using 

explicitly dilatation-invariant quantities: 
.---------------------------~ 

GM m 
00 00 

ar 
(54') 

which s hould be associated with the initial (dilatation-covariant) eqs. (5, 10). Eqs. (54, 54') are al­
ready dilatation-covariant, but they can assume a more suitable form. In fact, by comparing eq. 
(54') with eqs, (36, 37), it is immediate to clarify the physical rOle of the dilatation-invariant mass 
for a f 1. Namely. we have for aZ'lO-40, if we set G:: NS = 1: 

M 
00 .va = g; 

m 
00 

Va 
= g', [ G : NS = 1 ] • (55) 

so that the quantities Moo / Yo and lloo / rn play the rOle of strong charges g , g' fora <::: 10-
40 

(L e. J when we pass from afield with the mass mG of the 'gravitorl 1to afiel<l with the mass ms-me/a ~ 1040x 
x mG~m It of the"pionj, By the way we have thus answered the problem set at the end of our footnote (13). 

Conversely, as mentioned in Sect. I. 2 and in footnote (13), we could set NS = a-I G:;::::t,1040G 
and then 

M = g; m = g', 
00 00 

(56) 

Let us streRs that, on many respects (as we shall mention), this choice would be simpler. 

With the choice (55), we can write down the same formal expression: 

( 57) 

for both gravitational and s1rong cases, where charges q, q' can be either gravitational or strong 
charges and contemporaneously the field-mass m exch represents the mass either of the gravitation 
quanta or of the strong-field quanta. 

With the choice (56) , on the contrary, we can write down the analogous, "unified" expression: 

N 

M m 
00 00 

r 
exp[- _r_m--'~o=X;.:C"h,-C_] 

where N can be either G or NS and, contemporaneously. the field-mass m h can be either the 
exc 

gravitation or the strong-field quantum. 

Let us explicitly notice that the form ofeqs. (54,54') is dilatation-covariant only if we do not 
scale the distance r, which is actually the case considered by us (remember our procedure in con­
structing relations (26)). 
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2. 5. - CONCLUSIONS OF TilE SECTION: 

In a sense, we thus succeeded in describing in a unitary way gravitational and strong forces . 
In particular . the same eq . (57bis), will hold for interactions in the static limit both among gravi ­
tational universes (like our cosmos) and among strong universes (the nucleons , and m ore general ­
ly the hadrons) , In Sect. 5 we shall see in a more rigorous way that th e same fact is true also for 
the interactions among constituents of the two sets of tt universes 1! . 

As it is clear, we are conS~dering (and we can(27, 28)conSider) our cosm os as a "gravitational 
universe ll belonging to a larger entity(9, 10 , 27) (or "big universe "), as suggested also by HOYLE 
(see refs . (28), (29)) . Here we are speaking of interior and exterior of our cosmos so as we speak 
of interior and exterior of a hadron; however, d . also Sects. 7 and 4.2. 

Moreover , let us mention that the interactions between two !1 universes!1 of the same kind might 
be possibly derived also as due to Van-der-\Vaals-like forces(3 0); cf. Sect . 3.2 . 

An interesting result of our Tl dilatationally - covariant Ti procedu r e is t hat -thr ough our dilatations 
or contractions - we have associated to our cosmos and to hadrons (nucleons), res pectively, radii 
R(U) and R(N) which are connected by the relation[R(N) ;: nucleon radi us ] : 

R(U) 

R(N) (58) 

thus actually eX1J:laining a relation similar to one of t he so - called (heur i stical ) Jl Dirac l arge-num ­
bers lt rel ations\ 1). Eqs. (54!) and (5 7) will be i nvestigated more in detail in the followi ng. 

Here, let us repeat that in eq. (54') the quantity s(a) ;; GM m I (a 11 c) can be identified with 
[G = 1] : 00 00 

s (1) ; 
GM m 

00 00 

-l\' c 
Mm 

=--
-I! c 

(59) 

in the case of gravitational universes (e. g. our cosm os) associated to the radiu s R ~ R(U); a nd with 

[NS - 1J : 
-4 0 NSgg' -...!l.IL. 

s(IO ) - -!\ c -!\ c r - 40J _a :::: 10 (60) 

- 4 0 
universes (e. g. nucleons). associated to the radius R ~ 10 R(U) s:R(N) . in the case of the strong 

In the case of two equal neutrons - or pr otons, as considered in Sect. I, - we have: 

Therefore, let us repeat, the quantity m 
00 q=--

fa 
can represent in general the (gravitational, st r ong , . .. ) charge of the considered b ody 
the (gravitational, strong , . . . ) field character ized by factor a. 

The connections of the present theory with t h e strong - gravity one(31) are evi dent 

A problem left open here - of course - is the one of expl aining why nat ure did not 
I1continuity Tl of universes, but only a discrete hierarchy of l1universesTl as : 
. . ... cosmos (az 1); atom (a"" 1 036 ); hadron ( a '" 1 0- 40 ); . . ... 

[ proton] in 

(see Sect. 9. 1) 

realize a 

The discreteness of the scale-factor a should follow from the properllquantizatiorl' of this theory, 
for example through the methods indicated in ref. (32). 
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3, - EQUIVALENCE A ND MACH PRINCIPLES EXTE NDED TO ALL "UNIVERSES"; EDDINGTON 
NUMBER; INTERACTION BETWEEN TWO "UNIVERSES", 

3, 1 - INTRODUCTION : 

From the previous Sections, it follows that we can now consider that the interactions acting 
inside the gravitational universe (i. e . among the cosmos-constituents) a nd inside the strong uni­
~s (i. e. among the hadron-constituents) are governed by the same dilatation-invariant laws. In 
other words, strong forces - either among hadron constituents oram-eng hadrons - can be deriv­
ed from gravitational forces - either among cosmos constituents or among cosmoses - by a con­
traction (see, also,the following). Merely for briefness' sake we shall sometimes write tha~ny 
hadron can be considered as deriving from a contraction of the cosmos!! instead of writing that 
dilatation-transformations bring the physical laws holding inside (outside) the hadrons into the phy­
sical laws holding inside (outside) the cosmos. That will be a shorthand, without further meanings. 
Cf. eqs. (54, (55) , (57). We shall explicitly show the above connection between cosmos and hadron 
interiors in Sect. 5. 

We said (as we showed in the previous Sections) that also test-hadrons interact strongly with 
other source-hadrons. W1e can understand this fact by considering that also the constituents of the 
first hadron are able to interact strongly with the constituents of the second one. This has been interpreted 
(at t h e end of Sect. 1) as meaning that even the test - hadron itself must be considered as deriving 
from the " c ollapse" (with Q~ 10- 4°) of another object like our cosmos. 

Let us then 

a) first, summarize the demonstration of what claimed 
interior of hadrons and of the cosmos; 

in this Section with regard to the 

b) second, re-der ive the results of Sect. 2 (with regard to the external interactions of hadrons 
and of "cosmoses") by starting directly from two universes like our cosmos, and then by contrac­
ting both of them. 

3, 2 - COSMOS AND HADRON lNTERIOR: 

Let us clarify what we did in Sect. 2 and what we are going to do with respect to cosmos and 
hadron interior (case (a)). 

The heuristical considerations that previously guided us require that eqs. (36), (37) - with expo ­
nential ter ms - hold (only) outside hadrons and outside our cosmos, in t h e static limit. 

Actually, in Sect . 7 we shall consider the exact solution of the ''Einstein equations" (with cosmological term s ) 
for spherically-symmetric (gravitational or strong) sources inside cosmos or hadrons; and we shall find 
the constituent-confini ng metric-component [c = G=N

S 
= q-

2QMoo ADD 2 
g .... - + - - r (61) 

00 r 3 Q2 

in spherical coordinate$, which yields a potential of the type V::j -( A 00 / 6Q 2) r2 when r is large.l!he 
last addendum in eq. (61) is known to correspond to the De-Sitter correction to flat metric, since our 
IIcosmological" models tend for large r to be De-Sitter spaces( 19 , 21). Therefore, one expects that, by 
linearizing our Einstein equations with respect to the De-Sitter metric, only a potential of the type 
V~ - QM / r remains. In fact, if we confine to the universes-interior and refer to frames in which 
the metrig~ppears time-independent, then(33) we just get that potential V"::;!; - Q Moo/ r, for goo~ iJ 

In other words, let us consider e. g. two cO'?mos constituents, one of them being for simplicity 
a test-particle (with gravitational charge m = m tlO ) = moo) and the other one a source M = M~l~). 
Then under the contraction by a factor Q~ 10-4°, we pass from the potential-energy (54 )-(54') with 

[ 
+26 ] a=l, r.«10 m: M m 

/> (1) = 00 0 0 
r r 

(62) 
Mm 
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to the potential -energy [ c = NS = gM ~ 
0(10- 40 ) = 00 00 x 1040=1040 Mm 

r r 
r- -13 ] L r (<"lO em (63) 

wl,lere t he espone~tial terms are absent in the universes interior, in this paper(34), In any case, 
wIth regard to POll1t (a), we are going to show that - under a contraction by the factor Q ~ 1 0-40 _ 
the cosmos reduces to ha\ e the radius of a nucleon, and simultaneously the gravitational forces 
(a cting iw;ide the cosmos) transform into strong (acting inside the nucleon)(34), 

Before going on, however J let us emphasize once more that the equations in Sect. 2 with expo­
nential term s (strictly)hold only when M represents the mass of the whole cosmos and g represents 
the strong-charge of a whole hadron (nucleon), Let us moreover underline that , when we consider 
the interactions between two hadrons (or two cosmoses), we must linearize Einstein-equations 
with respect to flat rrleiric, since in such a case we are outs1dethe Einstein-De Sitter !'univer -
ses " under cons~ration . Only in that case we get the exponential term shown in Sect. 2. 3. 

Now,following eq. (55), we can write eg. (63) - according to our postulate of dilatational cova­
riance - in the same form of eq. (62): 

[ 
-13 l r«10 cm_ (64) 

20 
where units are chosen such that NS = 1, provided that we define the strong charges as g ~10 M; 
g' ~ 1020111 . Let us explicity notice that, under the considered contr action, the cosmos-radius R( U)~ 
':::j 1026 m goes into the nucleon-radius R(N)!:::f 1026x lO-40~10-l3cm; we already noticed th at such a 
relation is better satisfied in the "pion case"(19), i. e. when we choose the second eq. (29), so that 
p :::::: 10-40 becomes Q ~lO-4l. 

At this point, let us furthermore notice the foEowing: 

j) 1: we scal e only the (initial) cosmos (and not the measure units) - as done before, - t hen we pass 
from gravitational interactions to strong interactions; 

(ii) If we however scale not only the initial cosmos, but even the measure-uni.ts, then - of course -
nothing will change: in other words, for the observer, who contracts together with the cosmos, eq. 
(62) is not only covariant but even invariant. It means that a small "Lilliputian"(35), inside a nucleon, 
using units contracted by the same factor Q = R(N) / R(U), will describe the forces acting inside its 
universe (the nucleon) exactly so as we describe the gravitational forces inside our cosmos: that is 
to say, he will feel as gravitational the interactions that we call strong. (Incidentally, we expect also 
the corresponding quantum theories to be dilatation-covariant; i. e. we expect quantization to be pre­
sent both inside hadrons and inside cosmos, but with properly dilatated " P lanck.constant". Cf. t he 
following . especially Sects. 5 and 6). See Fig.!. 

