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1. - INTRODUCTION 

We intend to expose here a treatment of the critical behaviour (') 

of a system of non relativistic bosons, whose interaction conserves the 

number of particles, making a systematical use of the renormalization 

group techniques (2). The actual physical system which should be described 

by such a model is t he 4 He liquid and the related critical phenomenon is 

the fluid- superfluid transition , where a set of very precise experimental 

data is available concerning the heat capacity (at constant pressure) 

around the transition temperature (',4). For these reasons the critical 

behaviour actually studied will be the rate in which the heat capacity 

growths when the temperature decreases toward the critical value . 

More precisely the technique we intend to use throughout this paper 

is the one of the renormalization group differential equations for the 

Green functions of a renormalizable field theory. The Green fur.ctions 

that naturally come into the problem are the finite - temperature (& time 

inaepend.ent) Green functions of quantum statistics. By the use of the 

Wilson procedure (2) of functional integr ation over the higher frequency 

modes of the field it will be shown that, for the kind of problems we 

are interested in, the formalism of the finite - temperature Green function 

is not necessary and the theory can be developed by means of usual Green 

functions in an Euclidean space . We will use the device of considering a 

space of variable dimensions D and we recover the physical situation D=3 

through an " - expansion , where D = 4 - " • 

The material of this paper is based on a series of lectures prepared 

for the Scuola di Perfezionamento in Fisica del l ' Universita di Trieste. 

Our s cope is to present a rather self contained picture of the theoretical 

problem of the lambda point transition, in the framework of the renormali 

zation group equation and the related approximate expansion making use of 

a language close to the one usually employed in particle physics. The 

theoretical work we describe is therefore not original, in particular there 

exist many excellent reviews on the calculations of the critical indices 

with the "-expansion, which in general differ in the approach to the re

normalization group and also , as it is obvious, in the practical 

purpose (5,6,7). 
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We have found i t useful to expose aga i n in detail the construction 

of the solution according t o our own point of view, and keeping our at

tention towar d the definite feature of the physical problem i n which we 

are inter es ted . 

I n particular we will, a s a program, derive explicitly every rela

tion we wil l need in the t reatment, such as the r elation between the 

observable thermodynamical quantities and their formal expressions as 

product field operators, or the r elation among different critical indices . 

A brief discussi ons of the comparison of the r esults with the exper imental 

data is a lso included . 

2 . - SHORT REVIEW OF THE FORMAl APPARATUS 

A sys t em of boson, wi th an interaction conserving the number of 

par tic l es, repulsive and quadrilinear is described by a gr and-canonical 

Hami l tonian (",9) having the following from (*) : 

H = Ho+HI = J ~ [¢t (X)~_V2_~:J ¢(x)+k g ¢t2(X)¢2(X)] ( 2.1 ) 

Here ¢t(x) [¢(x)] is the creation [destruction] boson fiel~ operator, 

P is the chemical potential, which must be determined imposing a given 

val ue f or the number density (i . e ., in the thermodi~mical limit the 

total particle number N a nd the volume V go to infinity at fixed 

density N/V); g is t he positive interaction strength. We have also 
1 

t aken for the mas s m = 2. For future convenience we work in D = 4 - c 

spatial dimensions , the physical situation is obtained for c = 1. We 

wish to s tudy the quantum statistical behaviour of the system; to this 

end the fundamental tool is the partition function 

Z = Tr exp [-f3H] f3 = 1 /~T . (2.2) 

In order to calculate the partition funct i on it is convenient to devel op 

a perturbative formalism si milar to the ordinary Feynman graph expansion 

(*) We will see, in the following , that the relevant results hold also 
in the case of more complicated interacti ons . 

37 
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of quantum f i eld theory . The generating functional of the Green functions 

of the quantum field theory is the analogue of the partition function in 

statistical mechanics (, 0) . This similari'ty is well displayed by using 

the path integral technique, by !'leans of which the partition function 

takes the expression 

(2 .3) 

t 
The func t ional integration ranges over the functions ~(r,x) and ~ (r , x) 

tha t are periodical in the variable r in the interval (0 ,i'h) . The res

t riction to the periodical f unctions is dict ated by the trace operation 

in eq. (2) . In comparing this expre esion with the analogous one in ouantum 

field theory i t appears that the difference lies i n the "time " variable. 

The lagrangian density for our system is in fact: 

- ~ - - + 'V +11 ~ - - g ~ ~ :i t (i a 2) 1 t 2 2 
- 2 at 4 

The statistical expression is obtained from the field theoretical one 

t hrough a sort of Wick rot ation on the t~me , which, moreover , is bound 

to vary over a finite interval . 

The usual diagr ammatic expansion can be easily obtai ned in the 

following way : replace!/!; by f/!; + ~ J t + ~ t J where J i s a complex function 

thus we ob t ain Z(I1 ,T ; J , J
t ) which is a functional of J, J

t . From thi s 

f unctional we can derive the Green functions (including vacuum diagrams 

and disconnected pieces), taking the functional derivatives of Z(J,J
t ) 

t t respect to J and J at J = J = 0 

= (2 .4) 

where S/SJ means functional derivative, and Tr is the r - ordering symbol . 

