INFN/AE-76/7
17 Maggio 1976
C. Favuzzi, G. Maggi and F. Waldner: A FEASIBILITY STUDY FOR A FOCUSSING SINGLE ARM SPECTROMETER AT $p_{\text {inc }} \geqslant 400 \mathrm{GeV} / \mathrm{c}$.

This note is part of a project of feasibility study for a Focussing. Single Arm Spectrometer (FSAS from now on) for the SPS at CERN supported by INFN under project No. SP3.

1. - INTRODUCTION. -

A FSAS has to be intended more as a general purpose device than a single experiment oriented apparatus. Working with a high resolution unseparated beam, and measuring two 4--momenta ($\mathrm{p}_{\text {inc }}$ and $\mathrm{p}_{\text {out }}$), the apparatus is especially suitable to explore (in the "low t^{t} region) fields as elastic scattering, two body and quasi-two-body reactions, inclusive reactions. The apparatus can therefore cover by itself a large portion of high energy physics: it can be made more versatile if additional equipment around the target is used.

Principal advantages of the instrument are the high event rates; the possibility (more precisely: the necessity) of an on-line connection of the whole set up; the experimental data in digital form on tapes; the simplicity of the data reduction stage; the high statistics easily achievable; the small dimensions of the detectors owing to the small beam size.

Schematically the apparatus can be sketched as in Fig. 1.

FIG. 1
The circulating beam strikes the internal target (IT) and gives rise to an unseparated beam which enters the beam line through a lens (quadrupole triplet, normally) BL1, a prism of magnetic dipoles (BP1), and another lens BL2 : in this way one gets a first dispersed focus BDF1. The beam is transported farther away through a couple of lenses BL3 and BL4. At

BDF2 there is a second dispersed focus that can truly analyze the momentum (in BDF1 one is usually too near to the hot zone of the accelerator). A second system BL5, BP2, BL6, symmetric with the first section focuses the beam recombining the various momenta on the exter neal target (ET) (liquid H_{2} or D_{2}, normally). Through the whole beam line, detectors are pla ce to give the transverse (x, y) coordinates of the incoming particles. In this way one can ha ve p_{x}, p_{y}, p_{z} at the interaction point at ET. Cerenkov counters or other detectors must give also the mass of the incoming particle : in this way the equipment can give the incoming 4 -mo mentum.

A similar structure in the spectrometer arm (SL1, SP1, SL2) allows one measure the outgoing 4 -momentum. To explore different angular regions in low energy experiments one usually rotates the spectrometer arm (SA) : in the hundred of GeV region this is unthinkable owing to the tremendous length of the apparatus, combined with the painstaking accuracy of the alignment. One usually uses therefore a magnetic bending of the incoming beam, leaving the SA stationary. This bending is done usually "into the ground" for obvious safety reasons.

In this note we describe possible layouts that can work up to 400 or $500 \mathrm{GeV} / \mathrm{c}$ of incom ing momentum : in designing these layouts we followed closely the design philosophy of the FSAS at FNAL.

2. - GENERAL REQUIREMENTS. -

The FSAS analyzes a reaction like

in all charges combinations: there are also similar reactions with the neutron as target. The se inclusive reactions can be described with 2 variables: (t, MM) is a most popular choice (to gether with ($\mathrm{p}_{\mathrm{T}}, \xi_{\mathrm{L}}$) or even scaled variables) whereas (p_{3}, θ) are the variables given by our apparatus (see ref. (2)).

We restricted our apparatus to explore regions not farther than "t $=-3 \mathrm{GeV}^{2}$ (i.e. after the first diffraction bump), taking advantage of the fact that the cross section at $t=-1$ is nearly equal to that at $t=-3$.

The geometrical acceptance is going down, however, so we do think that a reasonable choice will be $t=-1 \mathrm{GeV}^{2}$ as the maximum that can be reached with a reasonable signal to noise ratio. This parameter is not essential, however, as it's more or less a matter of brute force to bend the beam enough to reach high t values.

On the other side (small t values) we think that the FNAL limit ($0.05 \mathrm{GeV}^{2}$) is more or less an intrinsic limit of the instrument itself.

Similarly we restricted our equipment into the region $\mathrm{MM}^{2} \leqslant 9 \mathrm{GeV}^{2}$ to cover the resonance region. Extension to higher masses is not difficult. One can put some definite constrains at this point
a) t resolution $\Delta t \leq 0.01 \mathrm{GeV}^{2}$,
b) MM resolution Δ (MM) $\leqslant 80 \mathrm{MeV}$ (to see the single pion),
c) positive identification of the masses (incoming and outgoing).

These constraints are easily translated into lab variables: we can in fact observe that in the range previously defined t is essentially a function of θ only and MM is a function of $\left(p_{1}-p_{3}\right)$ only. If we approximate t with the formula

$$
\mathrm{t} \simeq-\mathrm{p}_{\mathrm{inc}}^{2} \psi_{\mathrm{lab}}^{2}
$$

where $\psi_{1 a b}$ is the angle of scattering in lab system, we get:

$$
\Delta \psi_{\mathrm{lab}} \simeq \frac{\Delta \mathrm{t}}{2 \mathrm{p} \sqrt{-t}}
$$

which with $\Delta t=-0.01$ becomes:

$$
\Delta \psi_{\mathrm{lab}} \simeq \frac{0.05}{\mathrm{p} \sqrt{-\mathrm{t}}},
$$

which can be computed at the limits :

$$
t=-0.05 \quad \text { to } \quad t=-1
$$

Similarly we have (t very small, $m_{\text {inc }} \simeq 1 \mathrm{GeV}$):

$$
\Delta(\mathrm{MM}) \simeq \Delta\left(\mathrm{p}_{1}-\mathrm{p}_{3}\right),
$$

with these rough estimates of our resolutions in mind, we obtain ($\Delta \psi$ in $\mu \mathrm{rad}, \Delta \delta$ in percent with $\left.\delta=\frac{\mathrm{p}_{1}-\mathrm{p}_{3}}{\mathrm{p}_{1}} \times 100\right)$:

Taking into account also the finite resolution of the BA, these limits have to be tightened by roughly a factor of 2 , posing therefore a very severe series of constraints on the inherent precision of the equipment especially on the magnification and dispersion at the dispersed foch.

These requirements are summarized in Figs. 2, 3, (graphs for $\Delta \psi_{l a b}$ and $\Delta \delta$ as fun actions of $p_{\text {inc }}$).

FIG. 2

FIG. 3
4.

Another requirement is an excellent beam parallelism in the parallel sections if one wants to use Cerenkov counters. We can see the situation in Figs. from 4 to 7. The parallelism should be guaranteed within one half of the $\pi \mathrm{K}$ separation.

FIG. 4

FIG. 5

FIG. 6

FIG. 7
6.

High acceptance is also desirable: this constraints together with the necessity of a high bending power practically imposes the use of superconducting elements.