It is therefore possible to generalize the Mach Principle(36) to the interior of hadrons (nucleons) 
by saying that - for an internal observer - the "inertial mass" of any nucleon -constituent is origina­
ted by its interactions(37} with all the other constituents of that "universe II (nucleon). Therefore, the 
inerlial mass m 1 possessed by nucleon constituents inside the nucleon coincides - in our language -
with their strong charge (see the following). This is analogous to the fact that, in our cosmos, the 
cosmos-constituents show to us (who are "inside-observers") an inertial - mass coincidi:1g with their 
gravitational charge. We have thus generalized even the Principle of Equivalence to the interior of 
nucleon. It means that, in our language, and in our approximations, inside the Hstrong universes II (ha 
dron, or nUcleons) it holds: 

F 

so that 

m a = g' a = N 
I S 

. " 

2 
a g/ r 

\H: 1. 

r «l O cm [ 
-1 3 ] (65) 

(66) 
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Eq. ( 66) is obviously analogous to the aravitational relation a = M/ r2, [G = 1J . It is then clear 

that we can geometrize also the strong field inside hadrons(9) since - let us repeat _ inside the ha­
d.eons t he rale of inertial mass is played by the strong charge. 

L et l15 notice that, when a hadron-constituent comes outside (from inside(38)), then its !!iner­
~i al m as s!! decreases by a factor Q-l / 2 ~ 1020 since we have[m:: gravitational charge] 

m] = g' ) m] = m, [ g' = 1020m J . (67) 

Ho we ver, it is necessary to stress that the previous consideration (in the previous form) hold only 
if we make recourse as usually done - to the equation: 

, 
ma'>:!~ (65') 

r 
wher e, in the outside case, for simplicity we have assumed exp[ rmn c / ~ ]:::: 1. The use of eg. 
(6::; 1) i s s tandard when considering the interaction (in our cosmos) of two hadrons; we shall call eg. 
(6 S' ) the lIoutside ll equation, and such a use the lIoutside view-point ". We adopted till now the trout_ 
s i de view point " only for comparing our theory with the experimental results, which are commonly 
interpret ed just on the basis of eg. (65 1

). 

But, especially in the interior of hadrons, we ought to substitute eg. (65 1
) with the Ilinside

ll 

equation: 2 2 
m

l 
a = g' a = gg' / r ==9 a = g/ r . (66') 

It is clear that, if we use (more correctly) eg. (66 1 ) instead of eq. (65 1
), we get that the strong-char­

ges gl of hadron-constituents are related (inside hadrons) to their gravitational-charges m by equa­

tion: 

g' ",;j 10
40 

m .1 (68) 

Within t his second (more correct) llinside viewpoint 11 , we can say that when a hadron-constituent co­
mes outside (from inside(38)), then its inertial mass decreases by a factor Q ~l040, since we pass 

from m ;;; gl -- ] 
to m I ;;; m, 1 

In the following, let us go back to the 110utside viewpoint ", for practical reasons. 

(67') 

For instance, as usually each quark{39) is conventionally attributed a barionic number B=1/3, 
so we can tentatively assign to each quark the "(average) strong-charger I g l ~( 1/3)g. quantity g be­
ing the outside'hucleon-strong-charge~' whose order of magnitude can be derived from eg. (32): 

g2 / h c ~ IS; [NS=I] 

We are thus led to claim that, if (inside the nucleon) the inertial mass of the quark is conside­

red within the outside viewpoint - to be: 

m = g' ~ ..!L ] ~ 3 
(69) 

then outside the nucleon that quark will have the inertial mass (now coinciding with its gravitatio­
nal charge) 

Notice that such considerations 
fect ". 

m r = m ~ lO-20g 
] 3 

(69') 

are different from the known ones(31), based on llArchimedes ef-

Let us observe that, in order to do explicit calculations, we must pay attention to use the sui­
table units(40), so that G=NS=l. For instance we have, from eg. (32), 
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-33 20 
g ;:Y 6 x 10 cm ~ 0.5 x 10 m , (69") 

. (41) . p 
of course In agreement wlf.h our eqs . (55 1, as well as with egs, (29), (3 0), and always within the 
"outside viewpoint ", 

Eq. (69 ' ) then tells us that - under our hyphotheses - we s h ould expect gravitational and iner­
Hal mass of a quark (outside hadrons) to be 

m 
m!~~ 

1 3 

Vice-versa, if we assume the last equation for quarks, t h en we immediately derive that (inside 
hadrons) quarks are expected to have an inertial mass (identical to their stron g - charge) given 
withi n the outside viewpoint by egs . (69'). (69"); 

I - 33 - 5 /-r;;' 
m! = g' ~ 2 . x 10 crnZ ~ x 10 g~ 1. 31 G ~ P lanck-mass. (70) 

This interesting result tells us that, if we assume either (outside) mr ~ mpl 3, o r (inside) g'= 
=ml ~ g/ 3, t hen the inertial mass of quarks inside hadrons is nothing but the " Pl anck massI! , In 
other words, Planck mass can represent t h e quar k (average) strong-charge, within the "outside 
vi ewpoint " , And we do not expect to find new particles with rest-mass equal to t h e Planck mass! 

Our model, moreo= , explain s also the reasons why(42)(within the Itoutside viewpoint!!): 

Pl anck - mass = l~ = Q- I / 2mp'" 10
20

m
p

' (7 1) 

[ 
6XlO- 39 ] 

In fact , we have that cf. eqs, (29), (30), so that Q::f 15 

2 Gm
2 

15"~"" ~ 
~c Q~c 

(71 ' ) 

wherefrom (putting g-I ,,;10
40

): 

,0- 20 
~ g ",; 10 mp' (72) 

(Following a sllghtly dIfferent philosophy(39), the Planck-mass may be considered as the 
strong-charge of the whole nucleon) , 

Incidentally, we can get the definition of G in terms of other constants(42), 

2 2 2 

G·g
g

2 = ~=*~, [ g"'~CifNS= I] , 
m m)j mM rn 

(73) 

where m = mp; M _ M(U); r. R(N); Ii = R (U): cf. ref. (51) and Sects . 7,8 in the fOllowing. Of course , i t 
suitable units G = 1. 

• Eqs . (68) and follows are based on a very na'ive a;sump~ion. However, according to our previous 
(nalVe) approach, we can conclude that Planck-mass I i1 c / G = 2. lxlO - 5g can be considered as about 
1/ 3 of the thucleon strong-charge" and it can therefore be associated to guark strong - charge within 
t he outside viewpoint. 

We shall discuss the problem of quark binding _energy(39) later. 

Less nalvely, the hadrons can be e. g . considered with total strong - charge zero , each quark ha­
vi ng a st rong charge sig where ~ iSi=O. Quantities si pl ay the rOle of the strong-charge signs. but 
(instead of being +1 , -1) they can e . g. correspond to the numbers - fi/ 2 + i / 2; 13' / 2 + i / 2; -i. 
In such a case. antiquarks would possess one of the following strong-charges: + i g; (fj'/ 2- i / 2) g; 
({y/2-i / 2) · g, as one can easily guess by depicting the str ong-charge s igns on t h e complex plane. 

, . . 
'1 
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It is self-evident that the sign of quark - strang -charge can a priori be identified with colour. Usual 
"strong tl interactions should t h!' n derive from fcrces of Van-derWaals type. (We shall touch again 
these problems in Sects. 5 and "( J. 

~efore passing to the new Sub-section, let us notice that, !.!:. an hadron-constituent possesses on 
the contrary (inside the hadron) only an inertial mass mI~ m / 3, then it would possess outside the 
hadron the inertial mass m r .:::::.lO- 20 m / 3'7::J 6 x lO-45g• In sJ'eh a case, that hadron-costituent wou­
ld not be easily detected (when possibl~ emitted by the hadrons). The last considerations, of course, 
are still within the "outside viewPoint ll

] We are left with the problem of investigating what the ha­
dron-constituents exchange among themselves when (strongly) interacting. Let us remember that 
the internal, Lilliputian(35) observer should see that they exchange nothing but gravitons; we must 
translate this in our language (without forgetting that, inside hadrons, the correct equation should 
be the eq. (66')). . 

We might suppose that (inside our cosmos) gravitational interactions are mediated by 
spin-two gravitons having about the same gravitational charge as the spin-zero Ilgravitons" which must 
carry the gravitational interaction in the surroundings of the cosmos itself (cf. eq.(50) in the static limit: 

int . ext -40 -120 
m

G
(j=2) ::::; mG(J=O) ~IO m,,:~i10 M, (74) 

where M is the cosmos-mass. 

In our theory, one might an~logously .say that IIstrong quanta" inside hadrons (let us a priori 
call them "strong gravitons!l or "spin-2 gluons ll (39» are expected to possess conformally invariant 
masses equal to 10- 12 0 times the conform ally invariant mass of their "universe" (i. e. , of the hadron 
as seen from inside). 

It means that hadron-constituents (e. g., quarks) might interact via spin-2 "gluonsl' with 
strong-charge [G=NS= lJ : 

40 
gSG ~ 10 m" (75) 

(42bis) 40 20 
where SG mean s Irstrong-graviton ll -. Notice that we need here a factor 10 {instead of 10 , 
as in eqs. (55» since, in the interior of the hadrons, we must substitute the Iloutside ll equation 
(65 1 ) with equation (66 1), strictly speaking. --

Even in the immediate surroundings of the hadron, when dealing with strong charges, we ought to 
use eq. (66 1

) rather than eg. (65 1
): in such a case, we ought to say that even the strong-charge of the 

lIexternal ll strong-quanta is 1040 times fin' In order to comply with the usual, phYSical procedures, 
we can however go on writing (so as in Sect. 2. 4) that within the lIoutside viewpoint II: 

[ outside hadrons]. 

Let us repeat that the theory would be simpler, even from the viewpoint of physical-dimension 
theory, by adopting the choice in eq. (56). 

3. 3. HADRON AND COSMOS EXTERIOR: 

Let us now come to point (b) of Sect. 3. 1. Namely, let us consider two cosmoses, i. e, two objects 
with the same size and ~ass of our cosmos(43). Since we - for simplicity - are assuming them to have 
the same mass Moo=M(ln)=M, we are supposed to use eq. (11). Actually, let us consider the gravita­
tional interaction between the two cosmoses when they are close one another (in the same way as 
when considering the strong interaction between two hadrons), Initially we have [a~n)=a(~):: a =1]: 

BGM 
.;. ___ -::,0",0,,-

4 r2 

2GM 
00 

2 
r 

> , 

0'1 

(J I') 
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Then, if we scale both cosmoses by the factor () , from eq. (18) we get: 

.. 
r 

2GM 
00 

2 
r 

(18') 

[f Q ,~ 10-
4°, then the two cosmoses reduce to nucleon size, and at the same time we have: 

" ~ 2GM 10-40 
r~--2-

r 

-40 
But, at the end of Sect. 1, we have already seen that such a contraction (by the factor()~10 ) 
1,'ansforms gravitational interactions into strong interactions. So that it must be Cmp;;; nucleon massJ~ 

wherefrom 

that is to say: 

2GM 
-2- Q 

r 

2GM 
P 

2 
r Q 

M= 

(76) 

( 77) 

( 25) 

\Ve have thus demonstrated Eddington1s relation(17), which expresses the relation (in the past 
noticed only heuristically) between casmos-mass and nucleon-mass. Namely . we have derived, with­
in our conformal theory, that cosmos-mass M must equal about (1040 )2 mp' We shall re-derive agair. 
this relation in the following, within a more detailed model. 

At this point we might ask ourselves the following: the nucleon strong-charge and interactions 
can be explained as deriving from the postulate of dilatation-covariance applied to the cosmos cha­
racteristics and laws (i. e., briefly speaking, by contracting a "gravitational universe Ti like our co­
smos); then, why nucleons possess also a gravitational-charge mp? The answer relies on th e fact 
that nucleons, besides being (strong) universes, can belong themselves to a 11higher --order 11 universe, 
i. e. to our own cosmos (that we see governed by gravitational interactions, and in which inertia coinci­
des with gravitational-charge. In our cosmos, moreover, inertia comes from gravitational interact­
ion with all the other bodies of the cosmos, according to Mach principle). 

