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E. Di Salvo: ANALYSIS ON THE 1_\1*(1'?00) RESONANCE,

ABSTRACT - We will present some model independent tests to analyze the production
mechanism and the decay of the N*(l'?OO), Some of them are of general

interest,
INTRODUCTION, -
The N*(1700) resonance has been studied in several reactions:
+ - L
™p — w(pwta)
+ T
K'p— K(pw =)
_ (1)
pp — plpm m)
Pp— plpn 7).
(1-28) g*
The analyses on the experunental data relative to the system suggest 3 as the most

likely spin-parity assignement for the N *(1700) ; they give also some indications in favour of
diffractive production, Most of the spin-parity tests consist in the study of the angular distribu-
tion for the normal to the N¥ decay plane 29), In other tests one assumes that the N¥ decays
totally into AT 2" : however, it is very dlfflcult to show this, because the N% is very close to the
threshold(25) ; in the various papers very different decay percentages are given,

Also the diffractive hypothesis, which is often assumed in the tests, should be verified,

Our purpose is to present some model independent tests to be applied to the n*r"p system,
and particularly in the 1700 MeV region, Only some very general hypotheses are formulated and
some of the above assumptions on the N* could be tested, We also outline that many of the argu-
ments we will present are of general interest,

In section 1 we shall discuss some tests, with their limitations, on the density matrix  ele-
ments,

In section 2 we shall write some functlons to be used in the fit to the decay angular distribu-
tion, in order to determine the value of the N* spin, the matrix elements and the decay parame-
ters to be inserted in the Dalitz plot Analysis, We also indicate a test for s-channel and t-channel
helicity conservation,
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In section 3 we discuss the Dalitz plot analysis, We show that it is possible to write a func-
tion depending on 7 free parameters, with only a general hypothesis about the background, Also
the branching ratios of the N* decay modes can be determined,

1, - TESTS ON THE DENSITY MATRIX ELEMENTS, -

At first, we observe that there are some limitations on the density matrix elements for the
diffractively produced resonances(zs). For example, in the NX production induced by proten-pro
ton collision, we have

N -

pp —-rpN*

P3
FIG,. 1
where the N¥ is produced in the forward direction, Let us consider the consequences on.the z

component of the N¥ spin,The initial system is described by a plane wave, which can be decom-
posed into spherical waves(29)
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By assuming the z axis lying along the direction of f)'l (see Fig, 1), it is ‘Qo = (0,0), and

J:k
D (0,0 =4
MA M2

so that, in the expression (2), the third component of the total spin turns out to be A . This result
can be intuitively understood by the following argument,

For each partial wave J, consider the component of the spin along the incident proton direc-
tion ﬁl

TR = . e 2
J* ByT Byt Byt 8Py T4 (3)

where E:"l and ;2 are the spins of the two initial protons, So the third component along 61 is in-
dependent of J, Now, because the N¥ direction P' in the CMS is very close to ﬁl, we can appro
ximate with

-_]-".Bl - ?N:h' 3:4,';3.’1'5: = A_)“S‘ (4)

A ~
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We have indicated the spin of the N* as E'N:t and A as its third component in the Jackson referen
ce frame (JRF)(29); on the other hand ?3 is the spin of the outgoing proton and 14 its helicity.
From (3) and (4) we can deduce A~ A - Ao and, since |A) = 1, it follows thatl Al £3/2, This
argument, which is also applicablé in the helicity reference frame (HRF)(zg), can be made more
rigorous and quantitative by esamining the experimental 6, distribution for the N%, From (2) we
have seen that the third component of the total spin in the forward direction in A4 ; we want now to
compute the probability to have the same value A4 in a direction .QO = (go, 900), Since(29
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the probability density of having A as third component is
2
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By considering the average angle Q of the N* direction in the CMS, the total probability that i
represents the ard component of the spm is

Ap = X (2J+1)j I:d 1(9 ) dcoSQ
J=12

Therefore the density matrix for the N¥® produced in proton-proton collision is a 4 x4 matrix;
similarly, in pion-pion collision, we will have a 2 x2 matrix, However, we must still take some
symmetry properties into account:

a) Owing to parity invariance (both in the HRF and in the JRF) we have
J -A g

[ F P '
AA =A =4
which is true in every frame with the y axis normal to the decay plane.