Following this procedure we can obtain the Feynman rules in momentum 
space; they are (8,9 ,1 1): 

37 v 
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Propagator ) 1 where 

n = 0,:':1:':2, ... (2.5 

Vertex 

Here , and from now on, h = kB = 1. 

At each vertex both the three- momentum and the frequencies a r e cons er ved 

through the o- factors of the type o(Eki)oEw ' 

The presence of discrete frequencies is due t o the periodic ity 

conditions on the interval 0 ~ T ~ ~ • 

It is interesting to note that the Feynman rules lead to a topologi , 

struc ture of the gr aphs which is similar to the structure of a r el a tivis' 

theory i. e . the propagation backward and forward in the "time " is allow< 

even if the propagator has not two pole s in the frequency; this is a con

sequence of the fact that going to the configuration space by Fourier 

transforming the above propagator, the int egral over the energy is re 

pleaced by a di s crete sum and thus 'the usual ~-factor in the time, which 

s e l ects the time direction, is avoided . 

A quantity of more direct interest will be in the following the 

thermodi namical potential O(P,T), defined by the i dentity: 

t 1 t 
O(P,T;J,J ) = - ~ ln Z(p ,T;J,J ) 

with 
t 

O(P,T;J = O,J = 0) E 0 (P ,T) 

It has the following properties: 

a ) Every thermodinamical quantity (12) like the entropy , the pressure etc. 

can be obtained by deriving O(P,T) with r espect to p or T; the heat 

capacity at constant pres sure Cp (of our main interest) , will be ob

tained as linear combination of second derivatives of O(P,T) . 

b) It generates the connected Green ' s functions ('0) : 
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(2.6) 

t 
J=J =0 

c) It is possible and useful to devise a slight generalization of 0 by 

introducing sources coupled to bilinears or in general local polyno

mials in ¢ and ¢t. In this case the functional derivatives of 0 with 

respect to those new sources give all the connected Green functions 

related to those operators. As an example let us introduce V(x)¢t (x)¢(x) 

then 

o 0 
-~ SV(T,X) oV(crjy) 0 = <TT(¢t (T,x)¢(T ,x)¢t (a,y)¢(a ,y))> 

connected 
J,V =0 

. (2 .7) 

Actually the derivat ive with respect to the chemical potential 

(") . yields an expression of this kind 

3 . - GRIT I CAL PHENOMENA 

It is known that a system of noninteracting bosons can undergo a 

phase transition~os e-Einstein condensatio~when a finite fraction of 

the total number of particles goes into the ground state. Formally this 

is represented by the vanishing of the chemical potential. Our aim is 

to study the analogous phenomenon in the case of a system of inter act

ing bosons. 

In a standard approach, the mechanism of phase transitions can be 

illustrated in a way similar to the phenomenon of the spontaneous 

symmetry breaking in quantum field theory . Let us consider in fact the 

effective thermodinamical potential r defined as a Legendre transform 

of O(J,Jt ) 

(3.1 ) 

37':' 
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¢ct= 50/5Jt is the so called classical field . 
t 

to be thought as funct ionals of ¢ct and ¢ct· 

I n eq.(3 .i ) J and 

It can be shown (,' , 

that r is the generating functional of the one-particle irreducible Gree 

functions r(n) 

IfJ=/ =O 

and cl~arly ¢ct equals <¢>, the average of the field ¢ . 

then ¢ct is a constant, when translational invariance ho: 

Thus, if we consider r as a function of a constant ¢ct ' we obtain, divic 

it by the infinite volume of the system, a nuanti ty called V, which can 1 

expanded in powers of ¢!t and ¢ct' 

t ) -t i- h2 
V(¢ct'¢ct = -~ ¢ct¢ct+ 4 g ¢ct ¢ct+ 

~ and g a r e constants expressible in terms of the parameters of the theor 

and they approach the quantiti es ~ and g of the hamiltonian in eq . (2 .1) 
when the interaction tends to zero . Now the condition of thermodinamical 

equil i brium r equires that V has a minimum at ¢ct = <¢> and this gives 

or igin t o two di stinct cases : if the parameter ~ is negative the minimum 

occurs for ¢ct = <¢> = 0, i . e . we have the symmetric phase , whereas if 

~ is positive the minimum is at ¢ct = <¢> 1o, i . e . the non symmetr ic 

phase is recovered . 

I n our case the fact that <¢> ' is different from zero can be assumed 

as a definition of Bose -Einstein condensation and this is consistent also 

with the interpretation of l<¢> 12 as a density of particles in the conden_ 

sate state (8,9). 

Therefore the phase transiti on corresponds to ~ = 0 . 