Analogously, we can start from two nucleons, and then dilatate both of them(43) by a factor 
(] 1 ~ 1040 , thus obtaining two Tlcosmoses". Such cosmoses will be governed (inside themselves) by 
gravitational interactions, if the two initial nucleons are governed, inside themselves, by strong 
interactions. Moreover, those two cosmoses will mutually interact (when "close" to each other) 
through eq. (36), in the static limit. Such a gravitational interaction between the .two cosmoses, which 
corresponds to the potential-energy (36), is completely analogous to the strong-interaction of two nu­
cleons, which corresponds to the potential energy (37). Eqs. (36) and (37) were written in the static 
limit, but these statements should hold also in the non-static cases . 

In other words, for an observer who dilatates together with the two initial nucleons, the two fi­
nal cosmoses interact via short -r ange strong-interactions . 

Let us notice that the characteristic time of such two-cosmos interactions (e. g. with subsequent 
gravitational decays) would be given by eq. (27): 

(27 ' ) 

so that we should very scarcely realize interactions of such a kind of our cosmos with other (possible) 
c osmoses. 

However, ..!!:.. the two cosmoses belong themselves to a lIuniverseTi of even higher order , then 
th ey will posses (besides the gravitational-charge) also a new infra-gravitational charge (or mass), 

.. , 
) if 
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due to their interactions - via an infra-gravitational field - with all the bodies of the "big-universe" 
(always in accord with Mach principle). See also the end of Sect. 4. 2. 

We are therefore led to enlarge, a priori, t he possible hierarchy of 1Iuniverses", with their asso­
ciated fields and characteristic"charges"; we might call the hadron (and strong-charge) the zeroth 
order universe (and charge); our cosmos (and gravitational-mass) the first-order universe (and 
charge); thE' "big-universe" (and infra-gravitational mass) the second order universe (and charge). 
If we start from a cosmos (containing very many nucleons, according to eq, (25)) and contract it by 
lhe factor Q ~] 0- 40 I then each initial nucleon will go into a universe of minus-one order( -1), asso­
ciated to a hyper-strong charge (of order -1). And so on. We can add the observation that we are 

muc h easily able to discover the fields stronger than the gravitational one , rather than the fields 
associated to possible universes of order larger than one. 

Therefore, we may even further generalize both Mach prinCiple and Equivalence principle, in 
the sense that - briefly speaking - : Inside a universe of order n, (n=O, tl ±2, . .. J. the inertia coin­
cides with the charge of the same order n, so that (only) the same-order field is geometrizable. 

Let us now go back to eqs. (33), which suggest to us that, if we now contract a cosmos by the 
new factor p ~ 10- 36 (so to pass from the cosmos-radius to about the atom-radius), then we pass 
from the gravitational interaction - strength to the electromagnetic interaction-strength. This looks 
true, but the correspondence strong ~electromagnetic interactions cannot be developed much furth­
er (at least at the present level) for the following reasons: 

a) gravitational and strong interactions correspond to non~Abeliangaugetheories (seee.g.ref.(39»} 
since those fields act as sources of themselves (and even their quanta feel their corresponding 
fields). On the contrary. Maxwell!s theory can be an Abelian gauge theory: for instance, photons do 
not carry electric charge; 

b) gravitational and strong interactions seem to be always attractive, differently from electrom~ 
gnetic interactions. 

For these reasons it appears difficult to define a lIuniverse fl inside which the electromagnetic 
field is geometrizable; so that we confined ourselves to gravitational and strong interactions. Of 
course, other approaches are however pvssible(44). 

4. - DIGRESSION: THE SIMPLEST COSMOLcx}ICAL MODEL (AND MACH PRINCIPLE). 

4. 1 - OUR PROGRAM: 

On the basis of what previously explored, we are now in the condition to be able to derive, for 
instance, the value of many physical quant ities from a few input-data: (i) the experimental value 
G \~ 7 x 10- 11 Joule x m/kg 2 ; (ii) the experimental value of the ratio 
gravitational~interaction strength over strong-interaction strength se/s8 '::I 10- 4°; and (iii) the 
values of the age t C:3 lOlOy of our universe and (at a certain extent) of the light-speed c -;:y 3 x l08m / s . 
Moreover, we shall assume as known essentially: (a)theNewtongravitation-eqtiation;O,J)theexperimen­
tal behaviour of Yukawa potential; (c) Einstein equations(20) with cosmological term. 

Then, our ·'dilatation·-covariant" theory allows us to derive for instance: 1) rad~us and mass of 
the cosmos; 2) the nucleon mass; 3) the radil of nucleons and other hadrons; 4) the strength of Yu­
kawa potential; 5) the value of quark strong-charges; 6) the graviton mass; and so on. 

In order, to accomplish the previous program. we want now to I1particularize!! our previous 
theory, by choosing specific models for the gravitational and the strong universes. Actually. we 
are going to consider Einstein-~ equations associated to both gravitational and strong inter­
actions. together with their 8chwarzschild solutions. We shall thus deal with (gravitational) black­
-holes and with "strong-black-holes"(9). instead of dealing with generical universes. ---



-22-

4. 2. - DIGRESSION: A VERY SIMPLE COSMOLOGICAL MODEL: 

Before performing that program, let us however introduce in this Section a ver y simple c o­
smological model (which apparently accords with the big-bang theory' 45)). so to f ix our ideas - fir­
st of all - with regard to our own cosmos , As a firs t, elementary result we shall calculate radius 
R and mass M of our cosmos. Notice, however, that such a model is not essential to the econo­
my of the present work. 

If we accept the reasonable philosophy that our 3 -dimensional cosmos is finite and, roughly 
s peaking (i. e. apart from local deformations), with constant curvature, then such a curvature must 
be positive. Namely, we are led to a 3-dimensional spherical hyper-surface, embedded in a four­
dimensional (Euclidean), outer, ltabstract" space whose fourth Cartesian axis may be called the 
"abstract-coordinate!! axis . Cf. also A ppen dix B . 

In order to explain Hubble law, our cosmos can thus be imagined as the IIsurface" of a ~­
ballooJ46, 47 ) which s tarted with a r adius(48) Ro~ 0, i s expanding untill a maximal radius It, and 
then will contract again to Ro~ O. F or instance if galaxies are like do t s on the balloon hyper - s ur­
face, then during the universe expansion they will recede far away from eac h other. All the points 
of the cosmos are equivalent (the IIcenter" of the cosmos belongs to the abstract space, and not to 
the cosmos itself!). Moreover , the fact that the older the detected gal axy -image is, the faster the 
galaxy appears to move , suggests that speed R(t) is decreasing with time. For fu rther d etails, cf. 
r efs. (10 , 49) ; here let us r emember that any observer P will see everyth ing "projected!! onto his 
tangent space (extrapolation of his local, fla t space) (26). See also Appendix B. 

Since in its expansion the universe is slowed down by its own gravitation (that acts something 
like t h e surface tension in a bubble), roughly speaking we can assume its radius R to change with 
time as follows: 

1 2 
R ~ v t - - at , 

o 2 
(78) 

where the initial speed va is, and remai ns , the maximal speed (in the abstract space). and can be 
assumed to be the light -speed Co at that time. We shall assume moreover Co to b e not far from 
the present-time light-speed c (cf. eq. (89) in the following) . 

The maximal radius R = R (t) will correspond (if co ':::::J c) to 

whence: 

so that 

c 

R ~ c - a t ~ c - a t = 0, 
o 

a:::...2::, _c_ '" 
t T 

c T -
R"'_o_~.....£...!.... 

2 2 
- 2 Ii 
;t"'-­

c 

( 79 ) 

(79 ' ) 

(80) 

Stictly speaking, the negative acceleration -!. is however a function o!.. time. As we shall see, 
we can assume our cosmos to be not far from its maximal expansion ( R~ R ), and eq. (78) to hold 
at least in a certain range R - LlR ~ R ' ~ R of values R' =' R(t'), where now va = vo(t') :::!.c. In this 
last case, we are fully authorized to assume that vo(t ' ) i s not far from present-time light speed. 

Within our approximations, if the negative acceleration, -a, of R = R (t) in the abstract space 
is due - as previously said - to the gravitational effect of the c~smos-mass M on itself, t h e n(5 0) : 

2 -
But, since a ~ 1/2 (c / R)' 

_ ", GM 
a ----::z­

R 
then it i 5(51): 

1M,"! c:t Z 
1 
2 

.. , 
If • 

2-
c R 
G 

(81) 

(82) 
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the fact that, from the value of G, we c~n calculate thf'! cosmos-mass M is in full egreement with 
Mach's principle. Vice- versa: G"l c 2 R I M" £ .YfI M2, (see eq. (115'); Sect. 6) .'51/ 

2 2 
Our model, though very rough, f2rwards acceptable results. For instance, using as input-da 

tum only the cosmos expansion-time t. we can derive both the cosmos expansion-radius R and th~ 
cosmos-mass M: 

(83) 
and 

M::: 10
53 

Kg (84) 

Moreover, let us underline that eg. (82) can read( in full accord - as we see - with the standard 
estimations of modern astrophysics for cosmos radius and mass): 

I R~ 7-/ (85) 

which yields for the cosmos maximal radius R exactly the cosmos "Schwarzschild radius" 2GM/ c~ 
cf. the following( 52). 

We thus predict, incidentally. that the mean density in the cosmos is Q~ M/c3t3~ lO-a3Kwm3~ 
~~:nO-29g/cm3; moreover let us notice that the condition, set recently by Cook within the Mack-Ein­
stein-Sciama-Dicke explanation of inertia(53), 

3 GM 3 
2 ~~ 4 

R 

(where R is the present-time cosmos-radius) is quite natural in our model, 
our own assumptions. 

( 86) 

and consistent with 

Owing to the fact that, during expansion, R=R(t) is an increasing function of t, we could choose 
the axis R as the axis of a certain !1cosmological time tl ,,;;; R / c . One might thus interpret why we 
can stop our movement in space but not our Itmovement" in time? (i. e. along the tl a bstract lt radiCll 
axis). Such a suggestion to consider the ll abstract!1, fourth dimension of our model as a time-coor­
dinate (except for a multiplicative constant with the physical dimensions of a speed) is in agreement 
also with the considerations in notes(54, 55). 

Let us emphasize that our simple model yields the "Hubble lawll - as expected - with an Hubble 
constant not far from the usually accepted value. Namely, let us start by conSidering two different 
observers A and B , and call BOA=P , where 0 is the llcenter l1 (belonging to the abstract space!) of 
the hyper-balloon. Then, during the cosmos expansion they will appear to move each far away from 
the other along a straight-line with the speed 

~ 

U (t) _ 
d (AB) 

dt 
P~ 

dt 
which reads 

u (tl = Pc 
as soon as we adopt the physically self-clear identification: 

I c = Co - at :Y R. I 

P (c - at), 
o 

( 87) 

( 88) 

( 89) 

where RfR(t) means the value of R at the present time t. Eq. (89) tells us also theint.eresting result that 
the ligh-speed is connected to the expansion speed of the cosmos in the abstract spacJ55bis). Actually this 
result is consistent with the fact that Relativity seems to predict (by extrapolating the usuall'Dragg­
effece 1 formula)(56. 57) what detailed in note(57). In other words, this result is consistent with a 
model where our cosmos moves with the light-speed relative to the (four-dirnens.iona1) abstract­
space, such a motion introducing!!..£ anisotropy in our cosmos since the speed R = c is directed 
orthogonally to our 3 -dimensional space. This seems to explain why nature suggests( 1 7}as notices e. g. 
by Minkowski, that 1 second = 299,792,500 meters, or rather: 1 second=i(299, 792, 500) meters. 

In our approximations, one could write. remembering eq. (79 1
): 

c ~ C (J + t/i) ~ 2 c; 
o 

> • , 
\) 't ~. 