b) The density matrix is a hermitian operator:

c) Last
trpe = Ziep g =1,
A Aa

Then the density matrix for pp collisons has 7 independent parameters

a b+ic d+ie if
b-ic Lo ig d-ie
2 1 - (5)
d-ie -ig 72 -b+ic
- if d+ie -b-ic a

The a, b, ¢, d, e, f are real parameters, with 0 € a < %‘- .
Now we examine what are the consequences of assuming spin 0 or 1 particle exchangé in the
crossed t-channel:

Pp — s —> ]SN*
where s is an intermediate virtual particle,

We are in the JRF, where the quantization axis is along the direction of the momentum trans
fer A inthe N* center of mass:

a) By assummﬁ_lthat only a spin 0 virtual particle is exchanged, we expect that the z component
of the N*?\?S Z1/2, so the'total production amplitude contains only two terms, We can factorize
the reaction and keep only

0 —» pN*¥
for which we have Al 1 = A—l 1 (6)
2 2 2 .2

(due to parity conservation), In this hypothesis the density matrix is
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b) If also a spin 1 virtual particle is exchanged, other matrix elements must be taken into account,
but with some limitations, The amplitudes to be considered are, in this case

B-l:'i Bll Bi_l B_11 B...I__l Bl_3 {7

23 22 2 2 2% 2 2 g 2

Then from (6) and (7) we have
> 4 * *
= 0 F = v

g ™ o gl o el g T ami

2 2 22 2 2 48 2 2
So if the experimental value of p is not consistent with 0, we can deduce that there is an

exchange of spin > 1, Similarly,Sfthe assume that the main contribution comes from spin 0
exchange (i, e, B << A), we have, at first order for the B amplitudes, only three independent
nonvanishing matrix elements: pyq, py_q and pgy, as one can see by writing these matrix
elements and inserting the amplitudes ](6} and (7) into their expressions,

2, - DECAY ANGULAR DISTRIBUTION, -
The angular distribution for the normal to the N* decay plane is(ng

2J+1

1(e, 7) = 2

L oo Jx 1 3
2 p TN, 09107 (0, 9)g (8)
AL N A'p 2
where (9, ®) is the direction of the normal with respect to the JRF or to the HRF, and 4, A'
values of the third component of the N¥ spin (either in HRF or in JRF),

The g;{ are defined in Chung{zg): it must be
J

J
E g w i (9)
p;«-J'u

By fitting the experimental distribution with the above function, one could determine, in prin-
ciple:
a) the spin of the N*, by fitting the distribution with different values of J;

b) the matrix elements of the resonance (7 independent real parameters for the N¥*, as stated
before),

However, in most cases it looks quite difficult to fit the experimental data with 2J+7 para-
meters, In the following, we will present some alternative methods to determine both the spin
and the production and the decay parameters,

2,1, - Fitting method, -

By integrating (8) over the azimuthal angle, one obtains:

(10)

2J+ [ & T 2l J J
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where a is the parameter defined in (5),

So we have a function with 2J+1 free parameters, taking into account the condition (9). Then,
we can determine the nondiagonal matrix elements by fitting the distribution in 08, ® with the ex-

pression (8), or by fitting the integrated expression I(®):

2J+1 J i(A-A" J
He)=—7— 2 9. ., 2 el(A A)(Pg‘l fd cosGdi (8) d,, (9)
*WoAA AdT o B Ap B

(11)

We have to deal with 6 real parameters, since the remaining have been already determined,

Also the hypothesis that the helicity is conserved in diffractive production can be tested ex-
perimentally by analizing the ;i distribution I(®) in the HRT fin this case we test
SCHC) or in the JRT (then we test TCHC), Helicity conservation implies 30) that A =A' = 2
From (11) it follows that the angular distribution is independent of the azimuthal angle, It can be
useful to evaluate the moments of (11):

ive 1 N -ive,

UP)= 3 Gye o 2,°

where N is the total number of events., The defined moments allow us to evaluate helicity conser
vation violations, We note that this holds even if there is more than one (partial) decaying wave,

2,2, - Moments method, -

The distribution (10) can be written as(ng
2J JLJ J T 1 JLJ T
= 1 ( + c +(z-a)C Y
ORS g/w(u) f_J }mp(gp g )La e ged 101} o).
We define the moments
N

1 L JLJ (1 Iis J:[
=1 N = ikt -a)C : (12
V2 Y 9y) = YmlLa1) i ¢, Bo )[ S R :

Since the number of moments equals the number of unknown parameters, we can solve the
linear system (12),