The study of the critical phenomena is then related to the analysis 

of a massless field theory . The peculiari ties of a massless theory appear 

in its long dis t ance behaviour, e . g . the correl ation length e ~ 1/~ goes 

t o infinity . Accordingly , we will be mainly concerned with the infrared 

region, which gives the most important contribution to the matrix e l ements 

of field operators at the critical point T = Tc (Tc being the critical 

temperature , for which ~ = 0). 

More precisely the main task is to cal culate the behavio~r of the 

r elevant thermodynamical quantities, expressible in terms of matrix 

elements of producs of field operators , as functions of T-T . For behavc 
iour of the kind (T- Tc)X , the aim is to calculate x, the critical index 

or exponent . We will not discuss the determination of Tc . 

371 
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As we shall see the critical exponents can be obtained in a free 

theory by the dimensi onal analysis of the relevant operators. However a 

simple dymensional analysis of the leading operators does not give the 

correct answer when the interaction is present: it is known in fact that 

the critical indices are non trivial real numbers whose origin, in the 

language of quantum field theory, must lie in some' nonperturbati ve ef

fects which modify the canonical dimensions of the field operators . The 

usual tool for the investigations of the anomalous dimensions in field 

theor y is the renormalization group ( '~ . The actual calculations are 

done through the t echnique of the E- expansion , developed by Wilson, which 

allows the estimate of the critica l indices by the computation of few 

Feynman graphs . 

4, - THE RENORMALIZATION GROUP METHODS FOR THE INFRARED BEHAVIOUR 

Since we ar e looking to an infrared phenomenon it is intuitive that 

the degrees of freedom co.rrespo.nding to. high frequencies should not play 

any r5le. Those are the fields ¢n = ¢(wn'p) ¢~ = ¢+(Wn'p) for n J 0 and 

I p l :.A, where A is an arbitrary quantity '. This fact is, actually the start

ing point of the renormalization group technique. Let us consider the 

partition function 

Z=jJld¢ d¢t n n n (4.1 ) 

where A is the integral of the lagrangian, and put 

n = 0, I pi < A 

We define a new action through the functional integration of ¢(2) 
n 

= fn 
n 

The vario.us terms of A' are obtained perturbatively as the amputated 

3 7!) 
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connected Green functions in which the external lines are of the type 

¢( , ) and the internal lines of the type ¢(2) . It i s clear that the di a

grams which give riese to A' are free from infrared divergences . A' 

cont ains in gener al a lot of couplings (the only limit is put by the 

rules following from the symmetry of the original A) which are in ge

neral non local, i . e . have a non trivial dependence on the external 

momenta . However they can be expanded around p = 0 giving rise to a 

series of local terms , with derivat ive couplings of increas ing order . 

A' is called an effect ive action (*). The gr aphs which can be computed 

starting from A' a r e obtained from t hos e of A by consider ing connected 

subgraphs of internal l i nes carrying Ipl > A, w J 0 as effective in

teractions among the fields ¢( , ) . The procedurencan now be iterated , 

putting : 

( , , 1 ) 

= [ ¢ (p) 

(1 ,2) 
¢ (p) 

for 

f or 

and integrating over ¢ (1 ,2) . In that way one gets A" from A', etc . 

The aim is to look for the convergence of the sequence A(n)~A*; A* 

would be the effecti ve action at the fixed point (if it exists). 

Actually we will not follow closely this approach up to the end . 

Rather, we will use the more standard formalism of the renormalization 

group equation , as it is written for a norrnalizable field theory. 

However we can a lways suppose that we have performed a f ew steps of the 

afore mentioned programme . We do not lose much information since it is 

clear that the "fundamental inter action" tha t must be put in the action 

is not wholly known , apart from the symmetry properties and the conser

vation rules known to hold in the problem . Therefore in particular we 

can take in our effective act ion only t he n = 0 compone nt of the field . 

(*) An example of similar procedure in standard quantum field theory 
in the introduction of the effective interaction among photons 
in Q.E.D. when all the energies involved are smaller than the 
electron mass so that the electronic degrees of freedom can be 
suppressed (,6) . 
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Formally, this amounts to solve a "classical" statistical problem, where 

the effective partition function takes the "classical" form (*) 

(4.2) 

(the'" , 
t 

'" are now only functions of pl. 

Fortunately, of the full generality of the possible interactions 

only few ones are actually relevant in the infrared limit, namely only 

the couplings which have non negative energy dimensions (2) . This result 

can be shown perturbatively if the dynamical effects give small correc

tions to the expectations from the normal dimensional arguments" and this in 

turn must be true if the whole approach makes sense (and it is verified per

turbatively for small c in the c-expansion we will treat). Therefore we will 

assume it to hold. In our case we are interested in dimensions D = 4-c (c 

ranging from 0 to the physical case c = 1 and the relevant terms in the 

hamiltonian turn out to be those written in eq.(2.1). 

Of course, following this procedure we are led to an effective 

action in which the original parameters P:,g are replaced by new parameters 

which depend on the former ones and T. This dependence is free of infrared 

singularities and thus, from the point of view of the study of the critical 

behaviour of any thermodinamical quantity the effective theory is perfectly 

equivalent to the original one (**). 