We plotted in Figs. 4 to 7 some useful curves for Cerenkov effect. We can see that over some $200 \mathrm{GeV} / \mathrm{c}$ the Cerenkov angle is almost independent from the particle momentum: this can be an advantage in designing the counters, but the obvious disadvantage is that the angular separation between different masses is dropping dramatically as shown in Figs. 6 and 7. We must have therefore an excellent degree of parallelism if we don't want either to drop the overall acceptance or to risk the misidentification of the particles. We think that these conside ration practically force the choice of DISC Cerenkov's and/or radiation transition detectors, if these detectors could be made reliable enough. The best beam we obtained in the parallel sectimon to allow Cerenkov analysis, has an angular divergence of $36 \times 51 \mu \mathrm{rad}$, which should be a factor 6 better than the angular separation πp at $500 \mathrm{GeV} / \mathrm{c}$ and for $n-1 \simeq 300 \times 10^{-6}$ (This refractive index corresponds roughly to N_{2} at 1 atm and $20^{\circ} \mathrm{C}$) and roughly a fac tor 2 better than the separation $\pi \mathrm{K}$ in the same conditions. We think this a reasonable figure to allow $\pi-\mathrm{K}$ --p separation, also taking into account the fact that one can use gasses with a lower refractive index, therefore increasing the mass separation.

3. - DESIGNING THE LAYOUT. -

In designing the layout we started from the FNAL spectrometer philosophy, proceeding from there on with the good old trial-and-error method. The program used was TRANSPORT (see ref. (1)) run at the IBM 370/158 of CSATA in Bari.

We summarize briefly the TRANSPORT notation which will use throughout this note: first of all coordinates will be in cm , angles in mad and momenta in $\mathrm{GeV} / \mathrm{c}$.

A particle trajectory will become a point in phase space and will be described by a vector:
$R=\left(\begin{array}{ll}\mathrm{x} & \mathrm{cm} \\ \theta & \mathrm{mrad} \\ \mathrm{y} & \mathrm{cm} \\ \emptyset & \mathrm{mrad} \\ 1 & \mathrm{~cm} \\ \delta & \% \text { units }\end{array}\right)$
where:
a) x, y : are the transverse coordinates of the particle (in cm).
b) θ, ϕ : are the angles of the particle with the cen trail trajectory (z axis), defined as

$$
\dot{\theta}=\frac{d y}{d z} ; \quad \emptyset=\frac{d y}{d z} \quad \text { (in mead). }
$$

In Fig. 8 we give the sketch of the TRANSPORT coordinate system, taken from ref. (1). Usually y is the vertical and x the horizontal axis (see Fig. 8 for details).
c) 1 : difference in length between actual trajectory and central trajectory (in cm);
$\delta:$ percent difference in momentum particles which follow actual and central trajectories (in units of percent).

Matrix formalism is of course used for the optics.
As soon as we begun the first TRANSPORT runs it appeared obvious that in order to have reasonable acceptance one had to use superconducting elements. We agreed to use for them reasonable parameters which are not likely to be modified by technology development. We stood on elements 1.2 m long with a hot hole 10 cm in diameter. Our design works at $400 \mathrm{GeV} / \mathrm{c}$ if 4 T are reached. Higher momenta with no layout modifications can be reached with higher fields.

FIG. 8 - Curvilinear coordinate system used in derivation of equation motion.

The constraints on the instrument we kept in mind are :

1) To have available as much phase space as possible.
2) To have suitable parallelism in the parallel sections in order to allow Cerenkov analysis (other detectors as the transition radiation counters would ease this constraint).
3) To have a resolution $\Delta t \leqslant 0.01 \mathrm{GeV}^{2}, \Delta$ (MM) $\leqslant 80 \mathrm{MeV}$ with a 2 mm separation, at least at the SA dispersed focus (this allows the use of standard MWPC).
4) To limit as much as possible the number of elements and the overall length of the system.
5) To have a reasonable clearance around the secondary target.

For what point 4) is concerned we can roughly sketch what we can expect for the total bending power (in T.m) scaling up the FNAL solution.

$$
\text { FNAL (180 GeV/c) } \quad 400 \mathrm{GeV} / \mathrm{c} \quad 600 \mathrm{GeV} / \mathrm{c}
$$

quadrupoles
dipoles
30.4
102.2
132.7
45. 7
153.3
199.0

This would allow the same resolution in $\Delta \mathrm{p} / \mathrm{p}$, which corresponds to a worsening of the situation for $\Delta \mathrm{p}$ and therefore on Δ (MM).

We give in the following sections the essentials of the various layouts we obtained. The notation used in the TRANSPORT notation, both for the beam vectors and for the transport ma prices.
8.

Drift spaces, quadrupole and dipole lengths are always measured in m . Magnetic fields are expressed in T (Tesla). The "hot hole" of quadrupoles is always 10 cm in diameter. The layouts are for a central momentum of $400 \mathrm{GeV} / \mathrm{c}$. We will give at the main points the be am vectors and the transport matrices: however, the beam vectors for typografical reasons will be presented as a row, instead that as a column: this has to be intended merely as a paper sa ving trick. For quadrupoles and dipoles we will give length and field.

For a positive particle, positive field for a dipole means a bend on the right; for a qua drupole a positive field means a focussing in X .

We are using the TRANSPORT coordinate system, which is reproduced in Fig. 8. Layouts are sketched in Fig. 9 (see pag. 23).

4. - BEAM LAYOUT (1). -

In this layout an accurate parallelism is obtained in the parallel section. The overall acceptance is anyhow smaller than in layout 2. The essentials of this design are as follows:

1) Beam from I. T.

The beam vector is supposed to be :

$$
\left.\begin{array}{llllll}
(0.05 & 1.0 & 0.05 & 1.5 & 0 . & 1.0
\end{array}\right) .
$$

2) Drift $(20 \mathrm{~m})$
3) Triplet lens BL1
a) Quadrupole ($2.4 \mathrm{~m}, 2.263 \mathrm{~T}$)
b) Drift (1 m)
c) Quadrupole ($2.4 \mathrm{~m},-1.42 \mathrm{~T}$)
d) Drift (1 m)
e) Quadrupole ($2.4 \mathrm{~m},-1.42 \mathrm{~T}$)
f) Drift (1 m)
g) Quadrupole ($2.4 \mathrm{~m},-1.42 \mathrm{~T}$)
h) Drift (1 m)
i) Quadrupole ($2.4 \mathrm{~m}, 2.263 \mathrm{~T}$).

At this point the beam vector is :
〔3.360
0.015
$3.870 \quad 0.019$
$0.0 \quad 1.0)$
and the transport matrix is:

$$
\left(\begin{array}{llllll}
0.595 & 3.364 & 0 . & 0 . & 0 . & 0 . \\
-2.297 & 2 \times 10^{-5} & 0 . & 0 . & 0 . & 0 . \\
0 . & 0 . & 0.775 & 2.579 & 0 . & 0 . \\
0 . & 0 . & -0.388 & 5 \times 10^{-5} & 0 . & 0 . \\
0 . & 0 . & 0 . & 0 . & 1 . & 0 . \\
0 . & 0 . & 0 . & 0 . & 0 . & 1 .
\end{array}\right)
$$

4) Drift (15 m)
5) Dispersive section BP1

This is a set of 10 dipoles each 2 m long and with a field of 4 T , rotated from the optical axis of 0.17 degrees (i.e. of the correct amount) and separated from next dipole by a drift of 0.5 m .