Once the gﬂ and "a" have been determined, we can apply the moments method also to the

distribution (8), for which the moments are defined as(29):

N L
H(L,m) = T kgl D o9
with
JLJ JLJ
MIuam) = { 3 5 G Mz gJ

A AA' "A'mA p o kBop p :

2, 3. - The decay angular distribution can be parametrized in more convenient ways if we develop-
Y 5‘1 P ¥

ed gJ
— g [
£ = 41 8 l/ 5525 /dw ik o8, = 2 (13)
B 2% (W-w,) + L. W

where F ( A) is the invariant decay amplitude of the N prtr”, A being the helicity of the
proton and p the Z component of the N¥ spin along the body - fixed frame(zg), Hence, deve'op-
ing in partial waves

e
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We have expressed the helicity state as a function of the states with the third component m with
respect to the Z axis in the body - fixed frame, L is the total orbital angular momentum, and due
to parity conservation it must be either J - 1/2 or J + 1/2, but not a mixture of the two waves,

If N* is diffractively produced, Morrison's rule(32) suggeststhat L = J - Y2 ; this hypothesis
can be tested,

In this connection we observe that the factorization(sz) could be usefully tested for the reac-
tions (1), in order to further investigate the production mechanism,

If we set:

L 2

a = fdw dE, ciE2 W)l A i a0
B3

2

L

b = [aw dE, dE, KW)| A7 | b>0
pty

L%
c+id = fdW dE; dE,K(W) A” A :

1
- +—
p=g B9

(see Chung(zg) fon expression of K(W)),

we can express the g‘I in the distributions(8), (10), (11) as functions of a, b, ¢, d, Because of
condition (9), we have 3 free parameters in all,

This method is the most convenient, since we can test the two different orbital angular mo-
mentum apmlitudes with only 3 parameters; however we loose information about the decay para-
meters, Therefore we consider an alternative method, useful also in the Dalitz plot distribution
analysis (see sect, 4). We know that the N* decays into:

a) prtn” incoherently : IP
b) p o° : Ri
++ J (14)
c
) AT m A "
d) NO * PN

So we can write :

J J J J J
F =1+R +A +N
[ - B M H

and developing in partial waves, we obtain;

1 1
Vg = | S e 8 R 1
FJ"'\/M 5. 2 (E)C l-z_‘ il g Ta (b + e +d)
n 2J+1 m +m2 Mmp K=0 M ok M1 1 1

M
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a = E C -
I 2 B K K ! 2 1 1 I |z
E. IFp(l)l =?.H21:m'Glmm'[ 212 . Sk| + @ O b1+c1+d1 (15)

where S are the partial amplitudes of the N* incoherent decay, Of course they don't interfere
neither among them, nor with the partial decay modes, On the other hand, we have:

1 i} 1
J 2 2 ™ 2 1
= =) C a
RP cost 3 dlm(Z) Mm p M1

m= -

00 | =

and similar expressions for Az and N;{_

The sum over partial waves runs from 0 to L, because only the lowest possible angular mo-
menta are supposed to contribute to the amplitude, More precisely, for a given total orbital an-
gular momentum L, if 1; is the angular momentum of the system and 1, the orbital angular mo-
mentum of the proton with respect to the same system, we take into account only the values for
which L =1y +12,

The order of magnitude for the neglected amplitudes has been evaluated with non relativistic
scattering formulas(33); the greatest of these amplitudes results to be = 10% of the amplitudes
taken into account,

In conclusion it results :

J . S K K
= (11
g, An?thlmm'(aM wR DGy e A
where
R = _dedE dE K(W)lb +e, +d |2
- Mk S |

2
- [aw a_ a&, k(W)|s,|
Ay f E, dE, K(W)|S, ™.
So gJ can be expressed as functions of R and A, ; they are L+2 positive parameters which can

be rdlated to same parameters of the Dalitz plot distribution (See the following section).