In the following, up to chapter 8, we will not take explicitely into 

account the factor ~ = i in front of Hamiltonian of eq.(4.2) . Formally, 

we will write the formula for the case ~ = 1. 

(*) A naive argument is that in the infrared limit every quantity with 
the dimension of an energy is rescaled to infinity. Therefore the 
effective temperature kBT ~ = , which gives the classical limit . 

(**)Notice fhat we have to treat the constant which appears in front 
of the V",12 termm the action as an independent parameter. This 
parameter is strictly related to the normalization of the field 
operator; see next section. 

I 
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5 . - THE RENORMALIZATION GROUP EQUATION FOR THE RENORMALI ZED GREEN 

FUNCTIONS 

As said before, our task can be performed starting from t he fo l l owir 

bare effective Lagrangian (*) 

in which 110 , &" 1/10 are respectively the bare chemical potential, cO\lplin 

constant and field. As it is well known for dimensions D = 4 -c (0 ~£~ 1 

the quantum fiel d theory developed from t his ~needs (and allows) the pro 

cedure of r enormalization, involving the remova l of ultraviol et divergen

ces from the Feynman integr als . Since t he worst situation from the point 

of view of the divergences occurs at D = 4, we se t up a r enor mali zat i on 

proceQure f or this case , aut omatically covering the c > 0 case . 

The superficial degree of diver gence of the r elevant Feynman graphs, 

i . e . t he one - part i cle irreducible Green functions r(n) , can be easily 

estimated by power counting: it e qual , for D = 4 , the canoni cal di mension 

of the r (n) ; in general, for D = 4 ' - c we have : 

dim Lr(n)] = 4 - c - n( 2- c )/2 

where n is the number of external lines. Thus in 4 dimensi ons only r( 2) 

r( 4) are superficially divergent, more precisely r( 2) diverges quadra

tically, and r(4) logaritmical ly . The bare Green functions are defined 

through a cut - off prescription and then the diver gent, i . e . cut-off de 

pendent t erms are isolated and made harmles s in the proc edure of re

normaliza tion of wass, coupling constant and fi eld . 

This pr ogr amme is usually carri ed out expressing the above Sf in 

terms of renormalized fi nite quantities ilR and ea and of cut-off de

pendent counterterms which realize the subtractions of divergences from 

the Green functi ons : 

(*) This effective Lagrangian is the negative of the Hamil tonian appear
ing in eq . (4 . 2). 

J 8 ~' 
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From this it follows that there is a multiplicative transformation from 

go, 1/10 to gR' of the form 

-2 
go = Z, z, 9< 

and that: 

where 8~ is the mass conterterm. For the Green functions: 

r (n) ( ) bare p ;go ,~o 

The renormalization constant are actually determined by imposing three 

normalization conditions. We choose a specifi c value fo the momentum 

p2 = p2 I 0 where we impose 

r(2)l 2 -2 -2 
= p+~ p =p 

8 r(2)/ 2[ -1 = 8p p2 = p2 

-2 s.p. p means the symmetric point 

r(')[ -2 -9</ (2lT)'-" = s.p.p 

= -u p"/(2lT)' 

p. 'p . = -31 P2(4 8ij-1). 1. J 

= 

" 

Let us notice that we have introduced for later convenience a dimension

less coupling u . We have carefully taken p2 I 0 since we want to be free 

of infrared divergences in our normalization conditions and also in our 

definition of the renormalization constants when the inverse propagator 

goes to zero for p2 = O. Apart from that, p2 is arbitrary. The renormalized 
. r(n) -2 quant1.ty depends explicitly on p' as well as implicitly through the 

dependence of 
. -2 

u, ~R on p at fixed -2 g , ~ . Also Z, depends on p at o 0 

g", ~o . Since the bare quantities do not know about -2 P , by taking 

fixed 

the 

total derivative of eq. (5.2) with respect to 
-2 
P , at fixed ~o go we get: 

38.., 
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(p' a -2 au a -2 aJ.>a a 

° = -+ p 
aji2 au + p a= aJJR a - 2 p p 

n - 2 a en Z3) r(n) . 
"2 p a 2 p 

Remembering the canonical dimensions of r (n) and that dim [JJRl = 2 , we 

can derive the following dimensional equation: 

(
• a + 

p ap2 
a P" -- + ap2 

Combining the two we obtain: 

where obvious ly 

'8 - 2 a JJR 
= P Fp"2" 

(.l -2 au 
tJ ;;: P Op2 = 

This is the desired renormalization group equation . 

= o. 

n) r(n) = 0, (5 . 3) 

I n t aking the derivative of u we have explicitely sepa r ated the de
_E: 

rivative of the trivial factor p introduced in order to r ender u ailime ns i onE 

The various quanti t i es y, '8, fJ are calculated by applying the re 

normalization gr oup equation to the Green functions on which the norma

lizat~~r)conditions have been imposed and taking p = p. Taking the equati c 

for ~ , and noticing that this Green function ha s normal dimensions 

equal to zero , we get : 

Taking the equation for r(2) we get: 

Fip~lly, t a king the equation for r(4): 

....... - 2-£ 
{3=2uy-p 

- 2 
P = P 

where the derivative means here the der ivative on the whol e dependence 

38 
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2 on p at the symmetric point . 