(90) 
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notice t hat t he alternative approximation co~ ( 1 - t/ n- 1 yield~ e~g. co-::::J 3c foJ53)t:::::s(2/3) t. More­
over', we_conn ect ed by eq . (80) t he light-speed c with quantities t, R; if we (instead of deriving the 
\'al ue of R fr om our theory) borrow or extrapolate the values of both t and It from experience, then 
W E' c an heul'istically calculate even the value of the light-speed. In fact, from eqs. (80), (85) and 
( DO) otle can write 

,till t hen calc ulate 

In conclusion , fr om 

c ~ Fi j i ~ 2 -2GM/ (c t) 

eqs. (85), (88) and (89) we get 

8 
~ 3xlO mi s, 

u(t) = U : ~·(c - at) : ~ .o(t) = ~c, 
o 

(91) 

and from the expression d(t)= d:~ · R(t): ~ · R of the dist ance d(t) of the two observers A, B one gets 

immediately the Hubble law : 

with the IIubble c onstant 

as follows from eqs. (83) and (89). 

U : ( c / R ) d, I 

• C.-vR 10 -1 
-- '= - ~ (10 years) , 
R R 

( 92) 

(92' ) 

The present model is essentially a Friedman model, or rather an Einstein-De Sitter model 
with n on-zero cosmological cons~ant but nevertheless non-static. 

For t he following of this work we have to retain from this Section 4. 2 only these points:(i) that 
we got cosmos radius and mass from the age of the cosmos (and from the value of G); (ii) that our 
cosm os m ay be considered as a IIgravitational black-hole (27) embedded in the "big-universe

ll
(28). 

For simplicity, t he l2.revious considerations about hy per-space can be forgot in most cases, in the 
following , and we shall often be able to refer to "Ne wtonian" models (in three space - dimensions); 
they a re however important to satisfy the Copernican principle. 

Here, let us explicitly clarify that the paint (ii) above means merely that: (a) according to 
t he previolls model, our cosmos can reach (in the Hbig _universe rr ) the maximal radius R given by 
eq . (85); (b) inside t he rrsurface r' corresponding to R = 2GM/ c 2 the radius R of our cosmos oscil­
lates periodically from Ro to R, and then from R back to R

o
' and so on, 

B efore going on, let us clarify that, - if we assume for the spatial part of our cosmos the mo­
del of a spherical hyper-surface , - then the same model must be adopted for the rrbig universe" (as 
well as for hadrons), and so on. Therefore, the intersection Z of our cosmos with the "big universe" 
will b e <1 two-dimensional spherical-surface (as well as the intersections z of hadrons with our co­
smos; see Sect. 7). As a consequence. the expression "inside a hadron" will have a meaning analo­
gous to trin our cosmos", On the contrary , the expression rroutside our cosmos rr will have the mea­
ning "outside Z, in the rbig universe ' '', (and will be quite analogous to rroutside z, in our cosmos"); 
cf. also Whee]er , ref.( 41) . As we adopt Einstein equations - with cosmological term - in our co­
smos (for gravity), so we adopt scaled ("co ntractedll) Einstein equations in hadrons (for strong-"field 
a nd scaled ("dilatated ") Einstein equati '1ns in the "big universe" (whose spatial part is still 3-dimensi, 
nal !), for infra- gravity . For instance, we can have a priori (gravitational) black-holes in our cosmo~ 
strong black-holes in hadrons, infra black-holes in the "big-universe " , etc. Notice - however - that, 
e ven if we consider each whole cosmos (intersecting the "big universe") as a IIgravitational black-ho 
Ie" a nd each whole hadron (intersection our cosmos) as a "strong black-hole", for the surroundingsof 
suc h particular "black-holes 11 (in the "big universe l1 or in the cosmos, respectively) we ought t o rnakt 
recourse to equations of the type of eqs. (38), (39). - yielding an exponential damping - due to the inter 
ferellce of their c ha r act eristic (strong , gravitational) field with the gravitational, infra-gravitational) 
ll fi e l dl! of the 11embedding" , higher-order universe (see Sect. 5) . 

. : (\ 
'1 v 
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P ART 13: FORMALIZATION OF THE THEORY 

'> . - REFORMULATION OF THE THEORY. 

Within our philosophy (d. e. g . Sect. 4. 1), we wrote Einstein-type field-equations in corres-
pondence to gravitational or to strong "fields ", respectively. Generalizing it, we shall write Einstein­
type equations in correspondence to anyone of our n-order fields (L e , fiel ds associated to n-order 
universes). Such equations will admit black-hole -type solutions, so that we can deal with gravitat­
ional (o r first-o rder) black-holes, strong (or zeroth-order) black-holes, and so on. Before going 
all. we ought to remember what stated at the end of Part' A. 

From Sect. 4, we can infer that our cosmos itself may be considered not only as a (generical) 
gT;lvilatio nal-universe but more particularly also as a gravitational T1black_hole"(27), intersect­
ing the Ttbig_universe,,(28): see end of Sect. 4 . 2.; so as hadrons themselves call be considered as 
"strong black-holes" intersecting our cosmos. 

With regard to the gravitational case, let us base ourselves on General Relativity. Let us star t from 
Einstein field-eg uations(58) with cosmological term, which rp.ad (when only gravitational interact­
ions are present): 

Q;1 = _ 8"G T 
R,. v - g,.v RQ - g,.v c 4 ,.v 

(93) 

I (58)..... (P+QMC 2 ) u u _Pg is different from zero only inside the source rnass-distribu-
w lere ~J..L" - '1+ V J1" . 
tion; and where 2A :; (mGc /11)2, quantity mG being the graviton-mass (see eq. (43)) and quantIty PM 

l",r'> ing the mass-density. 
1 

Eg. (93) characterizes(21, 58) incidentally a gravitat ional universe with radius 1{::: ..y'if"' 

~ priori, eg. (93) holds inside, rather than outside, our cosmos (see Sects. 4. 2. and 2. 5). With 
I' egard to the l1inside" case, for every spherically-symmetric mass distribution eg. (93) yields a 
"Schwarzschild solution!1 with cosmological term (see Sects. 6 and 7). As we shall see, such a solu­
tion (for bodies gravitating inside our cosmos) has a quite good behaviour, since it gives the poten­
tial Gm / r for not too -large distances and the "confining lt potential c2Ar2 for very large distances 
(see refs. (59+ 61». However, the situation becomes different when we consider the whole cosmos 
as a tlblack_hole", because our cosmos is then embedded in a higher-order universe (the IIbig_uni 
vel~sel1 (28)) and no more in a gravitational universe: let us call l1infra-gravitational TT the field char;c 
lel'istic of the IIbig _universelr. To get the gravitational potential nearby our cosmos (in the big -uni:­
yc rse), we must proceed as in Sect. 2. 3 (where we had to r efer to a flat background); we can explain 
the origin of the additional terms in eqs. (38), (39) of Sect. 2.3 either ~geometrical termsl}ls we did, 
and ~hall do (Sect. 8)J I or as due to the interference between the gravitational field (present nearby 
the cos~os~ and the Trinf.ra-g~avitational" field g~~F~A),:!! TJfJ-,, (tYPiCal of the IIbig-universel1, and r~ 
presentIng Itself a De-SItter Infra -background deVIatIng from the flat space only over big distances 
in tile big-universe). The last explanation is analogous to the procedure recently followed by Salam 
(see ref. 42bis) when considering the same problem at the next lower TThierarchicalll order (i. e . when 
considering the surrounding of a hadron in the gravitational universe). 

At this point let us postulate that the field equations for gravitational and for strong interact­
ions are re~ectively given by the corresponding Einstein eqs. with suitable cosmological constants, 

as follows L G = NS = 1 ] :rl----l---Q-A-----8-"--------,.rn"G7c~-2'1 
R,.v 2 g,.v Rg- g,.v -;:< T,.v; 2A = (~) • (94) 

for the gravitational case; and 
,----------------------------=~--~ 

mSc 2 
.(~) (95) 
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_ . . (62 63 ) -40 
for the strong case; where eq. ( tJ4) goes Into eq. (95) under a contractIon • by a factor Q"::: 10 . 
Quantities mG. mS are the masses of the gravitational quanta and of the strong quanta, respectively 
(see Sect. 3. 2 and 9. 1). Analogously. let us assume eqs. (38+ 4 6) outside our cosmos (in the :'big_ 
-universe ll

) and the corresponding, scaled equations outside hadrons (in our cosmos) cf.)however. 
also Sect. 8. 

In particular, we shall call A the lIcosmic !1 (rather than cosmological) constant , and 

-2 402 · -1 -252 I 
H = Q A '" (J 0 ) ; H '" 1 0 cm =0. 1 bar~ (96) 

the 1!hadronic T' constant. Tensor 8ftv is connected to the strong charge distribution. For instance, 
in the "static!! case, we have 

s 
00 

(97) 

where QG B: PM and QS are respectively the grav itational and the strong charge-densities. In 
other words, the "strong-matter" tensor SIL~' is essentially Sp."'= rr1 :r',Lw:¥1040 T,uv ' where T 
is a priori the ordinary matter tensor (containing ~. the Dirac spinorial functions). Let us 
remember that, owing to what precedes, we shall use eqs. (94) and (95) in connection to purely, gr~ 
vitationa1 inter actions or purely strong interactions, respectively. Let us observe that , as in our 
cosmos we have E = mc 2, where m i s the gravitational charge, so inside "strong universes II (ha­
drans) we shall have (within the !1inside viewpoint") E = gc2~ 1040 rnc 2, quantity g being the strong 
charge evaluated within the "inside 'viewpoint " (g~ 1040m), for all objects having a strong charge (i.e 
with scale factor a=g ~10-40).. 

In all cases, i. e. in all "universes", we can write for all bodies possessing a non-zero charge 
of the corresponding order: 

(98) 

where m I is the inertial mass in the universe considered (cf. eqs. (66'), (67 1 )). 

Let us first consider the gravitational case, i. e. usual Einstein eqs. with cosmological 
constant(64) (or rather with "cosmical constant"). For a stationary, spherically symmetric mass di­
stribution M, we gePl)in vacuum the Schwarzschild metric [G=c = 1J : 

22M A r 222M Ar 2 -1 2 2 2 2 2 
ds =(1- -r- +-3-)dt -(1-7+-3-) dr -r (d9 +sin g. dp ). (99) 

Let us now write, in an explicitly dilatation-covariant way (see Sect. 1): 

2 2M 00 Aoo 222M A 2 1 2 2 
do =(1---+ -- ~ )d~ -(1-~ +~ ~ )- d7J -71 dQ, 

71 3 71 71 
(100) 

where d,z.d7J1'· d 7J
fk

; eq. ( 100) can read (c!. Sect. 1): 

2 2Moo '\,0 2 2 2Moo Aoo 2 -1 2 2 
ds =(1--- Q+-- r )dt -(1--- g+-2-r) dr r dQ 

r 2 r 3 3Q g 

(101) 

where 0 =1 in the gravItatIonal case, and Q t:::: 10- 40 in the strong one. 

Then, in the strong case, for a stationary, spherically symmetric distribution of strong-char­
ge, we have in vacuum the "strong Schwarzschild metric" [NS=c=l] given by eq. (101), where 

A I g2= H. 
00 

Before going on, let us once more underline - with respect to eg. (101) - that we started from 
a spherical, gravitational mass-distribution and then we "collapsed" the whole system "source ~ 
test-object", so that we proceeded as in egs. (10), (18). However, let us remember that we could 
have "collapsed rr only the source (plus its field). with the convention of testing both the initial and 
the final field by the same test-object (like a hadron, i. e. an object sensiti ve to both gravitational 
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and strong fields)(65). In this case we would proceed as in eqs. (15), (20). By comparing th~se pro­
cedures, in the case when one starts from the whole cosmos,- eqs.(38+46L- with mass M=M(ln)=MoQ, and 
then uses as test-particle a nucleon, with mass m(p)~m'p and strong-charge m(p) / Q within the l'in_ 
side viewpoint" , we got in Sect . 1 that m(p) ~lO-80M. Smce in Sect. 4 we calculated the value M~ 
~lo5 3Kg , then our theory yields also the nucleon mass, as already claimed: m(p)=rnp~lO-27 kg. 

