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A typical problem in the Reggeon calculus (1) is the computation of

multipomeron exchanges between two particle lines:

Piig, -4

This graph represents a contribution to the scattering amplitude. Note that
we have multipomeron effects in the propagator, like radiative corrections,

and we have multipomeron couplings to the external particle lines.

Besides the two body scattering zmplitude, we hope to calculate other
observables: for instance the particle distributions, the multiplicities,
the correlations, etc. Each Pomeron line can be cut: a cut corresponds to

a contribution to the production cross section.

The problem is in the intrinsic non-perturbative nature of the calcu-
lation for apm1. Even for small Pomeron coupling, complicated graphs give
large effects for £ns-e (s = squared C.M. energy). The cuts in the J plane
are all at the same place J=1 and the limit £€ns-w corresponds to E=1-J-0.
Therefore the problem is an infrared one (E is like an energy, being con-
served at the interactions) and the limit ap+1 is the analogue of the limit

for the temperature T » T  in the theory of the critical phenomena {2y,

Formally the problem is equivalent to the evaluation of the partition

function
) + +
Z(J) = fdwdw* gLUA+T 3y ) (1)
where
¥ - [dDrdT {%J §T¢‘a'|V2¢|2+hl¢lz+ l—; <4’+¢2+¢+2¢>} (2)
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and the identification is 7 = i €én s.

The parameter h = ap—i is something like the temperature difference
t=T - TC. Note that for generality we take the transverse space to have

dimensions = D,

This picture leads us to parallel the features of the critical phe-
nomena (4). Of particular importance is the static scaling hypothesis for

W= 4&n 2
W(t,3,3) = tW(art, 7% (3)

and the scaling law for the correlation function

- + = o A - " N
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Physics take place at t >~ O and one does not explain why the temperature

is at the critical value. We can rewrite the scaling law for t = 0 as

G ~ TA/C o (1_]]7r|—> _ (5)

A, B, C, x, @ are called the critical indices. In general the critical in-
dices are related by linear relations and in our case, as long as we con-
sider Pomeron Green functions, there are three independent indices, which
for £ = 0 become two. They are specified by the expression of the scatter-

ing amplitude for large €n s:

e v
A(8,%%)~is(en 5)-E(X- (en 8) ) (6)
For instance, n = AEDB , W= 2 B,

The critical indices do not depend on the actual form of the interac-
tion, e.g. on the value of M in eq. (2), and more generally on the actual
features of the problem, e.g. the continue or discrete nature of the space
(?JT), as long as the dimensionality and the symmetry properties stay the

sSame .

This is the fascinating aspect of this theory, the relevant observables

of the high energy strong interactions being in principle computable without
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input.

In particular the critical indices should be the same if we add to
the action in eq. (2) more complicated forms of Pomeron interactions,
Indeed we have written only the relevant structure, any other coupling or
modification of the Pomeron trajectory being irrelevant, in the critical
phenomena jargon, in the 1limit E » O (°). The actual computation is of
course a formidable task. A method is the renormalization group with the
€-expansion (°), which consists in integrating over the high E degrees of

freedom. Putting

ook [ ¥1(B) for |El <A
H) =
g2 (E) for |E| > A

we define a new action through

) _ [ 4 MG

and after rescaling the variable E we look for the fixed point A = At = Ax
If D = 4, A* = free theory, therefore for small €, D = L-€, we can take a
perturbative expansion. The Pomeron Green functions are determined by the
anomalous dimensions of the field ¢
* -1=17

<¢ (E) ¢ (0) >~E
and by the anomalous dimensions of the slope @' in terms of E; this amounts
to fixing the ratio K°/E’ in the limit E-0.

The €-expansion gives for the two critical indices (2’3’7’5)

n= .17 for 0(€), = 0.38 for O0(€?)

(7)

1.08 for 0(€), = 1.18 for O0(€?)

=]
1l

(for € = 2 everywhere, the one loop approximation gives 7 = .12 and
v = $,06).

As long as the Pomeron Green functions are not the only ingredients
of the theory, 1M and V are not the only independent critical indices.
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To begin with, we want to compute scattering amplitudes, and therefore
to couple the Pomerons to the particle lines. Those couplings are "external
operators" from the point of view of our field theory and they carry

; : 5
anomalous dimensions too ().

For instance if we add to A a term Niy+N2¢> representing the couplings
'—g-' and :p;r we will find in A' the values Ni and N} which are determined
by integrating over the high degrees of freedom of the loops appearing in

the development:

=

N, 5 N, 2

+
} E ; coupled equations.
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When we look to the contribution to the total cross section given by

N, N,
% + + .o
Ny Ny
we have to take into account the behaviour of N, and N,. In particular the

effective coupling N, goes to a constant for E » 0, from above. This is

related to the fact that the J-plane cut due to the triple Pomeron graph
has a minus sign.

A numerical analysis of this effect in the one loop approximation gives a
warning, It takes, in this model, a very long time (high value of £n s)

before the asymptotic regime GT ~ (6n s)n sets in (9).

External operators and the accompanying anomalous dimensions also
appear in the computation of the multiple diffractive production of low
masses - there typically one has vertices like Pomeron - Pomeron particle

2.1
as external operators (°2'9).