The formal solution of the partial differential eq . (5.3) is obtained by 

considering two auxiliary functions, u(t) and ~(t), the effective coupling 

constant and mass , where t = l enp2/p21, which satisfy the equations 

du(t)/dt = ~ u(t) - ~(u(t) , ~(t)) 

~(t)/dt = ~(t) - (~(t) _p2 ) y(u),~(t)) 

with the initial conditions u(o) = u, ~(o) = ~R' We are interested in 

the situations in which a fixed point is reached, that is 

* 
u , 

In this case the behaviour of the Gr een functions is given by 

a- c .-c-n -z- - n y(u*,~*) 
~p 

The quantity y(u*,~*) is called the anomalous dimension of the field . 

For dimensions D = 4, i . e . c - 0, we have a fixed point at the origin 

u* = 0 , ~* = 0. 

This point is attractive in u, meaning that u(t) ~ u* , and repulsive 

in ~, meaning that it is only reached if ~ is chosen to be zero the begin

ning . The special value of ~(O) = ~ is the critical value . The fact that 
R ~ 

u* is attractive is seen from the lowest contribution to ~: 

~ = C u
2 

+ ..• 

with c >0 . The theory at c = ° is asymptotically infrared free . 

The idea of the c-expansion is to consider c as a small quantity and 

look for a fixed point nearby u = 0, ~ = 0. At the lowest order, for 

instance, we will have 

u* = c/2 c 



- 16 -

~* = _p2 y (U*,O) 

where Y = A U*2 with A > 0 . 

A couple of remarks. First, since u* and ~* are finite we can assume 

that r(n)(p,u*,~* ) is also finite . Second in the solution of the renorma

lization group equation the anomalous dimensi ons come from the integral 

t t 
fo dt'y (u(t ' ),~ (t ' )) = ty(u*,~* ) + fo dt '[(y ( u(t),~(t)))-Y (u* ,~*)1 

The last integral is convergent fo r t ~ ro, as one can verify. 

Again the fixed point is repulsive in ~ . We have in general a critica: 

line in the (u,~) plane along which the fixed point is reached . 

We assume that we are on the critical line, i . e . we assume that our 

pa rame t ers are at the critical point value . We do not attempt the calcu

l ation of the va lue of the paramet ers for which this situation i s obtained . 

6 . - SOME STANDARD THERMODYNAMICS 

We want to study the specific heat a t constant pressure . Here we 

derive its expression in t erm of the thermodynamical potential 0 (* ) . 

Calling S the entropy, the spec ific heat at constant vol~~e is given by : 

= T as I 
aT N 

where N is the partic le number, whic h is he 1.d fixed in t his derivative . 

The entropy is related to 0 by : 

S = I ~ 
The particle density N is related to 0 by : 

N = ao I 
a~ T 

(*) Since for us the volume V is a cons tant, we t a ke V = 1 . 
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t he notation 0xy 
1 2) : 

= a 2
0jaxay. In order to calculate Cp we use whe re we use 

the relation 

Since P = - 0 : 

On the other hand 

(
ap)2 

-T OT 
T N 

1 fap) 
N If~ T 

I . 
T 

aN 
aT I . /1 

1 
N = -N ~~ I = 

T 

Therefore we get : 

S - N ~. 
/1/1 

a/1 I 
aN T 

7. - RELEVANT OPERATORS FOR THE CONSTANT PRESSURE SPECIFIC HEAT 

(6 .1 ) 

We nave seen from the previously derived formula that Cp is expressed 

in terms of first and second derivatives with respect to /1 and T of O(/1,T) 

(S and N ar e in fact f irst derivatives) . Those contributions can be put in 

form of matrix element s of composite operators remembering that 

Ther efore we find, considering the first and second partia l derivatives, 
the following expectation values: 

38':' 
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and so on . 

Each of those expressions contains an infinite factor in the form of 

a 5-function, which corresponds to the infinite volume . Since we are inte

rested in quantities per unit volume that factor has to be dropped. The rE 

sulting quantities will be called the Green functions related to those 

operators. A simple dimensional analysis gives for the Green function relat 

ed to < Jd' x ¢+¢ > dimensions p2 , for those related to < Jd4 x ¢+ ~2 ¢ > 

and < Jd4 x ¢+2¢2 > dimensions p4 whereas for < Jd4x¢+¢ , Jd4 y ¢+¢ > WE 

have dimensions pO , and the others have dimensions p2 or p4 . 

First we notice that when we find a Green function behaving like a 

positive power of p the actual result is that it goes to a constant and 

the positive power cOncerns the correction terms ; the constant part (that 

is expected to be, in general, different from zero) comes from the contri

bution of the high frequency modes . 