Another way to get this result has been put forth by us in connection with eq. (77). 

Since the present point looks to be important, here let us briefly reformulate the related proce­
dure, remembering eq. (19) and eq. (54 1

), Namely, we can consider the initial, gravitational masses 
as actually invariant: 

M.M· m::m 
00' 00 

and call them the "charges" (or the "masses") tout court of the initial bodies. Then, after a dilata­
tion, we can include the factor Q entering the express i on GMoo/ Q (cf. eq. (19» or GM m Ie {cf. 

00 00 
eg. (54'» into the universal constant G, so that: 

G- G' :: 
(5 

Q 
( 102) 

as already suggested at the end of Sect. 2. 4 (for an alternative convention, see eg. (56». For instance, 
with 1?~10-40 we should pass from the gravitational potential-energy GM m I r (let us for simpli­
city forget about the exponential factor appearing in the "external'1 case) r8th~Ostrong potential-ener­
gy 

S 00 00 . N 2' 2 ~ N M m ~ 
r 'S Q '" 

(103) 

where we do not introduce any more both gravitational and strong c har.ges., but only the charges (or mas­
ses) moo' M~ Of course, this procedure assumes G f NS f I, in agreement with the "Generalized 
Theory of physical dimensions"(66)(and with our Sect. 1. 2, Sect. 2.4 and footnote(13) . In such a new 
context, we may call G the gravitation universal-constant and GS=G';:NS the "strong gravitation" uni­
versal-constant; for instance, in I. S. units: ,--------------------, 

(104) 

where(67) of course [GsJ = [G] and the strong field is considered as a "strong" gravitational-field 
acting (through the constant GS) on the usual masses (or charges) m =m; M =M; ... 

----- 00 00 

Going back to the "insidellcaee, in this new formalism (GfGS.NSfl; [GSJ = [ G ] ), for the strong 
case we get the metric: 

2G m 2 2G m 2 
; 00 + H; )dt 2 _ (1 - ; 00 + H; ) -1 dr 2 _ r 2 d Q 

c :I:" c r 
( 105) 

where moo refers to any hadron-constituent, in analogy to the gravitationa equation (101) whi ch read 

2 2GM Aoor
2 

2 2GM A r2 
ds = (1- 00 + )dt ( __ ,,----:0;.;;0 00 -1 2 2 

c2r 3 - 1- c2r +--3;,-'--) dr -r dQ, (106) 

where Moo refers to any cosmos-constituent. 

T~e new formalism is preferable also because it allows assuming for instance c=-K.=l so to have 
[IVi] = [L-l] in agreement with eg. (6); on the contrary, when assuming (as previousl;) G =c= l, then 
we have [MJ = [rJ ' which is a dimensional relation that does not fit elegantly into our "dilata­
tion-covariance" philosophy. 
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(;. - GR,\VITATIONA L AND "STRONG" BLACK-HOLES AS PARTICULAR REALIZATIONS OF 
"V'II VERSES". 

In Sect. 4 we s aw how our cosmos can be considered (at least under some approximations) as 
3 g radtational "black-ho1e" (cf. end of Sect. 4. 2) wit h radius rJG)(U) = R :: 2GM/c2~ l 026m . By 
~"'.I2Q1aJkn,! for a mOn1::nt eqs. (99) 01' ( ] 06) to the whole cosmos, in correspondence to M=:::P J 05:~ Kg; 
me::::; 10- Kg; ( Q ~ 10 40), also our reformulated theory yields the unique: solution 

r~G) (U) " R ~ 10
26 

m, [ ( G ) , gravitatiOnal] (107) 

in agr-=e ll1 ent with eq. (83). Of course eqs . (99), (106) are not to be used for deriving the metr ic both 
inside( 55) and outside our cosmo s (in the "big-universel1m): but they can be here enough fo r our 
pllI'pnses. On the contJ'a ry it is a lways possible (by using sui table coordinates),55) to descrilJe in an 
"orthodox'! wa.y tbe Ei'1stein-De Sitter space constituting in our philosophy the "interior" of the co­
smos . 

With regard to hacl rons (e. g. nucleons), they can be considered as "strong black - holes" (see 
eq. (101» ) .. e. g. e xtrapolating to the whole "strong universe!! the eq. (1 01 ) and the Einst ein- type equal 
ions (9:; ). Namely, we can look for (strong) "black-hole" solutions of eq. (95), that is so say of eq .(l Ol} 
or ( I DS). T he "(stz'ong") Schwarz schild radii), that we find out in this way, will represent the nu ­
cleon rildius (more generally the hadron radii) , as shown by hadrons in strong interactions, in the 
limit when we choose moo =m(p)=mp' 

L et us start by fixing our attention on eg. (106) for the gravitational case, in the limiting case 
when Moo=M=cosmos mass. To get the Schwarzschild radii , we need essentially solving the equation 

2GM ---;;z;:- 1 + -
6 

rn c 2 2 
(_G_) r = 0, 

f> 
(l0 8) 

which always admits only one solution (cf. eg. (107»). In dilatation-covariant form, eg. (l08) writes 

(109) 

where as usual 7j !! r / C! • In t he strong case, it is p ~ 11)-40; so that - if we remember that eg. 
007} is the solution of eq. (l08) - one might expect the nucleons to have radii r~ lO-40x 10426m~ 
~J O-14m. However eqs. (I08), (109) were of course derived in the case when the fields are t e st -
ed by small test -Objects: in other words, they hold for cosmos - constituents and (only) for the 
possible, smal1 constituents of nucleons, respectively. On the contrary, when considering quarks 
- which in any case are not a negligible part of the nucleon - the eqs. (101), (105) are only appro­
ximate; and we could he~tically proceed as follows . Wh en quark consideration is essential, then 
in eqs. (105) , ( 106) - for instance - we should have to compare. with the gr avitational term 
2G lVloom / c 2r (wh ere In is the negligible mass of the test-Object). strong terms as 2Gs(m~- mg}mq/(c2r) 
(where mp.m(p):o:moo and mq~(l / 3)mp is the quark-mass) rather than as 2GSmpm/( c r) . 

Roughly speaking , we thus get an extra fac to r of the order of 2/ 3· 1/ 3 ~ O. 2, with respect to 
the "neglig ible-test-object tl case , which enters the second term of eq. (109). For the nucleon-ra­
dius rL~)(N). the eq. (109) then yields - also in our reformulated theory - the unique s o lution 

I r!S)(N)~ la- 15
m 

-13 
10 cm [ (S) _ strong ] . (110) 

I'e detaile d calculations will follow (they pa rtia lly appeared in ref. (9»). 

~ .. ' . 
V~ 
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tn this model (which, incidentally. is a realization of the MIT bag rnodel(68), the quark con­
finemen t is an automatical consequence of considering hadrons as "strong black-holest!- at least 
when neglecting hadron spi n and electric charge. Notice however. that our classical confinement 
inside the black-hole horizons (which, incidentally, acts only on objects with scale factor a = () ~ 
~ 10- 40 , i. e. feeling the strong fie ld), can moreover be partiCll, a priori, due to possible quan­
tum effects(60) , 

Here let us add that within our model the hadrons can be considered - loosely speaking - as b! 
ing something like cosmoses (which are gravitational black-holes), but with much smaller radii b! 
cause they possess in their interior much stronger forces . But let now start from a n~ 
cleon with its radius given by eq. (110) and endowed with its (internal) strong-field. If the nucleon 
(lel us call mp :: m(p) its unknown mass) had to be a black-hole internally gov=fOed by the gravita­
tional field , then its internal distances ought to be reduced by another factor Q.:t lOin order to obtain 
the same effects as by the strong field. It means that the gravitational Schwarzschild radius of the 
nucleon should be 

(111) 

By comparing eqs. (107) and (111), since in the gravitational case the Schwarz schild radii are pro­
portional to be masses: 

r(G) ':lI 2GM 
s ----;r 

the n it again follow s th art~',,' t~rn=u"se:t,-"b",e,--:."..,;:-_____ ....",;:-_-,-,= ____ """,--, 

rn(p)~ (10- 40)2 M(U) ~ 10- BOx 10'53 Kg~ 10- 27Kg. (77) 

We have therefore derived eq. (77) also within the reformulated theory, and in particular within 
OUI' "lJli:H..: k -hulIC!! model. 

If we want to imagine hadrons as produced by contraction (by different factors) of the same 
"reference hadron", then eqs. (4) and (6) yield: 

r. ~ ~ (112) 
, rn. , 

where 11' III and r, iii are respectIvely radii and masses of the hadrons considered and of the "re ­
ference hadron". The 1treference hadron!! can be e. g . the neutron. If r ==::J 10- 15 !l1 and m ~ 10- 27 

Kg (as for nucleons). then: 

-42 
10 rn Kg. (113) 

If we identify r m ii! ri/c. so to be able to write the Compton wave-lenght-relation of Quantum Mecha-
nics 

r. ~ , m.c , 
then we are able to calculate that: 

,-------, 

(112' ) 

(114) 

Analogously, we could proceed in a similar way when considering various cosmoses, In such a 
case, we should have: 

where ~ R ref~~ e. g. 
write 13"1 c = M RJ : 

our cosmos 

(115) 

and we can 

( 115') 
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If we assume that the samt: c ~ ~_ .. s both eqs. (1121) and (115') - sinceunderdilatatiol1thespeectscto 
not change - then we get for the cosmological correspondent of Planck-constant (i. e. for the ll C06 _ 

mical quantum of action!1) the value: 

120 
J!" .::1 1 0 fl. ( 116) 

...!!. we consider our own cosmos as tlcorresponding" not to a generical hadron, but just to a spin 
1/ 2 baryon (e. g. nucleon). then according to our model it would be expected to have an angular mo­
mentum 

wherefrom it would follow that our cosmos rotates with the angular frequency w~ 
This attributes to the cosmos the following rotation-period and frequency: 

10
20 

s; 

-3 -1 
10 (cosmos age) . 

(117) 

-20 - 1 
10 s . 

(118) 

These results, - derived in correspondence with the analogous, semi-classical evaluations of pe­
riod and frequency of the hadrons themselvers, - are only indirectly associated with its upper limit, 
evaluated to be very low(69). Nevertheless, if we disliked results (l18), we might then "associate!! 
- within our model - the cosmos to a spin-D meson (as the pion(l9»), rather than to a nucleon (!!!.£.­
del of the Super-pion). In such a case, we should meet the nice feature of considering our cosmos 
as having a structure similar to the IIquark - antiquark!l structure of mesons. In other words, our 
theory - when taken seriously - would possibly lead to the known model where our cosmos is essen 
tially consituted by two "sub-cosmoses ll or IIMeta-galaxies ll

, one of matter and the other of anti- -
matter. Moreover let us recall - as already mentioned - that many IInumerologicalli relations are 
well satisfied just by the pion-mass; for instance, from our eq. (25), the second eq. (29), eqs . (85), 
(86) and eqs. (92), (93). one can derive Weinberg's relation(l9}: 

3 
m ~ 

~2H 

cG 
o 

It must be explicitly remembered, however, that the!lquantum version!1 of our present model is 
still an open question. Again, we shall only remember that, due e.g. to the celebrate Hawking effect 
(see refs . (60) and (70)), Schwarzschild black-holes are predicted within quantum field theory to 
"evaporatell(70) by emitting particles with a thermal spectrum corresponding to the Hawking tempe-

rature: fl c3 ~ X 1023 

T = 8nGMk = ~ 2nk ~--"M OK, (119) 

quantity k being the Boltzmann constant and M the black-hole mass. In other words. 
is proportional{60) to the llsurface gravity'1 X of the black-hole. 

temperature T 

In the case of strong black-holes we should have to deal with the much higher temperatures 
[Since, e. g .• quantity X has to be substituted by the "surface strong-gravity"J: 

I T' = -+, I [Q~10-40J, (120) 

and therefore with much higher evaporation rates. For instance, if an unstable cosmos (M~M{U» 
has an tlevaporation" time of the order of 't'~1017s. then an unstable hadron (Q~10-40) is expected 
to "evaporate '1 in a time of the order of 

17 -40 -23 
~, ';:i (10 s) x 10 = 10 s, (120') 
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in agreement with the experim ental life-times of unstable hadrons in strong interactions. Or rather: 
for M~M(U) from eq. (119) we derive T~ 10- 30 oK; therefore for hadrons we immediately predict a 
temperature T'~ lOIOK. 