After this section the beam vector is :
(3. 449
0.600
3. 860
0.021
0.202
1.0)
and the transport matrix is :
$\left(\begin{array}{llllll}-0.595 & 3.363 & 0 . & 0 . & 0 . & 0.764 \\ -0.297 & 8 \times 10^{-5} & 0 . & 0 . & 0 . & 0.600 \\ 0 . & 0 . & -0.775 & 2.573 & 0 . & 0 . \\ 0 . & 0 . & -0.387 & -0.004 & 0 . & 0 . \\ 0.129 & -0.202 & 0 . & 0 . & 1 . & -0.015 \\ 0 . & 0 . & 0 . & 0 . & 0 . & 1 .\end{array}\right)$
6) Drift (1 m)
7) Triplet lens BL2
a) Quadrupole ($2.4 \mathrm{~m},-5.323 \mathrm{~T}$)
b) Drift (1 m)
c) Quadrupole ($2.4 \mathrm{~m}, 2.281 \mathrm{~T}$)
d) Drift (1 m)
e) Quadrupole ($2.4 \mathrm{~m}, 2.281 \mathrm{~T}$)
f) Drift (1 m)
g) Quadrupole ($2.4 \mathrm{~m}, 2.281 \mathrm{~T}$)
h) Drift (1 m)
i) Quadrupole ($2.4 \mathrm{~m},-5.323 \mathrm{~T}$).

At this point the beam vector is :
(3. 307
0.798
4. 884

1. 047
0.202
1.0)
and the transport matrix is :
$\left(\begin{array}{llllll}-0.8076 & 3.063 & 0 . & 0 . & 0 . & 1.2232 \\ -0.140 & -0.705 & 0 . & 0 . & 0 . & 0.374 \\ 0 . & 0 . & 0.176 & -3.256 & 0 . & 0 . \\ 0 . & 0 . & 0.269 & 0.698 & 0 . & 0 . \\ 0.013 & -0.202 & 0 . & 0 . & 1 . & -0.015 \\ 0 . & 0 . & 0 . & 0 . & 0 . & 1 .\end{array}\right)$
8) Dispersive section BP2

After a 1 m drift follows a section of 5 dipoles with the same characteristics as the BP1 dipoles.
9) Drift (30 m)

We have here the first dispersed horizontal focus (DHF1) where the beam vector is :
(3. 954
0.975
0.322

1. 05
0.286
1.0)
and the transport matrix is:
2.

$$
\left(\begin{array}{llllll}
-1.418 & 6 \times 10^{-4} & 0 . & 0 . & 0 . & 3.953 \\
-0.140 & -0.705 & 0 . & 0 . & 0 . & 0.674 \\
0 . & 0 . & 1.347 & -0.21 & 0 . & 0 . \\
0 . & 0 . & 0.269 & 0.700 & 0 . & 0 . \\
0.04 & -0.279 & 0 . & 0 . & 1 . & -0.06 \\
0 . & 0 . & 0 . & 0 . & 0 . & 1 .
\end{array}\right)
$$

After 3 m we have the first vertical dispersed focus (DVF1) with the following beam vector:
(4. 053
0.688
0.073
1.023
0.286
1.00)
and the following transport matrix :

$$
\left(\begin{array}{llllll}
-1.42 & -0.208 & 0 . & 0 . & 0 . & 4.047 \\
0.118 & -0.686 & 0 . & 0 . & 0 . & -0.053 \\
0 . & 0 . & 1.465 & -0.003 & 0 . & 0 . \\
0 . & 0 . & 0.519 & 0.682 & 0 . & 0 . \\
0.04 & -0.28 & 0 . & 0 . & 1 . & -0.06 \\
0 . & 0 . & 0 . & 0 . & 0 . & 1 .
\end{array}\right)
$$

A field lens (a quadrupole 1.2 m long, with a field of 1.0 T and a hot hole of 10 cm in diameter) between the two foci does not change anything in the optics, but does improve the overall down-stream acceptance of the system.
10) Drift (15 m)

11) Triplet lens BL3

a) Quadrupole ($2.4 \mathrm{~m}, 2.404 \mathrm{~T}$)
b) Drift (1 m)
c) Quadrupole ($2.4 \mathrm{~m},-1.532 \mathrm{~T}$)
d) Drift (1 m)
e) Quadrupole ($2.4 \mathrm{~m},-1.532 \mathrm{~T}$)
f) Drift (1 m)
g) Quadrupole ($2.4 \mathrm{~m},-1.532 \mathrm{~T}$)
h) Drift (1 m)
i) Quadrupole ($2.4 \mathrm{~m}, 2.404 \mathrm{~T}$).

At this point the beam vector is :
(3. 052

1. 258
2.115
0.036
0.286
1.000)
and the transport matrix is :

$$
\left(\begin{array}{lllllc}
-0.433 & -2.22 & 0 . & 0 . & 0 . & 2.098 \\
0.45 & 10^{-5} & 0 . & 0 . & 0 . & -1.258 \\
0 . & 0 . & 2.136 & 1.408 & 0 . & 0 . \\
0 . & 0 . & -0.710 & 3 \times 10^{-5} & 0 . & 0 . \\
0.04 & -0.279 & 0 . & 0 . & 1.0 & -0.062 \\
0 . & 0 . & 0 . & 0 . & 0 . & 1.0
\end{array}\right)
$$

12) Drift (10 m)

At this point the beam vector is :
(2. 371

1. 258
2.113
0.036
0.286
1.000)

A larger drift can be used if required, and this will not decrease the acceptance: in this case the layout from this point on has to be changed if one wants to maintain the same optical properties.

13) Triplet lens BL4

a) Quadrupole ($2.4 \mathrm{~m}, 2.461 \mathrm{~T}$)
b) Drift (1 m)
c) Quadrupole ($2.4 \mathrm{~m},-1.517 \mathrm{~T}$)
d) $\operatorname{Drift}(1 \mathrm{~m})$
e) Quadrupole ($2.4 \mathrm{~m},-1.517 \mathrm{~T}$)
f) Drift (1 m)
g) Quadrupole ($2.4 \mathrm{~m},-1.517 \mathrm{~T}$)
h) $\operatorname{Drift}(1 \mathrm{~m})$
i) Quadrupole ($2.4 \mathrm{~m}, 2.461 \mathrm{~T}$)

At this point the beam vector is :
(2. 601

1. 186
2. 607
0.895
0.286
1.000)
and the transport matrix is :

$$
\left(\begin{array}{llllll}
1.003 & -1.122 & 0 . & 0 . & 0 . & -2.346 \\
0.222 & 0.748 & 0 . & 0 . & 0 . & -0.920 \\
0 . & 0 . & 0.3778 & 1.072 & 0 . & 0 . \\
0 . & 0 . & -1.143 & -0.595 & 0 . & 0 . \\
0.04 & -0.279 & 0 . & 0 . & 1.0 & -0.062 \\
0 . & 0 . & 0 . & 0 . & 0 . & 1.0
\end{array}\right)
$$

14) Drift (15 m)

The beam vector is here:
(3.727
1.186
0.276
0.895
0.286
1.00)
and we have the second dispersed horizontal focus (DHF2) with the following transport matrix :

$$
\left(\begin{array}{llllll}
1.336 & 10^{-5} & 0 . & 0 . & 0 . & -3.727 \\
0.222 & 0.748 & 0 . & 0 . & 0 . & -0.920 \\
0 . & 0 . & -1.337 & 0.179 & 0 . & 0 . \\
0 . & 0 . & -1.143 & -0.595 & 0 . & 0 . \\
0.040 & -0.279 & 0 . & 0 . & 1 . & 0 . \\
0 . & 0 . & 0 . & 0 . & 0 . & 1 .
\end{array}\right)
$$