Essentially for the same reason we will see that a behaviour pO means 

actually en p . 

Second, the consistency of the c-expansion requires that the anomalol 

dimensions of the operators cannot change too much from their normal dimer 

sions and therefore the leading infrared contribution is given by the Gree 

functions of lowest canonical dimensions . This indeed can be checked by 

evaluating explic itly the corrections in t he c-expansion _ We conclude that 

the dominant contribution to Cp comes from the Green function correspond

ing to (') 

8 . - ANOMALOUS DIMENSIONS OF COMPOSITE OPERATORS 

Now we have to extend the r enormalization group formalism in order 

to be able to compute the anomalous dimens i ons of composite oper ators; 

in particular we are interested in the JdDx ¢+¢ operator . We have just 
+ 

seen at the beginning that t he study of the Green functions with ¢ ¢ in
+ 

sertions can be done by introducing in se a coupling [ao V ¢ ¢J,where at 

3 8 f 
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D=4,ao has dimension p2. The connected Green function are thus given by 

100 
= T OV(y, ) '" BV(Ye) 

From the connected Green functions the one particle irreducible Green 
. r(e ,n)( . 1 ~4) functlons P' ••• Pe' q. · •• qn are obtained in the usual way \ • 

The p-momenta are carried by the V' s and the q- momenta by the ~ ' s. Those 

quantities require new independent renormalizations when D = 4 . It is easy 

zo see that for 

that is r ( • ,2) 

n > 0 there is only one superficially divergent quantity 

with a logarithmic divergence. This l eads formally to a 

renormalization of the coupling constant ao which we achieve by imposing, 

for the renormalized constant a, 

= - a 

To be explicit, we take the squared momentum related to the V to be 
2 4 - 2 , + 

p = '3 p , and the squared moment a carried by the ~ ,~ fields to be 

equal to p2. We avoid in this way infrared divergences for ~ ~ O. 

At the perturbative 

contribute to r(' ,2) are 

order we are interested in, the graphs which 

expressed by the same integrals, with the 

renormalization prescription, as those which contribute to r0 1. 
same 

Combining as before dimensional analysis wi t h the arbitrar~ness of 

p we get the renormalization group equati on for r(e,n) 

+ !!y-2 + ~ + 2-€ n + e(1-ryl)r(n,e) = 0 
2 2 4 (8 .1 ) 

where ~ = p2 8a/8p
2 

and we have 

Taking eq . (8. 1) for r( ' ,2) at the 

1) + y 

used the fact 

normalization 

38!) 

that r\n,e)"ae . 

point of r ( • ,2) we obtain 

II 

I 
I 
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It is clear that ry is the anomalous dimension of the composite oper ator 
+ 

¢ ¢ ; incidentally, we have seen t hat the necessity of new distinct sub-
+ 

tractions leads t o the fact that the anomalous di me nsion of ¢ ¢ is not, 

a s naively it might be expected, twic e the anomal ous di mension of the 

field ¢ . 

We are also interested in the case n = 0 and in particular in r (2, 

which i n f ac t is related to < JdDX¢+¢, JdDy ¢+¢ >, the l eading contribu

tion to Cp o To be precis e we wish to study the behaviour of r(2,O) for p= 

in terms of T-Tc as T->Tc. First we observe that r(2,oY(p2) i s logarithmi

ca lly divergent in 4 dimensions . To r enormalize it we introduce a subtrac 

tive counterter m by i mpos ing that for p2 = p2 

The r enor malizat i on group equation is in thi s case inhomogeneous and take 

the f orm 

i.l 
~+ p 

And indeed specializing 

C = 
-2 
P 

2 -2 
P = P in t his equat i on we find : 

I - 2 
P 

The constant C does not correspond to any anomal ous dimens i on and its 

actual value is irrel evant for the subsequent treatment . We then con-

We then consider the dependence of r(2,O)(p=0) on the unrenormali zed 

parameter ~o, when ~o ->~oc and ~oc corresponds to the cr itical value ,i.e. 

the particular value of ~o which at a given temperature and coupling 

constant allows to reach the fixed point . 

Let us suppose we are nearby the critical point ~R = ~* for which 

~R - 0 = 0 and introduce 6 = ~ -~* , and ~R - n = x6. Setting for 

s i mpllcity u = u*, at p2 = 0 we get the equation 
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This gives 

(8 .2) 

for 6 4 O. We then find the relation between 6 and W = ~o - ~oc' The 

derivative of a ~reen function with respect to w corresponds tp the 
+ 

insertion, in every graph , of the operator ¢ ¢ . Let us consider 

r(O,2 )~2= O).Its derivative ar(o(:)I.~w will obey to the same equation 
as r(' ,2), therefore r ( ' ,2)~ ar

aw
' ~ 6(TJ -Y) / x whereas 

We call the attention on the fact that the renormalization constants which 

are involved in the computation of ar(O,2) and r (O, 2) are free of infra
aw 2 -2 J red divergences, since we have chosen the normalization point at p = PrO. 