More precisely, from the relation: 

. 'I T-=-4~::-k-~-s-', 1 [r s - 2~ r 1 
we immediately get in the case of hadrons (rs t::J lO-13cm ): 

(119') 

T~ 2x 1011 oK I (121) 

which corresponds to an evaporation-time of the order of the strong-interactions decay time (see 
refs. (60)). 

We meet then the problem: if cosmoses and hadrons are (gravitational or strong) black-hol es(71), 
why some hadrons - and possibly some cosmoses - do not evaporate and are stable? A, possible answer "is 
that the I1quantized T1 version of this lheorymust contain some assumptions analogous to the one set by 
Bohr with regard to electron-orbits in atoms. For instance, Salattl42bis) put forth that the Hawking 
temperature becomes zero (no thermal radiation) if a certain Regge-like relation holds between 
spin and masses of hadrons. 

By a quantization-condition of that kind we will get not only discrete (stable) hadrons, but also 
discrete (stable) cosmoses. 

With regard to hadrons, let us add that they should correspond to Kerr-Newmann (strong) black­
holes(47), rather then to Schwarzschild ' s. In that case, we shall meet naked singularities(47) : s"ee 
the following . Moreover, stationary black-holes are generally believed to be characterized only by 
mass, angular momEi!ntum and electric charge, but they can actually be associated even to other 
quantum nun .. lbers(72J. --

7. - ON QUARK CLASSICAL CONFINEMENT. THE "INSIDE" CASE. 

As already mentioned in the previous SectionSI we need considering eq. (99)+ (I 01 L (105, 106) and 
(] 08, 109) inside the (gravitational or strong) universes, i. e. inside the "cosmological" (gravitational 
or strong) "black-holes". (For instance, we are considering O"..lr whole cosmos as a !1black-hol e"). 
An interesting point arises in this connection, since crOSSing the Schwarzschild horizon (in General 
Relativity) seems to be a problem mathematically very similar to the one met i n Special Relativity 
when "crossing" the light-cone in four-momentum-space(73). See also Sect. 4. 2. 

Let us start considering eq. (l06), for the gravitational case, keeping into mind that similar re­
sults will hold for eq. (105), i. e. in the strong case. In the stationary (and small speeds) case, the 
goedesic equation is [L j = 1,2, 3J : 

21 2. 24 2 
~ = -"- 1J ~ ~ =_~ 

dt 2 2 g goO,j dt 2 2 

2 -4 
(1- 2mG + Ar )( 2mG + 2 A r ) E 
~ 3 ~ 3 r 

where m is now any source-mass (not the cosmos mass!), and the second eq. (122) holds 
in the spl-terica1ly symmetric case. 

rs rs 
In the case of '\veak fieldS", i. e. when we can assume g '::::j "I then we s imply get 

2... 2 
d r ~ c cttr - -2-

( mG --;:::r 
2 

cAr) 
3 

-.. 
r 

r 

(122) 

(123) 
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so that a test-par ticl e mt I for very large values of r, will feel an attractive, confining force propor-
tional to r: 

F ~ -

2 
m'A-c-r, 

3 [ 
6mG 1/ 3 ,1 

r~(~) ~ R(U~ . (l24.'!) 

(n the strong cas e, we are therefore finding thr ~are kind of confining forces as found e. g. by 
l\am bu and Parisi within the quark-monopole theory 7 ~. Let us remember, however, that a w-f01c .... 
quar'k cannot be considel~ed as a test -particle inside hadrons; so that the result (if we define F=g'a, 
according the Hinside viewpoint ") 

F:::J - g'H C: r ~~ ( :~~g )1/3~ r( Nil (124!?) 

holds a prio ri [or the pos sible quark-c onstituents(lO), bu t it is only approximate for quarks. 

If we eliminated the weak-field condition , then from eq. (122) we would have that, for large 
enough values of r: 

Ar + -- + 
3 

.<:;0 that we would get an even stronger confinement. Analogously, in th e strong case werld have 

Hr +-- + .•• 
3 

(125!» 

but in our model the conditions (r ). R(U)); (r) r(N)) fo r the valiriity of eqs. ( 125~,~) are almost never 
satisfied, neither inside the cosmos, nor inside the hadrons; and ther efore we are mainly left with 
~.(124~.~) , except when the hadrons - for instance - start deforming due to very high energy col­
lisvns . 

As previously ~entioned, eq. (l24b) should ho ld for small hadron-constituents(10) lIet us call 
t hem partinos ), strongly interacting with the other hadron-constituents, rather than for quarks. 
Ana logously , eq. (l24~) should hold for small cosmos-constituents (like galaxies, stars and usual 
bodies), gra .... -itationally interacting with the other cosmos-constituents, rather than for ~portions 
of our cosmos(74!?J. 

;:-: a. ::; te 
Lei us notic e that eqs. (124~,!?) yield a classical confinement which however~artial, due for instanc e 

lo quan tum effects (cf. also ref. (73) ) .We should moreover remember that only strongly-interacting 
objects are a priori expected to be (partially) confined inside hadrons (so as only gravitationally-in­
ter:lcting objects oughtto be deemed as confined inside our cosmos). 

If we particularize our philosophy by considering our Sect. 6, then - when describing our co­
s mos .1Ilel hadrons as r rblack~olesrr_ the confinement of their constituents can be understood as due 
to fhe horizon properties. Even in this case, however, the confinement can be partial , !.:....£.:. due 
to quantum effects ; in any quantum theory, however, quarks can be again II totally" confined by asso 
dating to th e classical horizon a suitable "barrier rr of super-selection rules and of super- c onserv~ 
lion l aw s. 

The fact that hadr ons are 'Ieolour singlets!! may t hen be explained as in Sect. 3. 2, by identify ­
ing quark-col o ur with the sign of quark s trong-charge (cf. Sect. 3. 2 ). Hadrons would then have_~ 
t o tal net strong - charge (nevertheles s, they would strongly interact, so as atoms can electroma­
gnet /cally interact). S::>:112thing similar shoul d then happen for the !!Meta_galaxies

rr 
(sub-cosmoses ) 

"s . ") const ituting o ur cosmos (r emember e. g . the model of the uper-plOn . 

We already mentioned (Sec t. 6) that, since hadrons can bear e. g. angular momentum (spin, J ) 
an d electric c harge, !, we ought to deal with Kerr-Newmann(47) Hst r ong black-holes '1 , r ather than 
\vi!h Schwa r zschild1s. B ut electric charge e of hadrons is very large in comparison to their mass 
(see ref. (75)), so that the corresponding ( ~ially symmetric) solutions of Einstein-Maxwell equat ­
ions in the Kerr- Newmann case seem to show - if we accept them - that hadrons should be I1naked 
si ngularities r1 rather than Schwarzschild strong black-holes. In such case , we rld still have quark 

, -' /. 

t> • 
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(pal'tial ) confinement due to eq. (124~). and the C'dilatation-invariant") spirit of our theory would 
not be affected; but welld have to modify our model accordingly. However'7 1ince hadrons carry 
fllthel~ quantum-numbers( 72). it might be convenient (even if not necessary) , ( 2 to generalize D,ur 
model by looking for (solitonic) solutions(?l) in Yang-Mi lls theories, e. g . following Salam(42blS), 
In such a new approach, hadrons still behave like strong black-holes (or rather rrstrong solitons!!), 
- in most cases , - even when endowed with spin, electric charge, etc. And, as we anticipated, stable 
hadr p '2t ,I11j'ght correspond to zero Hawking II temperature", e. g. to a Regge -like relation of the 
t.\pel4 ~ : 

J (J + 1) + NS e 2 1 (I + 1) = NS M2 
M2 (126) 

wher e I is t he isospin. Relations of the kind of eq. (126) look a priori to be able to play in hadron ­
s t n' ct lll~ e -understanding the same rOle played by Bohr conditions in atomic structure. 

At this point, let us add the following. If we consider the hadron interior as being an Einstein­
De Sitte r-type universe, or rather as having a geometry of Schwarzsc hil d or Kerr-Newmann type, 
then the SU(3)-syrnmetric nature of hadrons can possibly be derived just from their internal geome­
t ry. In fact, the Schwarzschild and Kerr-Newmann geometries (even with cosmological constant ) co!:. 
respond(21) to Petrov D spaces; and it seems that Petrov D spaces automatically lead( (6) to SU(3 ) 
s y mmetry. The same should then be translated in lIgravitationallllanguage, for the cosmoses. 

Let us moreover notice that. if the space-parts of both our cosmos and the ha-
drons are ( 3-dimensional) hyper-surfacej embedded in a four - dimensional space, i. e. if they are 
the surfaces of four-dimensional s pheres, t h en the intersections of hadrons with our cosmos 
would be two-dimensional spherical-surfaces. Such ordinay sph erical surfaces should just be what 
we see of hadrons{77>' Let liS moreover observe that , if we accept that our cosmos expands un till 
it reaches the maximal radius Ii = 2GM/ c2'101026m (cf. Sect. 4. 2, eq. (85)) and then rec~nt~acts.' 
the whole period being of the order of 4 xlO years, then each hadron would undergo a SImIlar In­

t ernal oscillation with maximal radius r=2Nsmp/ c2 ~ lO-13cm (cf. eq. (53)) with a period uf the 
~ of 10- 22 seconds only. Of cours e , by usual experiments we should measure the average 
radii of hadrons. Th e possible rOle of s uch a lIz itterbewegung lt

, predicted by our theory, with re­
gard to the proper ties and the quantum behaviour of elementary partIcles will be considered elsewhere. 
Here let us simply observe that our theory seems to support some llextended_type ll models of ele­
mentary particles(78), particularly the ones where the particle-trajectory is defined only by discr~ 
t e po ints (con nected by a periodic function(78\ so as in Caldirola'S model. 

To conclude this Section, we have to consider the behaviour of a 11 universe-constituent" for small 
values of r . Let us e . g . consider the case of a "partino"(10): the geodesic equation in the strong case 
writes [ N:; NSJ 

2 22 223 
a = _ ~ _ c H r + ~ + N Hg _ c H r 

r2 3 ~ 3 9 
( 122' ) 

where ~ is th e radial acceleration. We already discussed in eqs . (124b) and (125b) the yield of eq. 
(1221) for very large values of r. For small valu es of r, on the contr~ry, the attractive term 
cc -1 / r2 dominates (as in the g~avitational case). Noti~e that the repulsive term cc + 1/ r3 effecti­
vely works only at extremely small values of r, so that a::::-O only for r~ 10- 33 cm (and, in the gra 
vit a tional case, we'ld get a ~ 0 only for rZGm / c 2 1). However, we can comply with the requirements 
of the so-called asymptotic freedom by attributing a kinetic-energy (and an angular-momentum J with 
respect to 0) to th e considered partino(10), i. e. by adding th e "kinetic -energy term" to the potential 
cor responding to eq. (1221); so that for small.!:., [ r« r(N)] ,and with the choice (56): 

2 2 2 2 2 
v ::! (J / g') _ (~ _ .r!...L ~ + . .. . ) '" El1. + (J/ g') 

2 r 222 3 r 2 
r c r r 

wh ere g l is the strong-charg e of the " partino". Of course the same approximately holds when consi­
dering a guark (and its required "asymptotic freedom ")' instead of a par tino. And in the quark case 
(g'::= (g-g l)/ n', with nl = 1,2)' one gets Ve& 0 for rZ 10 x J2 / (Ng 3) . If we e. g. borrow from quantum 
theory the suggestion that J!;:I n ~, then we obtain: 

. ' 
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1,2, .. . J 
so that quarks are expec t€:G (i r. +> e more listable n bt ates) to s t a y at relative distances r ~ 10 -14 em from 
each other, and in such conditions to behave as practically non-interaction (free) objects. Notice that the 
the assumption .J ~ corresponds tn att r i buting a revolution-speed ~ C:! ~ to the movin g quark. 