After a drift of 3 m we have the second dispersed vertical focus (DVF2) with the follow ing beam vector:
(3. 906
0. 763
0.086
0.872
0.286

1. 000)
and the following transport matrix :
2.

$$
\left(\begin{array}{llllll}
1.366 & 0.222 & 0 . & 0 . & 0 . & -3.899 \\
-0.023 & 0.728 & 0 . & 0 . & 0 . & -0.228 \\
0 . & 0 . & -1.720 & 0.002 & 0 . & 0 . \\
0 . & 0 . & -1.415 & -0.579 & 0 . & 0 . \\
0.04 & -0.279 & 0 . & 0 . & 1.0 & -0.062 \\
0 . & 0 . & 0 . & 0 . & 0 . & 1.0
\end{array}\right)
$$

15) Drift (15 m)
16) Triplet lens BL5
a) Quadrupole $(2.4 \mathrm{~m}, 2.398 \mathrm{~T})$
b) Drift (1 m)
c) Quadrupole $(2.4 \mathrm{~m},-1.530 \mathrm{~T})$
d) Drift (1 m)
e) Quadrupole ($2.4 \mathrm{~m},-1.530 \mathrm{~T}$)
f) Drift (1 m)
g) Quadrupole ($2.4 \mathrm{~m},-1.530 \mathrm{~T}$)
h) Drift (1 m)
i) Quadrupole ($2.4 \mathrm{~m}, 2.393 \mathrm{~T}$).
17) Dispersive section BP3

This section consists of 10 dipoles with the same characteristics as the previous ones, but with reversed field. After these dipoles we have a series of 8 more dipoles each 2 m long with a field of -4.681 T , tilted of 0.17 degrees with respect to the optical axis. The tilt is not what it should be if one wants to have the dipole symmetrically placed on the optical axis: this is done on purpose to take advantage of the focusing edge effect of a dipole.
18) Drift (20 m)

This is the "parallel section" mentioned before, in which one can analyze the beam with Cerenkov counters.

The beam vector is :
(2. 559
0.036

1. 626
0.051
0.161
1.000)
and we can see that we have here an excellent parallelism ($36 \times 51 \mu \mathrm{rad}$). The transport matrix is:

$$
\left(\begin{array}{lllllc}
-2.127 & 2.557 & 0 . & 0 . & 0 . & 0.003 \\
-0.413 & 0.026 & 0 . & 0 . & 0 . & -0.014 \\
0 . & 0 . & 1.886 & -1.082 & 0 . & 0 . \\
0 . & 0 . & 0.894 & 0.017 & 0 . & 0 . \\
-0.003 & 0.0036 & 0 . & 0 . & 1 . & -0.161 \\
0 . & 0 . & 0 . & 0 . & 0 . & 1 .
\end{array}\right)
$$

19) Triplet lens BL6
a) Quadrupole ($2.4 \mathrm{~m}, 1.936 \mathrm{~T}$)
b) Drift (1 m)
c) Quadrupole ($2.4 \mathrm{~m},-2.218 \mathrm{~T}$)
d) Drift (1 m)
e) Quadrupole ($2.4 \mathrm{~m},-2.218 \mathrm{~T}$)
f) Drift (1 m)
g) Quadrupole ($2.4 \mathrm{~m},-2.218 \mathrm{~T}$)
h) Drift (1 m)
i) Quadrupole ($2.4 \mathrm{~m}, 1.936 \mathrm{~T}$).
20) Drift (30 m)

At this point we can put the external target : we have here in fact the recombined vertical and horizontal focus.

The beam vector is :
(0. 101
0.612
0.168
0.447
0.161
1.000)
and the transport matrix is :

$$
\left(\begin{array}{llllll}
-1.635 & 0.00001 & 0 . & 0 . & 0 . & -0.059 \\
0.237 & -0.612 & 0 . & 0 . & 0 . & -0.010 \\
0 . & 0 . & 3.360 & 0 . & 0 . & 0 . \\
0 . & 0 . & 0.260 & 0.293 & 0 . & 0 . \\
-0.003 & 0.004 & 0 . & 0 . & 1 . & 0.161 \\
0 . & 0 . & 0 . & 0 . & 0 . & 1 .
\end{array}\right)
$$

5. - BEAM LAYOUT (2). $=$

In this layout we obtained a reasonable, but not extreme degree of parallelism in the parallel section. We have a higher acceptance with respect to layout (1) and we think this as a reasonable design for the beam arm of an FSAS in which - for instance - transition radiation detectors instead of Cerenkov counters could be used.

1) Beam from internal target
(0. 05
1.0
0.05
1.5
0.

1.0)
2) $\underline{\text { Drift }}(20 \mathrm{~m})$
3) Triplet lens BL1
a) Quadrupole ($3.6 \mathrm{~m},-1.576 \mathrm{~T}$)
b) Drift (1 m)
c) Quadrupole ($2.4 \mathrm{~m}, 1.441 \mathrm{~T}$)
d) Drift (1 m)
e) Quadrupole ($2.4 \mathrm{~m}, 1.446 \mathrm{~T}$)
f) Drift (1 m)
g) Quadrupole ($2.4 \mathrm{~m}, 1.441 \mathrm{~T}$)
h) Drift (1 m)
i) Quadrupole ($3.6 \mathrm{~m},-1.576 \mathrm{~T}$).

The beam vector is now :
(2. 537
0.170
5.030
0.336
0.
1.0)
and the transport matrix :
14.
$\left(\begin{array}{llllll}0.715 & 2.537 & 0 . & 0 . & 0 . & 0 . \\ -0.442 & -0.169 & 0 . & 0 . & 0 . & 0 . \\ 0 . & 0 . & 0.430 & 3.353 & 0 . & 0 . \\ 0 . & 0 . & -0.327 & -0.224 & 0 . & 0 . \\ 0 . & 0 . & 0 . & 0 . & 1.0 & 0 . \\ 0 . & 0 . & 0 . & 0 . & 0 . & 1.0\end{array}\right)$
4) Drift (10 m)
5) Dispersive section BP1

This is a set of dipoles with field of 4.0 T covering a total length of 40 m . The dipoles are tilted of the correct amount with respect to the optical axis.