Therefore the infrared singular behaviour is the same for renormalized and 

unrenormalized nuantities. From tb~s we infer that 

In particular we get 
. c 
(- "2 + 

~w 

1 
x 1-ij 

w 

c ~ 1 
( , 0) ( 1 - "2 +TJ) 1 -1)' 

r ' ...... w 

(8 .3) 

I n general, the equations (8 .2) and (8.3) give the answer for the behaviour 

w 4 0 at p = O. We see that this behaviour does not depend on the unspec ifi ed 

quantity x . 

I f it happens that the exponent of w in eq . (8 .4) is zero (for instance, 

because; = 2 "if), then the behaviour of r(2,0)~ en w. This follows from the 

inhomogeneous equation which r(2,0) satisfies . A final step can be made in 

order to relate the behaviour in w with the behaviour as T 4 Tc at fixed 

density number N. 

Let us remember first the definition of ~oc 

r(O,2) (p=O) = 0 . 
=0 

for ~o = ~o C 

This is solved for ~o c = ~oc(T), because the effective value of ~o r eceives 

contributions a lso from loops containing the ufO degrees of freedom . The 
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definition of the critical temperature Tc at fixed density N is the rollow

ing : 

N = ~ rl' ,o)(p=o, ~c (Tc), Tc) . 

As a function of T, ~oc (T) is expected to have no singularities, in parti

cular for T = Tc, and therefore we write 

~Qc (T) = ~oc :Tc) + B(T-Tc) . (8 . 5) 

In general , that is away from the critical line, we can define a function 

~o(T) from the requirement that the density is N: ' 

The density function ~ ri,p )(~o,T ) is an analytic function of T, around 

Tc, since the dependence in T coming from the n J 0 contributions is 

carried by terms which ar e not infrared singular, and we have f or T-+Tc : 

~ rl' ,0) (~o ,T) _ * rl' ,0) (~o ,Tc) ~ A(T-Tc) . (8.6) 

On' the contary we have a singularity i n ~o for ~o ~ ~oc (T) : 

(8.7) 

a r epresents a previously obtained critical index, see eq. (8 .4) , with 

w = ~o c(T) , and the other term comes f rom the non singular n J a terms. 

From the eq . (8.7) we get 

Tc) ~ 
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From eq . (8.6) considered at Po = Poe (Tc) we get, using eq . (8.5), 

~ r~' ,0)( l1o c(T),T) _ ~ r~' ,0)(l1o c (Tc),TC) = 

= ~ r~' ,0) (l1o c (Tc)+B(T-Tc) ,T) -:- ~ r~' ,1) (l1oc (Tc) ,T) +A(T-Tc) = 

G 
= A(T-Tc)+D(B(T-Tc)) +D1B(T-Tc). 

G G 
+ (A+D1B)(T-Tc) + D B (T-Tc) • 

If G < 1 the terms with the critical exponent G dominate, if G > 1 

the leading terms are the regular ones . But in any case the answer is the 

same, namely 

110 (T) - l1o c (T) ~ T - Tc • 

Therefore eq . (8.4) gives the behaviour of the specific heat sostituting 

w with (T-Tc). 

9. - CALCULATION OF THE RENOR1~LIZATION GROUP STRUCTURE FUNCTIONS 

In this section we will calculate the anomalous dimensions, namely 

the values of Y, ~ at the critical point (u*,I1*). It was shown that u* 
10 ~ ~ 

and 11* respectively the zeros of {J = - "2u +{J and of {j = 11- {j 

Actually 11* is O(U*2), and at the order we work, we can put in the pro

pagators 11* = O. 

Since we wish to calculate the anomalous dimensions up to the order 

10 2, also u* will be calculated up to this order;from this it follows that 

{J must be calculated up to ,the order u' since it begins at the order u. 

In fact, we have that: 

ar
2

(')I 
{J 10 -2-10 = - ~ u + 2uy - p 

" ap s.p. 



and so we need first Y: 

-2 02r 2 

y = p a(p")" 1-2 P 

- 24- -

= 

E is the integral corresponding to the graph of Fig . 1 and i t is suffi

cient to knovi its value for 0 = o. 

Thus we have 

2 
U -2 () y = "2 p f" P 

and the factor 
1 
2 

2 ,,' 
:;: U 4 

= 

Fig. 1 

is the statistical weight of the graph. 

counter term 

The other contributions to P come from r«). We need r«) up to 

order u': the graph at this or der can be calculated for 0 = 0 while the 

graphs of the order u2 must be calculated in 4-- 0 dimensions : 

where we 

does not 

+ )0( +~> ~ + \ 12 1 I \"";--"'vl'"-_-J 
A 

Fig. 2 

st put the statistical weights explicitly. Clearly the 1 graph 

contribute to or«)/op2 and, as it easy to see, also the graphs 

of class B do not contribute to it . From this is follows: 

39 
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S.p.p 

.2 2 2+2" 
2 u p 
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Here h = J k2r:~k)2 - counterterm and 

I -2 s.p.p 
= u2 ii" (Kr:,,2) 

We have put 

I -2 S.p.p 

K = 
,,2 
"2 E e,n " + 2 - y 1 , y is the Euler-Mascheroni constant. 