OUI~ eq. (122 ' ) seems therefore to ~_~ ive account both of quark confinement lIinfrared divergencyU) 
and of the ir asymptotic freedom. 

Static "partinos fI, on the contrary. would t€:nd - as we have seen - to a relative position with r~l 0 -32 em 

At last, let us consider e, g. the baryons' case (N "::' 1040 G). If we assume the quark !tstability ra 
dius H to be of the order of 1/100 of the "stron g Schwarzschild radius" r :z 2Nm/cZOTOur had'20n (con 
side red as a strong black-hole), then - after Castorina - we get the Reg~ - likerelation J ~ Nm i (100C) 
where m is the baryon - mass in Kg; this relation also reads, with m now measured in GeV/cZ:--

J
lM _ m 2 - -

J" '" 

8. - THE "OUTSIDE" CASE; AND HADRON RADII. 

In Sects. 5 and 7 we hav e been considering the field equations holding inside hadrons and in­
side cosmoses, respectively . We are left with the more difficult problem of writing down the fields 
equations describing (for instance) the metric of our cosmos in the neighborhood of hadrons (1. e. 
in the neighborhood of their !!intersecUons" with our cosmos , that we call "hadrons 1t tout court: 
cr. end of Sect. 4. 2 and Sect. 7). Such field-equations will hold for the bodies with "scale factor!! 
a' = Q ~ 10- 4°; 1. e. such a metric will be "felt" by Objects possessing both strong- char ge and gra­
vitational charge. We already approached that probl em in Sect. 2. 3 , where we tackl ed the analo­
gous, Hnext-higher - order" case of the neighborhood of our "cosmos!! in the big-universe: see eqs. 
(18), (39). 

To describe the space-time rr..etric of our cosmos both afar and in the sur:z:oundingSof hadrons 
we need a "bi-scale !! theory (rather than a Tlbi_metric TT theory) , since the metric deformation cau­
sed in our cosmos by the hadron-"intersections" has to act strongly - as we already mentioned al­
so in Sect. 2.3 - only on the bodies with IIhadronic charge" (besides the gravitational charge 
1!due to " the Mach principle). That deformation, on the contrary, will act only "gravitationally'1 on 
the po ssible particles possessing only "gravitational- mass" (1. e. with a = 1). Incidentally, let us 
observe that, by analogy. even our cosmos might be crossed by objects - enteri ng it trfrom outsi ­
de !! - devoid of gravitational charge (and possessing only the tlhigher-order!! infra-gravitational 
charge) . 

\Ve want here to exploit a little the philosophy followed in Sect. 2, and particularly in Sect. 2. 3. 
Before going on, let us remember that according to our theory in the cosmos the Einstein (gravi­
tational field) equations hold: 

which can read - as wellknown -

8" 
4 

c 

(94' ) 

since R~ = R = (8n G / c 4 ) T~ - 4A . Let us moreover remember that inside a hadron the strong 
field-equations hold [NSii GQ-l ~ 1040 G] : 

which can read, since Rg 

(95') 
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v 
In the surroundings of a hadron we can assume fl-'-V~ 11/L11 for the gravitational metric-tensor. 

in suitable coordinates. However - let us repeat - around a hadron (in our cosmos) we have al­
so the !Istrong-gravity!!, acting ther e (only) on the particles with a = () :x. 10- 4 0, In such a region, 
when the test-object possesses {also} strong-charge, we can neglect 'lUv in comparison with Sf.LV • 
and posqibly the gravitational-field energy-momentum pseudo-tensor(79) t,u-b in comparison with 
t
(strong} _ 
!-lv ,. 51-111' . . 

In the surrounding~of any hadron in our cosmos, therefore, when taking account of both gravi­
tational and strong fields, we can assume (in suitable coordinates: cf. eq. (40)): 

( 12'l) 
N 

where the components of the strong metric tensor h,uv have to vanish for r» 1 Fermi. The total 
deformation of the cosmos-metric due to the !1intersection!1 with a hadron can be represented by 
the superposition (around any hadron) of the two abovementioned fields. Such two fields, of cour­
se, can also interfere each other. The terms containing A can in any case be neglected, and on­
ly the IIhadronic (cosmological) constant II H =Q-2A~1025 cm- 2 will enter. Let us moreover oE 
serve that the strong field (completely geometrizable inside hadrons), can still be geometriza­
ble in their neighborhood - in our comsos - provided that we go on attributing to the (hadronic) 
test-object an inertial mass cOinciding with its ttstrong_masstl or ltstrong-chargelt (see what pre­
cedes, particularly Sect. 3. 2l. Of course, the strong-mass of objects as photons or leptons is 
zero (or practically zero) there. 

The previous considerations lead us to assuming in the surroundings of a hadron - jn our 
cosmos - the following field-equations valid for tesv-objects possessing both gravitational and 
strong charges [remember egs. (127), and NS = GQ-l;S,uv =NST,uv] : 

~ 8", ( 1 SQ 
RI' + H hl'v '" -;:4 SI'V- "2 gl'v Q (128) 

where the tTcosmological.(strong) term ll with the hadronic constant H takes care of the geometric 
properties of the strong field around the !!source hadron!! (and has to be effective in a region with 
linear size of the order of 1 Fermi). Eq. (128) writes in suitable coordinates: 

AJ an 1 Q 
RI'V + H(gI'V- "II'V ) - - ~ (SI'V- "2 gl'vSQ ) (39') 

which is essentially eg. ( 39) of Sect. 2. 3, re-written for the case of strong interactions. This­
therefore - justifies also eq. (38) assumed in Sect. 2. 3, which in the next-lower hierarchical case 
reads (remember egs. (94'), (95')): 

1 Q ( 1 aO _ 8n; 
RI'V-"2 gl'v RQ - H gl'v+ "II'V - "2 gl'v g " "Ia~)- - ~ SI'V (38' ) 

and which can be considered as a particular case (i. e. resulting after elimination of the terms 
negligible in the present case) of the general (ttbi_scale ll

) equation that describes the simultaneous 
presence in the neighborhood of the source-hadron of two fields of different hierarchical orders, 
provided that we remember the relation fa~;:"IafJ in suitable coordinates. The guanlity(I!2)Hg/LV g'l~"Iafl 
appears in our approximations to play the rdle of the interference (mixing) term. 

N 
Since I h,Lw I «1 for r » 1 Fermi, by following a procedure similar to the one in Sect. 2. 3 

in the static limit (and for the strong case) we get [NS =G=l J : 

goo ~ I - :2: . exp [ - rmSc ! ~ ] (45') 

where actually goo ~ 1 for r» · 10- 13 cm. 

Before going on, let us observe that egs. (39 ' ) and (38 ' ) can provide a classical field theory 
of strong interactions, where the strong field is the second-rank tensor (1/ gtJP/LV '" (1 /2)i\uv~ 1/2 ~ 

'(gl'v- "Il'v)' 
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Let us now introduce also an alternative approach, following the spirit of refs. (9, 80), even if 
we shall have to deal with approximations. For test - objects with a = g!:! 10- 4 °, and therefore pos­
sessing both strong and gravitational charges . in the surroundings of a hadron, in our cosmos, and 
in suitable c oordinates, we can write the field-equations [Ns = (r 1 GJ : 

R _ 1- RQ ~ _ 8" (N T + t(strong )) (129) 
)"v 2 g)"v Q - 4 S)"V )"v 

c 
where : (iJ we eliminated the negligible terms; (ii) NST~v :: SjJ<v represents the "strong-mass" ten 
so r' ; and (iii ) in our approximations the quantity tA~trong) is the energy-momentum tensor of the 
strong field (79) . B y comparing eq. (129) with eq. (38'), we get that it must be 

2 
(strong)~ c H ( + 1- ap ) 

t)"V ; - 8,. g)"v ~)"v - 2 g)"" g ~ap· 

tf we remember that r'JJ.i,v should rather be substituted by f,u. v ' we realize that t~~trong) £..an be con-
s idered as a tensor (and not a pseudo-tensor(79»). Moreover, l et us notice that, when approaching 
the ;ource-hadj"on surface , g v ----+ hli-V (and that "asymptoticaUy l1 gftv ---'!I> fjl-V ' as we already 
know ). i\s a consequence , if fve put: 

t(strong) = S + t(strong) = S' 
NS T)"v + )"v -)"v)"v -)"v 

the n we may suppose to be .entitled to write eq. (129) not only in the form 

__ 8,. 
- -,- s~v 

c 
(129 ' ) 

but also in the equivalent form: 

R .. v = - .!!!!. (S' + 1-
r- c4"/-LV 2 

), (J 30) 

to be compared with eq. ( 128). However, now we must heuristically introduce "from the outside r! 
the supplementary notion that 

t~~trong) 1« 1 for r >)-10- 13 cm 

cince SltJ.V now contains both the usual SlAV' and the "hadronic (cosmologicall termll, and the inter­
ference term. 

Let us for Simplicity consider the case of a spherically-symmetric distribution of strong char­
ge. Then, in the vacuum and for a static (strong) field, we can evaluate dstrong) by an Iterative pro 

00 
cedure, followin g refs. (9, 80): 

t(strong) = (<p Ig '). u(r)'" 1- (g -1)· u(r) , 
00 00 2 00 

(J 31) 

wllere [<p, <Poo ; NS=I; Ii· mSc / ~ J : 
u(r) 8,,~,2 [I v<p12+!t

2
1<p lj" 3~,.[V( goo- J)12+J12 Igoo-1 12l (131' ) 

In th~ static limit, for the first iteration we can take g equal to its zero-order approximation (so -
lution of eqs. (38) after linearization), and write [ NS=Co=olJ : 

1 
- (g -I) '" 
2 00 

<pI g' ~ - K 
r 

exp [ - ri> ] 
where such a solution - let us repeat - is valid only "asymptoticallyl1 (1. e. for r ~ 1 Fermi). The­
j"efore: 

u(r)~-I-
8,. 

g2 . exp [-2;'1 rJ (_1_ 
2 2 

r r 

" + 2)" 
r 

(J 32) 
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h,w ~ g/-tv'1J1l1J = 

I 
-2 (g -1)_ 

00 

e v(r) 

e ).(r) 
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exp [v (r)] 1 

2 . 2 0 
-r Sln tf 

( 133) 

where 11 , A are functions still to be determined. Notice that we are essentially looking for "strong 
black-hole" solutions, considering of course the horizon exterior, in our cosmos. 