The beam vector becomes now :
(2. 934

1. 213
2. 320
0.350
0.262
1.00)
and the transport matrix :
$\left(\begin{array}{ccllll}-1.490 & 1.693 & 0 . & 0 . & 0 . & 2.395 \\ -0.442 & -0.169 & 0 . & 0 . & 0 . & 1.200 \\ 0 . & 0 . & -1.205 & 2.213 & 0 . & 0 . \\ 0 . & 0 . & -0.325 & -0.233 & 0 . & 0 . \\ -0.073 & -0.244 & 0 . & 0 . & 1.0 & -0.096 \\ 0 . & 0 . & 0 . & 0 . & 0 . & 1.0\end{array}\right)$
6) Drift (15 m)
7) Triplet lens BL2
a) Quadrupole $(3.6 \mathrm{~m}, 3.259 \mathrm{~T})$
b) Drift (1 m)
c) Quadrupole ($2.4 \mathrm{~m},-2.036 \mathrm{~T}$)
d) Drift (1 m)
e) Quadrupole ($2.4 \mathrm{~m},-2.036 \mathrm{~T}$)
f) Drift (1 m)
g) Quadrupole ($2.4 \mathrm{~m},-2.036 \mathrm{~T}$)
h) Drift (1 m)
i) Quadrupole ($3.6 \mathrm{~m}, 3.259 \mathrm{~T}$)
8) Drift (40 m)

At this point we have the two dispersed foci:
a) horizontal dispersed focus DHF1

Beam vector:
(4. 504
0.747
0. 212
0.548
0. 262
1.000)

Transport matrix :

$$
\left(\begin{array}{llllll}
1.847 & 0.00006 & 0 . & 0 . & 0 . & -4.503 \\
0.0489 & 0.541 & 0 . & 0 . & 0 . & -0.515 \\
0 . & 0 . & -2.684 & 0.110 & 0 . & 0 . \\
0 . & 0 . & -0.185 & -0.365 & 0 . & 0 . \\
0.073 & -0.244 & 0 . & 0 . & 1.0 & -0.096 \\
0 . & 0 . & 0 . & 0 . & 0 . & 1.0
\end{array}\right)
$$

b) after a drift of 3 m we have the first dispersed vertical focus DVF1 with this beam vector :
(4. 661
0.747
0.137
0.548
0.262
1.0)
and the transport matrix :
$\left(\begin{array}{llllll}1.862 & 0.162 & 0 . & 0 . & 0 . & -4.657 \\ 0.0489 & 0.541 & 0 . & 0 . & 0 . & 0.515 \\ 0 . & 0 . & -2.739 & 0.0003 & 0 . & 0 . \\ 0 . & 0 . & -0.185 & -0.365 & 0 . & 0 . \\ 0.073 & -0.244 & 0 . & 0 . & 1 . & -0.096 \\ 0 . & 0 . & 0 . & 0 . & 0 . & 1 .\end{array}\right)$
10) Drift (15 m)

11) Triplet lens BL3

a) Quadrupole ($2.4 \mathrm{~m}, 2.404 \mathrm{~T}$)
b) Drift (1 m)
c) Quadrupole ($2.4 \mathrm{~m},-1.531 \mathrm{~T}$)
d) Drift (1 m)
e) Quadrupole ($2.4 \mathrm{~m},-1.531 \mathrm{~T}$)
f) Drift (1 m)
g) Quadrupole ($2.4 \mathrm{~m},-1.531 \mathrm{~T}$)
h) Drift (1 m)
i) Quadrupole ($2.4 \mathrm{~m}, 2.404 \mathrm{~T}$).

After this lens the beam vector is :
(4. 524

1. 396
2. 139
0.066
$0.262 \quad 1.00$)
and the transport matrix is :

$$
\left(\begin{array}{llllll}
1.188 & 1.747 & 0 . & 0 . & 0 . & -4.173 \\
-0.572 & 0 . & 0 . & 0 . & 0 . & 1.395 \\
0 . & 0 . & -2.368 & -0.755 & 0 . & 0 . \\
0 . & 0 . & 1.324 & 0 . & 0 . & 0 . \\
0.073 & -0.244 & 0 . & 0 . & 1 . & -0.096 \\
0 . & 0 . & 0 . & 0 . & 0 . & 1 .
\end{array}\right)
$$

12) Drift (20 m)
16.

13) Triplet lens BL4

a) Quadrupole $(2.4 \mathrm{~m}, 2.404 \mathrm{~T})$
b) Drift (1 m)
c) Quadrupole ($2.4 \mathrm{~m},-1.531 \mathrm{~T}$)
d) Drift (1 m)
e) Quadrupole ($2.4 \mathrm{~m},-1.531 \mathrm{~T}$)
f) Drift (1 m)
g) Quadrupole ($2.4 \mathrm{~m},-1.531 \mathrm{~T}$)
h) Drift (1 m)
i) Quadrupole ($2.4 \mathrm{~m}, 2.404 \mathrm{~T}$).
14) Drift (15 m)

Here we have the second dispersed horizontal focus DHF2 with the beam vector :
(4. 145

1. 323
0.137
0.549
2. 262
1.000)
and the transport matrix :
$\left(\begin{array}{llllll}-1.747 & 0.162 & 0 . & 0 . & 0 . & 4.140 \\ -0.333 & -0.541 & 0 . & 0 . & 0 . & 1.207 \\ 0 . & 0 . & 2.740 & 3 \times 10^{-5} & 0 . & 0 . \\ 0 . & 0 . & 0.824 & 0.365 & 0 . & 0 . \\ 0.073 & -0.244 & 0 . & 0 . & 1 . & -0.096 \\ 0 . & 0 . & 0 . & 0 . & 0 . & 1 .\end{array}\right)$

After a drift of 3 m we have the second dispersed vertical focus DVF2 where the beam vector is:
(4. 503

1. 323
0.222
0.549
0.262
1.0)
and the transport matrix is :
$\left(\begin{array}{lllllc}-1.847 & 0 . & 0 . & 0 . & 0 . & 4.502 \\ -0.333 & -0.541 & 0 . & 0 . & 0 . & 1.207 \\ 0 . & 0 . & 2.988 & 0.109 & 0 . & 0 . \\ 0 . & 0 . & 0.824 & 0.365 & 0 . & 0 . \\ 0.073 & -0.244 & 0 . & 0 . & 1 . & -0.096 \\ 0 . & 0 . & 0 . & 0 . & 0 . & 1 .\end{array}\right)$
15) Drift (3 m)
16) Triplet lens BL5
a) Quadrupole ($2.4 \mathrm{~m}, 2.767 \mathrm{~T}$)
b) Drift (1 m)
c) Quadrupole ($2.4 \mathrm{~m},-1.688 \mathrm{~T}$)
d) $\operatorname{Drift}(1 \mathrm{~m})$
e) Quadrupole ($2.4 \mathrm{~m},-1.688 \mathrm{~T}$)
f) Drift (1 m)
g) Quadrupole ($2.4 \mathrm{~m},-1.688 \mathrm{~T}$)
h) Drift (1 m)
i) Quadrupole ($2.4 \mathrm{~m}, 2.767 \mathrm{~T}$).

The beam vector is now :
(5. 100

1. 704
2. 025
0.074
0.262
1.000)
with the following transport matrix :
$\left(\begin{array}{llllll}-1.578 & -1.431 & 0 . & 0 . & 0 . & 4.893 \\ 0.699 & 10^{-5} & 0 . & 0 . & 0 . & -1.703 \\ 0 . & 0 . & 3.451 & 0.674 & 0 . & 0 . \\ 0 . & 0 . & -1.484 & 10^{-5} & 0 . & 0 . \\ 0.073 & -0.244 & 0 . & 0 . & 1 . & -0.096 \\ 0 . & 0 . & 0 . & 0 . & 0 . & 1 .\end{array}\right)$
17) Drift (3 m)
18) Dispersive section BP2

This is a line of dipoles for a total length of 30 m . The field is -5.373 T . The tilt with respect to the optical axis is $1^{\circ} .7$, to take advantage of the focussing edge effects.
19) Triplet lens BL 6
a) Quadrupole ($3.6 \mathrm{~m}, 3.230 \mathrm{~T}$)
b) Drift (1 m)
c) Quadrupole ($2.4 \mathrm{~m},-2.048 \mathrm{~T}$)
d) Drift (1 m)
e) Quadrupole ($2.4 \mathrm{~m},-2.048 \mathrm{~T}$)
f) Drift (1 m)
g) Quadrupole ($2.4 \mathrm{~m},-2.048 \mathrm{~T}$)
h) Drift (1 m)
i) Quadrupole ($3.6 \mathrm{~m}, 3.230 \mathrm{~T}$).