Other critical indices determine the behaviour of the multiplicity
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distribution, in particular a critical exponent ¥ gives the behaviour of

the moments (2’1i’m)

< nf> ~ (én s)p-(1#@

The correlations coefficients are given by other independent critical in-

dices (m)

<nf> T
<P T p

The fact that the coefficients c; constitute a set of (observable) critical
indices is clear once one realizes that their formal expressions in our
Pomeron field theory have zero dimensions, in units of the variable E. They
are therefore independent of any input parameter. In this case the analogue
in the ferromagnetism is the response to a variation of the temperature
around Tc' Indeed to calculate the multiplicity distribution one has to cut
Pomeron lines, weight each produced particle by a parameter Z and sum. This
amounts to change the intercept of the cut lines to be h(Z): the multipli-
city distribution is then given by derivatives with respect to Z at Z = 1,
which corresponds to T = Tc.'With the cutting rules of the Gribov caleulus

one flounds
Y =7 to all orders in €.

The indices Cz and C; have been evaluated at O(€) (m) :

C=1+-g—=1.25, c:1+78£:1.8

2

in surprisingly good agreement with experiments.

One can make a more drastic use of the universality property, and change
the nature of the space time by going for instance from the continuum to a

lattice formulation. In this version (?) of the theory

¢(;:T) > ¢j, where j: lattice site.

Decomposing ¢ = ®+iy, the action becomes
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A = Z [E(@a'xjw‘xfw)*
J

+x[(2 j+rx+q>j+ry)@j+(xj+r

+168,(33+7) ) .
5(857%5)
Here we have already fixed the dimensions D = 2 . Actually to avoid

complications with the continuum limit and to have more freedom (anyhow

that should not matter!) one adds two extra interactions

L(%.2 ) + M(@2+x )

J j+T J+T

The field variables are taken to be continuous and bounded by -1<®,x<1.
What to do with this version of the problem? The authors choose to compute

the "high temperature expansion" according to which if

—— fu e (T To )
A/T

-£
then expanding in powers of 1/T, <u> = ji: a, T , one has

g (1051 v

ap_1 £
g o gt ge i
where &y = 7 ju-( )”. This gives in principle Tc and the critical index

p. In the actual computation the expansions of G(0,0,t), of.}darG(r,O,t)
and of similar gquantities obtained by integrating G or deriving W (see egs
(3) and (4)) are calculated up to O(T_s). One then looks for the wvalues of
the parametrs in the action of eq. (8) which make the various T, determine
by eq.(9) as near each other as ih is possible, Of course there is some
freedom, for instance some of the parameters can be put equal to zero fron
the beginning. The relations among non independent critical indices are
used to obtain an idea on the quality of the approximation., The results

are that
= 0.5 21 and Vig 1.5 +2

to be compared with eq. (7).
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Various considerations indicate that the value for 7T is overestimated.
The results are not without ambiguity. for instance the three Pomeron

coupling turns ocut to be real in the solution (instead that immaginary).

Another possibility is to try to evaluate approximately the functional
integration, by some saddle point method C‘). Coming back to the physical

variable y = én s, the problem is the evaluation of

<£+mdy a’r
/d¢dxe .
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where

24 ¢ dyx+a [ (V20)%+ V2x)%] - v(o,x) (10)

e,
1

and
V(e,x) = (h+irg)-(9%+x") .

Let us now look for the stationary points of the potential V, i.e. the roots
ov av
of ol g} = 0, They are

(o 0, (p=22, x=0), (p=2,x=£2).

I
=
Il

From an analysis based on perturbation theory it is apparent that the
critical temperature corresponds to a non zero positive value of the bare
intercept h, which is related to A (this relations gives in fact a critical
line): h ~ 2. Moreover the bare coupling constant M is expected to diverge
when the renormalized one A_ approaches its fixed point value. Thersfore

R
what is relevant to our problem is the case in which h and A are large.

It is easy to see that in such a case the first two stationary points
are outside the domzin of convergence of the functional integral, whereas

expanding around the other two

one has a gaussian integral
i3 2
i
» '-h{Z(X ;—ég) +.§ }
{dx dz £
J
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The calculation is pursued by representing the continuum in y and T with .
lattice and the ¢, ¥ integration is performed at each lattice site arounc
the two stationary points, which are indicated by a dichotomic variable
Sj = #1, In this cay one obtains for 2

. Z e— iZJ. K(ij)SiSj+iJZk L (ijk) sisjsk

{s.}
J
3
In the space (y,r) the interactions are non zero only among nearest sites,

with the specifications:

(TS | E .

The important point is that the symmetry of the interactions with respect ¢
P (space reversal), T ("time", or y-reversal), S (spin reversal, or x =- x

are the same as in the original Lagrangian.

The problem is now very similar to a standard Ising model problem. The
authors of this development do not (for the moment) attempt to evaluate the
critical indices. They are satisfied to argue that a critical point should
exists, that is should be repulsive in L and attractive in K. They further
argue that since the correlation function is an expectation value of the
product of two spins, it should be bounded. This, toghether with the attrac-

tiveness of the fixed point in K, gives a (Froissart) bound
n<2, neEyEg s,

It is amusing to note that the stationary points in ¢, x used for the saddls
point integration have, as expected, a "classical" interpretation. Indeed i-
is possible to solve completely the classical equations of motion obtained

by varying the Lagrangian of eq. (10), in the extreme approximation @’=0 ('
It turns out that the system evolves in closed orbits in the (@,x) plane, w:
periodical motion (the "time" is the rapidity y. Actually in the classical

solution ¢ is pure immaginéry). The particular orbit which passes through tI

stationary points has an infinite period. In the limit of large &n S the
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favoured solution (in the sense of minimal action) tends to this orbit:
here the system spends a lot of time near a stationary point, then with a

sudden transition flips to the other.

This "classical solutions", which corresponds to the sum of the tree
diagrams, i.e. no loops, in Fig. 1, gives for the scattering amplitude the

geometrical picture of an expanding gray disk.
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