For e, Vie have: 

1 
k~(k1+p-k2)2 - counterterms 

and 
-2 ae, 
p OF I -2 = 

s.p.p 

Adding the various contributions 

_ ,,' 

!.2 ,,' J 2 u 

which has the trivial zero u = 0 and the infrared stable fixed point u*: 

u* = 

From this we get: 

Now we need 

" --2 + 
5 " (~ 

,,2 

Y = 100 

1) = 
_ E 

a 
ar 21 

--az- -2 + Y 
p p 
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At the order we work the following diagrams contribute to r(2,1): 

= + 

Fig. 3 

rd . 
and 3 graph do not contrlbute to , the 2nd is 

computed in 4-c dimensions, the 4th in 4 dimensions. 

Its clear that these diagrams are essentially those calculated for 

r('), but with different statistical weights . Thus we have: 

1) = rr2 u - K c u _ ~ rr' u2 + y 

Substituting • i n it the value of u* .we get up to the order c : 

~ c 
1) = - + 

5 
..l.- c 2 

100 

Now we have all the ingredients which are necessa ry in the calculat ion of 

the critical index a of the heat capacity at constant pressure Cp , defined 

by: 

Cp ~ (T - Tc) 

It was previously shown that: 

-a 

1 
-:r:1i 

and if we insert into this formula the values of y, 1) and expand up to 

order c', we get : 

a = 
c 

10 

J 9, 

6 c' 
50 
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Further taking for 0 the physical value 0 = 1 we get 

a = 

at the order 0
2 

1 

50 

10. - C01~PARISON WITH EXPERIMENTS 

The experimental results on the dependence of Cp on IT-Tcl is well 

represented by a logarithmic plot 

Cp = A en IT-Tcl + B 

Experiments so far have been performed up to IT-Tcl ~10-6 oX. 

In our language a logarithmic dependence means a = O. The result of 

the o-expansion is that a is small. And indeed the result of the order 

02
, a = - 1/50 for 0 = 1, is not in disagreement with the experimental 

data. 

Of course, the o-expansion represe~ts an approximate solution of the 

renormalization group equation and it is difficult to estimate with suffi

cient precision the confidence we can put on a result at a given order. 

There are suggestions that the series in 0 is an asymptotic one. For the 

case of the Ising model good results are obtained at 0(0
2

) (*). 

Let us show explicitely in Fig. 4 the comparison of the result for 

a calculated up to the order 0
2

: a = -1/50 for 0 = 1, with the experi

mental data. Our plot is of the form 

Cp = Af + B 

Actually for the critical exponent ~, which is the same as our Y/2, 
the next to the lowest order is 03

• A good result for ~ is obtained 
including the 0(0 3

) term. 

'>1)'" 
C fJ • 



Fig. 4 

Experimental data of Cp 

Theoretical prediction : 

A = 1.518 

[ B = -1. 467 
Empirical determination 
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ref . ( ') 

ref . ( ') 

The abscissa of experimental points (T- Tc)oK of r ef . (3) have been 

normalized to those of ref . ('), i . e. from their ' original value the 
- 0 • 

quantity: 2,' 10 K has been subtracted for the reason discussed in 

ref . (') • 

The ordinates are expressed in (J g-' ~- ') . 

J9 t 
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• 

• 

.' 

• 

19.., 

• 
• 

• 

I 

~ 

' 0 

~ 

' 0 



where 

- 30 -

f = - 1 (1 -I T-Tcl -
a

) . This is represented by the continuous line a 
in Fi g . 4 for the values A = 1 . 518, B = -1. 467 . Notice that for the 

snaIl IT-Tc l points, where deviations of a power from a logarithmic law 

are more apparent , the experimental points of r ef . (') ha're sizable error, 

and the experimental points of ref. t) shoVi a significant spread in the 

vertical coordinate . For those last experimental results Vie have been 
4 

unable to find in ref.( ) an extimate of the error , anyhow its size could 

not be less than the order of magnitude of the spread . Of course, it would 

be very attractive to have a neat result a = 0 on the theoreti cal grounds . 

However the o- expansion result, approximate as it is, s eems to us r ather 

satisfactory . This conclusion is somehow supported by the observation 

that it is possible to get informat ions on the 0' term from the calculat 

ions reported in ref . (5) (*) . Using those re sults we get : 

a = 0. 1 0 - 0 . 12 02+0 .1050' 

We see that the series for 0 is alternating in sign with term nea!'ly 

equal in absolute value and therefore it might represent, probably as an 

asymptotic expans i on , a quantity near; to zero . 

(*) In the quoted reference one deals with N- component fields and one 
calculate s other critical exponent that are related through simple 
and known relations to a Through those relations, and taking N=2, 
the exponent of our interest is finally obtained. 
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