At this point the beam vector is :
(3. 0
0.867 .
0.931
0.166
0.396
1.0)
with the following transport matrix :

$$
\left(\begin{array}{llllll}
0.735 & 1.728 & 0 . & 0 . & 0 . & -2.455 \\
-0.700 & -0.286 & 0 . & 0 . & 0 . & 0.817 \\
0 . & 0 . & -2.753 & 0.619 & 0 . & 0 . \\
0 . & 0 . & -1.153 & -0.104 & 0 . & 0 . \\
0.112 & -0.071 & 0 . & 0 . & 1 . & -0.390 \\
0 . & 0 . & 0 . & 0 . & 0 . & 1 .
\end{array}\right)
$$

20) Drift (10 m)
21) Dispersive section BP3

This is a line of 40 m of dipoles with a field of -2.733 T , tilled 3° with respect to the optical axis. After an additional drift of 10 m we have the following beam vector :
(0. 173
0.291
0.485
0.165
0.434
1.000)
and the transport matrix at this point (recombined horizontal and vertical focus) is :
18.

$$
\left(\begin{array}{cccclc}
-3.458 & 10^{-5} & 0 . & 0 . & 0 . & 4 \times 10^{-5} \\
-0.695 & -0.289 & 0 . & 0 . & 0 . & 10^{-5} \\
0 . & 0 . & -9.704 & 2 \times 10^{-5} & 0 . & 0 . \\
0 . & 0 . & -1.166 & -0.103 & 0 . & 0 . \\
0 . & -10^{-5} & 0 . & 0 . & 1 . & -0.434 \\
0 . & 0 . & 0 . & 0 . & 0 . & 1 .
\end{array}\right)
$$

6. - SPECTROMETER ARM LAYOUT. -

In this layout we kept as high as possible the acceptance in θ and φ.

1) Beam from ET
(0. 05
1.5
0.05
3.0
0.

1.)
2) Drift $\left(5^{\circ} \mathrm{m}\right)$

3) Triplet lens SL1

a) Quadrupole ($1.2 \mathrm{~m}, 4.000 \mathrm{~T}$)
b) Drift (6.07 m)
c) Quadrupole ($1.2 \mathrm{~m},-2.479 \mathrm{~T}$)
d) Drift (1 m)
e) Quadrupole ($1.2 \mathrm{~m},-2.479 \mathrm{~T}$)
f) Drift (1 m)
g) Quadrupole ($1.2 \mathrm{~m},-2.479 \mathrm{~T}$)
h) Drift (6.07 m)
i) Quadrupole ($1.2 \mathrm{~m}, 4.000 \mathrm{~T}$).

At this point we have the beam vector :
(4. 899
0.015
3. 385
0.044
0.
1.)
and the transport matrix is :
$\left(\begin{array}{llllll}0.153 & 3.266 & 0 . & 0 . & 0 . & 0 . \\ -0.306 & 0.0001 & 0 . & 0 . & 0 . & 0 . \\ 0 . & 0 . & 0.444 & 1.128 & 0 . & 0 . \\ 0 . & 0 . & -0.866 & 0.0006 & 0 . & 0 . \\ 0 . & 0 . & 0 . & 0 . & 1 . & 0 . \\ 0 . & 0 . & 0 . & 0 . & 0 . & 1 .\end{array}\right)$
4) Drift (15 m)
5) Dispersive section SP1

This section consists of 20 dipoles each 2 m long with a field of 4 T . Each of them is rotated with respect the optical axis of 0.17 degrees. They are separated from each other by drifts of 0.5 m . The beam after this section is :
(5.73

1. 20 :
2. 38
4
3. 6
4. 0)

and the transport matrix is :
$\left(\begin{array}{llllll}-1.82 & 3.27 & 0 . & 0 . & 0 . & 2.97 \\ -0.306 & 0 . & 0 . & 0 . & 0 . & 1.199 \\ 0 . & 0 . & -5.25 & 1.12 & 0 . & 0 . \\ 0 . & 0 . & -0.875 & -0.003 & 0 . & 0 . \\ 0.127 & -0.39 & 0 . & 0 . & 1 . & -0.119 \\ 0 . & 0 . & 0 . & 0 . & 0 . & 1 .\end{array}\right)$
6) Triplet lens SL2
a) Quadrupole (1.2 m, 2.756 T)
b) Drift (3 m)
c) Quadrupole ($1.2 \mathrm{~m},-1.764 \mathrm{~T}$)
d) Drift (1 m)
e) Quadrupole ($1.2 \mathrm{~m},-1.764 \mathrm{~T}$)
f) Drift (1 m)
g) Quadrupole ($1.2 \mathrm{~m},-1.764 \mathrm{~T}$)
h) Drift (3 m)
i) Quadrupole ($1.2 \mathrm{~m}, 2.756 \mathrm{~T}$).

At this point the beam vector is :
(6.16
0.98
3.02
0.64
0.60
1.00)
and the transport matrix is :
$\left(\begin{array}{ccllll}-2.064 & 2.711 & 0 . & 0 . & 0 . & 4.625 \\ 0.070 & -0.577 & 0 . & 0 . & 0 . & 0.460 \\ 0 . & 0 . & -5.666 & 1.003 & 0 . & 0 . \\ 0 . & 0 . & 0.205 & -0.213 & 0 . & 0 . \\ 0.127 & -0.392 & 0 . & 0 . & 1 . & -0.120 \\ 0 . & 0 . & 0 . & 0 . & 0 . & 1 .\end{array}\right)$
7) Dispersive section SP2

This section has 5 more dipoles, with the same characteristics as before. After a drift of 34.47 m we have the disperse focus of the spectrometer arm : the beam vector is here :
(8. 00
1.15
0.23
0.64
0.74
1.00)
and the transport matrix is :

$$
\left(\begin{array}{cccccc}
-1.733 & 0 . & 0 . & 0 . & 0 . & 8.00 \\
0.07 & -0.577 & 0 . & 0 . & 0 . & 0.76 \\
0 . & 0 . & -4.683 & 0 . & 0 . & 0 . \\
0 . & 0 . & 0.21 & -0.213 & 0 . & 0 . \\
0.188 & -0.462 & 0 . & 0 . & 1 . & -0.269 \\
0 . & 0 . & 0 . & 0 . & 0 . & 1 .
\end{array}\right)
$$

The beam after this point is left free : at FNAL one has at this point a couple of Cerenkov threshold counters.

a) New matrices

We give in this section some useful matrices that will allow the reader to transform a generic phase space point into the ET phase space.