By insterting eqs. (131),(133) into eq. (129), in the vacuum we get - among the others - the 
equation (see refs. (80,9)): 

2 
~ (r)·~ 

2 2 u ~ 

m' e 
exp r_ A (r) J. (_ I _ _ 1-L 1'2 r 

d A(r)) 
dr 

( 134) 

where for instance g2/11. c ~ 15, and where the test-particle mass m' can be choosen to be ml:::-j 

~mq= quark-(average)-mass, (the test quark being considered a priori as situated outsi:!e the 
horizon) . Notice that, as expected, in eq. (134) the "strong" quantity g2 j m l2 substitutes the gra ­
vitation constant G (remember that, when NS=l , then [ G] = [ g2M-2J ). The exact solution of eq. 
(134) i s(80, 9), 

exp [- A(ri]=l- 2}J + ~,k . exp [- 2~rJ + :2 . exp [- 2 ;r], 

where k ;;; g4/ c 4 m 1 2 and e., is an integration constant with the dimensions of a lenght(BO, 9): 
t. ~ g2m/ c 2m I 2, quantity m being the hadron mass (e. g . , m ~ m(p) = mp). 

( 135) 

Obviously, in correspondence with the strong " Sc hwarzschild radius !! rs = r~S) of our strong 
Sc hwarzschild geometry, we shall have: 

exp l- J,(r)] = o. (136) 

..J "Ii N EfJ. (' 36) yields values of r s slightly dep~nding on IJ-. If we assume IJ- ~ mn c / or IJ-:::'O we get 
almost the same results. In the simple case iJ,~O, we arrive at the equation 

2 
r - 2~ r + k = 0 

s s 

which for the nucleon yields e. g. the solutions 

r (N) = ~ 
s 

-15 
r 1 ~ 10 em; 

-13 
r2~O,8xIO em. 

(137) 

Many alternative interpretations might be suggested for the smaller value r l' But, since our theo­
ry (Sect. 6) yielded only one solution (of the order of lO-13cm ) when tlextrapolatinglr the inside case, 
we must rather neglect the value r1 as possibly due to the approximations of the method used at the 
end of this Section; so that we remain with: 

-13 I r S(N)::J 0.8 x 10 em~ (138) 

In the case of pions, eq. (137) yields (with m r ~ average effective mass of pion-quarks): 
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-13 
r (tt) "" l. 4 x 10 em, 

s 

2 
g m

h 
: --- + 

2 
em' 

2 
g m h 2 

(--) 
2 

e m ' 

4 
g 

4 2 
e m' 

for mesons; 

for baryons; 

( 139) 

(140) 

where m
h 

is the hadron-mass and m r the average, effective mass of quarks in the hadron conside­
red. 

From eq. (133), let us write the line element in the strong case: 

ds
2

: exp G(ril c
2
dt

2 
- exp[).(r)] 2 2 2.2 2 

dr - r (dQ + sm Q . d P ). (133') 

The Laplace-Schwarzschild radii(81) previously calculated hav e been derived from the condi­
tions exp~(r)J = 00; we ought now to verify that on the Lapl ace-Schwarzschild hor izon it is also 
exp [ v(r) ] =0, but the calculation(80) of function v{r) can be performed only with further approxi­
mations. Therefore, we limit ourselves to verify that, in the present case of hadrons, we actual-
ly have, as required, that 2 

exp [v(rQ~lexp [A(rQ}-1 ~ 1 - :~2:~2 (141) 
It is worth while to notice that our "strongTi metric (33 1

) together with eqs. (135) and (141), has 
been shown by Mignani(9) to be identifiable with PRofft monopole metric (in curved space-times 

(see refs . (82jA83)). 

9. - COMPLEMENTARY REMARKS. 

9.1 - AGAIN ON STRONG AND GRAVITATIONAL QUANTA: 

We already noticed many times that our eq. (50) is approximate, since we ought to relate lIin _ 
ternal 11 (llexternalll) gravitational - quanta with llinternal ll (llexternall') strong-quanta, rather than 
lIinternal ll gravitons with llexternalll pions. 

The settlement of this problem in our theory is as follows: (i) both gravitation and strong fields 
are represented by tensorial quantities: cfr . eqs. (94), (95); (ii) the Yukawian field is merely the cJJee 
component (in the static limit) of the strong-field tensor cJ>,uv' (Cf. also Appendix A). 

This means (as previously remarked) that our theory . predicts hadron-constituents - let us call 
them IIpartinosl!: cf. Sect. 7 - to interact by exchanging spin - 2 strong-quanta, corresponding to the 
spin-2 gravitons(84). Such (,Iinternal ll ) spin-2 strong-quanta can be identifield with spin-2 "gluons", 
or even with fa - mesons. Such an identification shows the connection of our theory with the IIstrong_ 
gravityll theories( 85).Of course, things can - however- be generalized in the spirit of Super -gravity. 

Let us remember, at this point, that the IIdual theories" of elementary particles have brought to 
understanding hadron structure in terms of IIstrings", and that lIc10sed strings II can be associated(83) 
to spin 2. 
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Conversely, we can rela~ct~e (spi.n-O) pia,ns (S~~h (ltexternal") spin-O IIgravito~sll tral~s.mitti~g -
in the static limit - the gravltat lOnal mteractIon ' between two close cosmoses ln the blg-umver-
sell. and associated to the p 00 component of the gravitational -field tensor Pp,v' 

At th e level of numerical evaluations, therefore, our eqs. (30), (32) are only approximate; as a 
consequence, we could frequently calculate only the orders of magnitude. In order to perform mo­
re precise evaluations, we ought to choose for the quant ity g, inste,d of the value gPP.1t' t he value 
of "cou pling constants II as the "partino_partino_(spin_2)'gluon' II one 86), Analogously we m~y. have 
got in Sect. 2. 4 a slightly too high (A~10-56 cm- 2) value for the cosmological constant A, (alth­
ough - let us repeat - that value to some authors(26) seems a good one for closed. homogeneous. 
isotropi~ models) . 

It is clear that we can easily comply with the possible requirement that "internaP (spin-2) gra 
vitons - and internal (spin-2) gluons - have exactly zero rest-mass; in fact, our eqs. (43), (48), (49) 
have to hold only for the ·' external" quanta , i . e. for "external gravitons II and for pions: cf. eqs. (36) 
and (37) . 

At last. let us mention the following problem . When "quantizing" our theory , we might be WOl" 

ried by the fact that the forces mediated by spin- 2 quanta are always attractive between like parti=­
cles. In the strong case, and precisely inside hadrons. this can be accepted for "partinos" but 
does not seem to be true for quark-quark interactions. However, a solution is offered by the fact 
that hadrons may be constituted (besides of bradyons) also of tachyonic quarks (see Refs.(8?»; and 
tachyons have been shown to suffer a repulsion when usual particles feel an attraction( 8 7). If we 
choose this way out, incidentally, then the sign of the cosmological (hadronic and cosmical) con ­
stants might be accordingly ~hanged for the inside cases. 

9.2. - WHY BIG-BANGS? 

Lastly, let us put forth a possible hint for understanding the O.ig-bang "explosion" within the 
pres ant theory. After any cosmi.:: expansion and recontraction(88), we are probably left with a 
big, collapsing ensemble of lOBO neutrons. 

If neutroys are strong black-holes, we can imagine that the "Second l aw of black-hole termo­
dynamicsl~B9 holds even for them: i. e. that . when a couple of neutrons coalesce. they form a new 
lIstrong -black-hole" whose horizon -surface is larger than the sum of the two initial horizon-surf~ 
ces (=neutron-surfaces) . 

It is easy to calc ulate, then. that the 10
80 

neutrons constituting our cosmos, when coalescing 
all together, will form a new, Super "strong black-hole II with horizon-surface: 

80 2 51 2 
S > 10 4n;r ::;J 10 m (142) 

-13 
where r :;; r(N)~ 10 cm. 

It means that, due to neutron "melting" during the final period of cosmos-contraction, we have 
a process that builds up a new cosmos which (at the end of such a process) must have a radius 

j R>1025mj -- (143) 

as follows from eq. (142). The previous consideration may constitute a starting point for investi­
gating the big-bang "explosion "that supposedly create a new cosmos. 

The fact that we pass from a gravitational"black-hole" (old cosmos) to a "strong (Super) black­
hole" should not be misunderstood, since - due to our theory of the hierarchy of Ituniverses" - in­
side each new "cosmos" the {internal) observer would just feel what we usually call "gravitational" 
interactions. 
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APPENDIX A 

Einstein's equations with cosmological term can be written 

(AI) 

or in the equivalent form: 
(A2) 

Let us lineari ze eqs. (A2) with respect to De Sitter (non-static) space. To this aim let us put 

gl"v = e
20 

(0I"V + hl"v)' [OI"V '" ~I";' J (A3) 

where e 20 0p,1) is De Sitter-space metric tensor(90) with e- o = A +A xp, x/-L 1 12, and where the quan­
titiesh/-LlI are first-order corrections to the components owv =diag(1, -1, -1, -1). In other words, we 
require that 

(A4) 

By inserting eq. (A3) into eq. (A2), under the conditions (A4), we obtain, following the procedure 
in ref. (90), the linearized Einslein equations (with respect to the De Sitter background): 

I" 'V 161tG Q 
(01"0 + 2i1)'P_ 4 TQ 

c 
(A5~) 

( 1"2i1) 161tG( 10 Q) ij...o + '3 'Pa ff '" c 4 Taff -'4 aff TQ ' (A5!!.) 

where 

I 
I"v 'P =0 h~v _ h; 

20 
'Paff = e (h aff 

(A6) 

1 
- '4 Oaf3 h). 

Eqs . (A 5a) ClI"e relativistically covariant massive equations for scalar and tensorial fields, respec-
tive1y, \~th(90): 

(A7!!.) 

where rna is the scalar-field mass and ffi2 the tensor-field mass . 

If we restrict ourselves to the case of stationary sources, then the only nonvanishing compo­
nents of T a~ is Too= Ye 2 whereYis the mass density; so that Tg = Too. In the case of a spherically 
symmetric mass-distribution we get from eqs. (A5::)' (A5~) the following solutions (holding outside 

v6 
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the s ~herica.ll.z sl,mmetric mass M): 

) ~ 4GM [/~rJ c 2 r 
exp 

[.{-Fr] 
(AS) 

) ~ ; 
3GM 

2 
exp 

\ 00 c r 

[Ji order to find the correspondence between 1JJ, 1J1 and the gravitational potential V p/m, let us 
calculate the acceleration tr in the case of station~~'y field: 

1 
2 

[
r' S;1,2,3J 
1k,1/ = 0,1,2,3 ' 

-0 1' (>qui valently a = 2 """ (c / 2) A g . On the other hand, from eg. (A3) we obtain 
00 

20 
e 

20 
+e h 

00 
= 1 

2V + --
c 2 

;..Jow let us split V = V 0 +V 1 and let us identify 

Further, frOlTI eq. (A6) we have 

therefore eq. U\9) becomes : 

c 

2V 
o 

4 
c 

20 
e h 

00 

3GM 
- c2 r exp 

20 
; e h 

00 

2 0 
• e 1. 

[-/¥ r J + e 2aTr exp [ -{2i J 

(A9) 

(AIO) 

(A9') 

where we have taken into account the solutions (AS) . In the special case A = 0, egs. (A9') takes the 
form of the usual Newtonian gravit ational potential 

When J 2A \ r ~ 0, 

~ = mV ; _ mGM 
r 

at the moment t = 0, eq. (A9 ' ) tends to the same form (All). 

To study the general case, let us rewrite eq. (A9 ') into the form 

2~1 = ~N~ exp [-J 2{}e20ex{y'2A' r(l- ;d -3). 

\~fhen r -7 00 , eq. (A12) at the moment t = 0 tends to 

p = - 3G;';M exp [-I 2~'r J 

~6'" o " 

(All) 

(AI2) 
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APPENDIX B 

For briefness! sake, we do not include hare this Appendix B. It will appear in the printed ver­
sion of this report, and will deal with an introduction to lI Projective Relativ ity11 and to lIConformal 

Relativity ", 

-
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FIG. 1- The title page of the original edition of 
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