The situation for the beam line is as follows: if x_{1} is the beam vector at the internal target, x at an intermediate point in the beam line and x_{0} at the external target we have :

$$
x=A x_{1}, \quad x_{0}=A_{0} x_{1},
$$

where A is the transport matrix, and therefore

$$
x_{0}=A_{0} A^{-1} x=C x
$$

The matrix $C=A_{o} A^{-1}$ connects the beam vector with the down-stream external target.
The situation is simpler for the spectrometer arm. The generic beam vector x is con nected with the ET phase space through the relation

$$
x_{0}=A^{-1} x
$$

We give in the following the matrices $C=A_{0} A^{-1}$ computed for the most important points of the apparatus in both layouts, and the matrices A^{-1} for the spectrometer arm.

LAYOUT 1

From DHF1	$\left(\begin{array}{l}1.15302 \\ -0.25284 \\ 0.0 \\ 0.0 \\ 0.0\end{array}\right.$	0.00008 0.86806 0.0 0.0 0.0	0.0 0.0 2.35344 0.10190 0.0	0. C 0.0 0.70603 0.45628 0.0	$\left.\begin{array}{c}-4.61696 \\ 0.40441 \\ 0.0 \\ 0.0 \\ 1.00000\end{array}\right)$
From DVF1	$\left(\begin{array}{l}1.12311 \\ -0.09049 \\ 0.0 \\ 0.0 \\ 0.0\end{array}\right.$	-0.34055 0.91956 0.0 0.0 0.0	0.0 0.0 2.28995 0.02264 0.0	0.0 0.0 0.01007 0.43705 0.0	$\left.\begin{array}{c} -4.62227 \\ 0.40494 \\ 0.0 \\ 0.0 \\ 1.00000 \end{array}\right)$
From BL3	$\left(\begin{array}{c}-0.00002 \\ 0.27568 \\ 0.0 \\ 0.0 \\ 0.0\end{array}\right.$	-3.63335 0.79193 0.0 0.0 0.0	0.0 0.0 0.00010 0.21164 0.0	0.0 0.0 -4.73209 0.27052 0.0	$\left.\begin{array}{c} -4.62971 \\ 0.40787 \\ 0.0 \\ 0.0 \\ 1.00000 \end{array}\right)$
From BL4	$\left(\begin{array}{l}-1.22330 \\ 0.31335 \\ 0.0 \\ 0.0 \\ 0.0\end{array}\right.$	-1.83569 -0.34816 0.0 0.0 0.0	$\begin{aligned} & 0.0 \\ & 0.0 \\ & -1.99819 \\ & 0.18582 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \\ & -3.60010 \\ & -0.16605 \\ & 0.0 \end{aligned}$	$\begin{gathered} -4.61888 \\ 0.40482 \\ 0.0 \\ 0.0 \\ 1.00000 \end{gathered}$
From DHF2	$\left(\begin{array}{l}-1.22381 \\ 0.31335 \\ 0.0 \\ 0.0 \\ 0.0\end{array}\right.$	$\begin{aligned} & 0.00003 \\ & -0.81819 \\ & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \\ & -1.99898 \\ & 0.18589 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \\ & -0.60137 \\ & -0.44492 \\ & 0.0 \end{aligned}$	$\begin{gathered} -4.62010 \\ 0.40513 \\ 0.0 \\ 0.0 \\ 1.00000 \end{gathered}$

LAYOUT 2

22.

SPECTROMETER ARM

We give in Fig. 9 the block sketch of the layouts we obtained. In the following figures ($10-18$) we give the acceptance plots for the various layouts and experimental conditions.
b) The spectrometer arm

From the transport matrices of Sect. 7 we can write down the following formulas (when re the subscript "o" refers to the external target) :

$$
\begin{aligned}
& \text { after SL1 } \quad X=0.153 X_{0}+3.266 \theta_{0} \\
& \mathrm{Y}=0.444 \mathrm{Y}_{\mathrm{o}}+1.128 \emptyset_{\mathrm{o}} \\
& \text { after SP1 } \quad X=-1.82 X_{0}+3.27 \theta_{0}+2.97 \delta_{0} \\
& Y=-5.25 Y_{0}+1.12 \emptyset_{0} \\
& \text { after SL2 } \quad \mathrm{X}=-2.064 \mathrm{X}_{\mathrm{o}}+2.711 \theta_{\mathrm{o}}+4.625 \delta_{\mathrm{o}} \\
& \mathrm{Y}=-5.666 \mathrm{Y}_{\mathrm{o}}+1.003 \phi_{\mathrm{o}} \\
& \text { after SP2 } \quad \mathrm{X}=-1.733 \mathrm{X}_{\mathrm{o}}+8.00 \delta_{\mathrm{o}} \\
& \mathrm{Y}=-4.683 \mathrm{Y}_{\mathrm{o}} \text {. }
\end{aligned}
$$

We see therefore that we can compute $\theta_{0}, \emptyset_{0}, \delta_{0}$ and X_{0}, Y_{0} which at any rate have to be intended as a small correction to the overall situation. The system of equations is over determined. In particular the measurement of δ is best done at the focus: taking into account the fact that $\left|\mathrm{X}_{0}\right| \leqslant 0.05$ we have at the focus

$$
\Delta \mathrm{X}=1.733 \times 0.05+8 \times \Delta \delta,
$$

as a "worst case".

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG. 16

$4 ? 9$
28.

FIG. 18

This relation, taking into account that we need $\Delta \delta \leqslant 0.02$ at $400 \mathrm{GeV} / \mathrm{c}$ becomes :

$$
x=0.09+0.16=0.25
$$

Summing up: a resolution of 80 MeV in the MM at the ET corresponds to a 2.5 mm separatimon of the particles at the focus. Even taking into account that 1 mm spread can come from the finite dimensions of the beam at the ET, we still have enough resolution for reading an 80 MeV difference in the MM. We consider a higher detector resolution as useless, just because the effect of the finite target size.

As for the t resolution we recall that at $400 \mathrm{GeV} / \mathrm{c}$ we need

$$
\Delta \psi \leqslant 13 \mu \mathrm{rad},
$$

and that

$$
\Delta \psi_{l a b}=\sqrt{\theta^{2}+\phi^{2}} .
$$

With a resolution of 100μ we have (looking at the formulas after SL1 (parallel section)):

$$
\Delta \theta=\frac{0.05}{3.266}=4 \mu \mathrm{rad}, \quad \Delta \emptyset=\frac{0.05}{1.128}=8 \mu \mathrm{rad},
$$

which should be quite a good figure for achieving the desired t resolution.
In this brief discussion we didn't make any attempt of using the $X_{o} Y_{o}$ contribution, which can always be computed from the above formulas, and is small in any case.

c) Beam arm resolution

We think that the layout can still be improved; we weren't able to achieve such a large dispersion as in the SA without getting into a series of aberrations of various kind. So whereas the X magnification in both layouts is roughly the same as in the SA, the dispersion from IT to DHF2 is roughly 4 instead of 8 . One can use better detectors, however (200μ resolution for instance) if one can have a smaller initial beam, i.e. a smaller IT, which we fixed at 1 mm in diameter. For example from DHF2 to ET (in which the X coordinate will be essentially o or very small) we have for layout 1:

$$
\mathrm{X}_{\mathrm{T}} \simeq 0=-1.224 \mathrm{x}-4.620 \delta
$$

and for layout 2 :

$$
\mathrm{X}_{\mathrm{T}} \simeq 0=1.872 \mathrm{X}-8.429 \delta
$$

which means for layout 1 :

$$
\delta=-\frac{1.224}{4.620} \mathrm{X}_{\mathrm{DHF} 2}=-0.265 \mathrm{X}_{\mathrm{DHF} 2}
$$

and for layout 2 :

$$
\delta=\frac{1.872}{8.429} \mathrm{X}_{\mathrm{DHF} 2}=0.222 \mathrm{X}_{\mathrm{DHF} 2},
$$

so we can see that we don't have very different values, and as a first approximation (a more refined computation should take into account finite beam size and $3^{\text {rd }}$ order optical corrections) we can see that a $1 \mathrm{~mm} \times$ resolution in DHF2 reflects itself in a 0.025% resolution in momentum in the ET.

We considered up to now the BA and the SA as two separate entities with separate accep tances and resolutions. This is not true, however, if we combine the BA and the SA in a single instrument, we can see that we have a poor phase space matching the external target: so, even if the SA itself is capable of a high resolution and high acceptance, the beam phase space at the ET is worsening the situation. We were unable at this stage of the work to design a BA with a smaller phase space at the ET but we hope that in further refinaments of the project this will be certainly possible.

We give here the situation of what happens in the SA when exact phase space matching is imposed in the ET : the transport matrices obviously do not change, so we will give only the situation of beam vectors, acceptances and resolutions.
a) Layout 1:

New beam vectors are :
From (ET) (see 6.1)

$$
\begin{array}{lllll}
(0.101 & 0.612 & 0.168 & 0.447 & 1.0)
\end{array}
$$

From the triplet lens (see 6. 3)

$$
\begin{array}{lllll}
(1.999 & 0.031 & 0.510 & 0.149 & 1.0)
\end{array}
$$

We can see that even in this case, at the expense of losing some of the beam, we can do Cerenkov separation.

From SP1 (see 6.5)

$$
\left(\begin{array}{lllll}
(3.633 & 1.200 & 1.021 & 0.147 & 1.0
\end{array}\right)
$$

30.

From SL2 (see 6.6)
(4. 934
0.580

1. 048
0.101
1.0)

From SP2 (see 6.7)
(8. 002
0.838
0.787
0.102
1.0)

The resolution of the SA (see 7.6) can be computed at the focus as

$$
X=1.733 \cdot 0.101+8
$$

with $\quad 0.02$ at $400 \mathrm{GeV} / \mathrm{c}$. This gives
$X=0.18+0.16$.
In this case we can see that the contributions from the finite target size and the momentum dispersion are of the same order of magnitude: this means that we must arrange our detec tors in such a way as to have the possibility of computing also the transverse (x and y) coordinates at the ET. The "direct reading" of the momentum at the focus has to be intended only as a rough approximation of the true momentum.
b) Layout 2 :

The beam vectors in this case are:
From ET (see 6.1)
(0. 173
0.291
0.485
0.165
1.0)

From the triplet lens SL1 (see 6.3)
(0. 952
0.053
0.468
0. 430
1.0).

We can see here that Cerenkov analysis would be difficult in this case: this is no surprise, however, as we developed the layout 2 for futurible detectors less critically sensitive to angles (transition radiation or others).

From SP1 (see 6.5)

$$
\begin{array}{llll}
(3.189 & 1.200 & 2.574 & 0.424
\end{array}
$$

From SL2 (see 6.6)

$$
\begin{array}{llll}
(4.726 & 0.490 & 2.748 & 0.105
\end{array}
$$

From SP2 (see 6.7)
(8. 006
0.778
2. 271
0.108 1.0).

The situation for what the resolution is concerned is not much different as for layout 1.
We have a warning to give to the reader who would try to invert the transport matrices (see Sect. 7) : they are extremely difficult to invert with the traditional pivotal method even in double precision so we used the algebraic-complement method, which comes out with extremely simple formulas A matrix A (disregarding the "l" information) is of the form

$$
A=\left(\begin{array}{ccccc}
a_{1} & a_{2} & 0 & 0 & c_{1} \\
a_{3} & a_{4} & 0 & 0 & c_{2} \\
0 & 0 & b_{1} & b_{2} & 0 \\
0 & 0 & b_{3} & b_{4} & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

So, if we put

$$
\Delta_{1}=\left|\begin{array}{cc}
\mathrm{a}_{1} & \mathrm{a}_{2} \\
\mathrm{a}_{3} & \mathrm{a}_{4}
\end{array}\right|, \quad \Delta_{2}=\left|\begin{array}{cc}
\mathrm{b}_{1} & \mathrm{~b}_{2} \\
\mathrm{~b}_{3} & \mathrm{~b}_{4}
\end{array}\right|
$$

we get

$$
A^{-1}=\left(\begin{array}{ccccc}
\frac{a_{4}}{\Delta_{1}} & -\frac{a_{2}}{\Delta_{1}} & 0 & \frac{a_{2} c_{2}}{\Delta_{1}} & -\frac{a_{4} c_{1}}{\Delta_{1}} \\
-\frac{a_{3}}{\Delta_{1}} & \frac{a_{1}}{\Delta_{1}} & 0 & \frac{a_{3} c_{1}}{\Delta_{1}} & -\frac{a_{1} c_{2}}{\Delta_{1}} \\
0 & 0 & \frac{b_{4}}{\Delta_{2}} & -\frac{b_{2}}{\Delta_{2}} & 0 \\
0 & 0 & -\frac{b_{3}}{\Delta_{2}} & \frac{b_{1}}{\Delta_{1}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

8. - COULOMB SCATTERING. -

This is a kind of disturbing issue : from one side the MCS is very important because it poses a limit to the overall performance of an apparatus like this, based on a precise tracing of the particle trajectory; from another side, in a feasibility study it's more than impossible to evaluate its contribution, strictly dependent as it is from the kind and quantity of material cross sed by the beam.

We will therefore only note that an apparatus like this, working at a momentum roughly twice as high as the FNAL spectrometer, should show a $\left\langle\theta_{c}\right\rangle$ roughly one half. The overall lengths of the two apparatus are quite similar, so we can expect also the spread in the coordina te from MCS $\Delta \mathrm{X}_{\mathrm{C}}, \Delta \mathrm{Y}_{\mathrm{c}}$ seen by our apparatus to be one half of those seen at FNAL. Therefore the MCS should have roughly the same influence in the t resolution as it has at FNAL. We don't think that we can say anything more specific at this stage.
32.

9. - CONCLUSIONS. -

We do think that with superconducting elements an FSAS could be built, with no more difficulties than those which were already overcome at FNAL. Future studies, starting from this very preliminary sketch could improve several features and may also allow to push the in strument to even higher energies.

We do think that in a line of thought that sees this as a part of a general purpose equip ment one could also consider the possibility of surrounding the ET with some exclusive readtions detector, such as a Omega - like device.
be
We will continue to develop this project and we willimost grateful to all our colleagues that will collaborate to this design and that will send us suggestions and/or criticisms which will be equally welcome.

REFERENCES, -

(1) - K. Brown et al., SLAC Report no. 75 (1975).
(2) - C. Favuzzi and F. Waldner, Inclusive reactions kinematics $\mathrm{p}+\mathrm{p} \rightarrow\left(\begin{array}{l}\pi \\ \mathrm{K} \\ \mathrm{p}\end{array}\right)+\mathrm{X}$, (t, mm) vs $\left(\theta, \mathrm{p}_{3}\right)$, Report INFN/AE-75/10(1975).