3,- DALITZ PLOT ANALYSIS, -

If W is the effective mass of the 5) mt = system and Ey, Eg the pions energies in the CMS,
the Dalitz plot fitting function is(29, 31),

J|2
[ ezl
1 s-M |9 E
I(W, Eq, E,) = 7 3 = W 5% 5 3 +(1-e)£(W, Eq, EZ)a(W'wmin)(wmax"w)
27(2w) (W -Wo)+ rtot Wo

(186)

where s is the Mandelstam variable of the whole system, M is the mass of the nucleon, & the per
centage of the resonant amplitude (0 < ¢ < 1), FY the decay amplitudes of the N¥ and H(E,, Eq, W)
a function to be defined below, In the formula (1'&), we assume that the Breit-Wigner resonance
and the background add incoherently, The background is supposed to be a smooth function vanishing
at the minimum (W, ;) and at the maximum (Wp,,x) value of W, with a similar hypothesis for
f(El, EZ,W), as we shall see; a is a positive parameter,

We impose(sl) the condition :

o/
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J|12 .
dE4 dE o |F | = W, I'(wW.).
(41r)3{2.]+1)./ 1 2 M I B o I'( 0)

We note that in this case I'(W,) is the partial width for the N* decay into p wtx~, while in (15)
tot 1s the total N* with(Bl), :

In order to have the normalization ‘fI(W Eq Ey)dW dE4 dBE, = 1, we must get:

2
1 .
a_/f(ElEzW) ( 24(2 )8 ]/ SSM W dW dE; dE, = 1, (17
™

The percentage €& can be determined by integrating (15) over dE, and dE, and fitting the effecti
ve mass distribution:

1 1 g-M> (4Tr)3(2J+1)w0 I'(w)
I(W) = 4 8 s W/ e 5 > e +(l-g)F(W)a (w"wmin)(wmax“w)
ol T

where F(W) = del t:lE2 f(E; E, W),

9
As we shall see (cfr,(21)), F(W) does not depend on W, We now check the function X ' Fl‘”“
in detail, Taking into account the previous hypothesis about the decay modes (see end B
of section 3), we may write 3 IF-}]LI 2 following Zemach(34) notationn, The sum over the spin
v

components results to be the contaction of an irreducible J-th rank tensor with its coniugate, the
irreducible tensor being constructed by the 11'+, m~ momenta, It results:

L *
J 2 < ¥, wi® J,
ZlF = % 4 ) Kl R # TYaT (18)
pl a6 k 'k k
where
J B T o g B J — - >
T, =T (E,) il (pl... Py Py)

. 32) (32 appears k times),

In ref, (18) we have indicated with p; and Py the ' and 7~ momenta. inthe N* rest frame, As
in ref, (14) formula (18) contains L+1 partial waves which add incoherently and which are descri-
bed by the TF{I; furthermore, it contains the partial decay modes we have previously seen in (13),
described by ZJ:

Tw o oo, Do dh | Fom o
T = b, By (W) T°3,... 5,8, -Bg) +e * by B ((Wog) T°(5,... 5, B,-Ba) +

iy dis 5 = =
+e bp 2 p(le)T (p3...p3,p1-p2}
+

where p, is the proton momentum in the N* rest frame, Wy the effective mass of the =" =«
system, W5 the mass of pr= and Wy, the mass of pn. /3, (W;3) is the A*t propagator:

) v 2 S -1
Ba W) = [_WI:J 0 1FAMA]

with analogous formulas for /3 (W;,) and B W o). The*

b, b, , by are real positive parame-
ters, @ and Y are the relativg phases of the p and the N

0?1470) decay amplitudes with respect



to the AT amplitude,

In Appendix I we illustrate a differential technique
cible tensors, and we present a general formula for T
the most likely spin assignements for the N¥: J =5/2 and 7/2 i

+

to cﬁculate the contraction of the irredu-
J:T . Here we summarize the results for

S92 5 5 * 5 5
5 2 2, (e W 2 > =
= = . - .
a= |ZE F a, T(p): T(py) + a, T(py. P,) : T"(p,p,) +
5 pE 5 .28
2 — f" 2
+ azT(pz).T(Pz)“*'z WA
where
5 5 , 8 5*
T 2 zl | [T, 5 C A zl Iz
T%:2% =y By W )| TF, By By TUB, By - By) + byy| By y)
5 5 5 5%
‘ = PO -B.)+b |BW -B): L3y 3
T7(py» Py-Pg): T (Ps Py-Py) by P (W )| TP, Py-Py): T (Rg, Py -P,)
5 5%
i@ + ] 2> > 2, 25 5 >
+ 2byb Re[e™PB, (W ) BYW, )| 145, B,3,): T°F,, B,-5,) +
5 5*
-i(p+y) * J Dy e ke DN e,
5 W W T s P,-P,): o -
2bNpre|:e fiN( i) Bp( 12) (B> Py-Pg): T(p,, Py -P,)
702 7 7* 7 b
1 | I " -2" _— 2. B i 2 e -
F=2 1‘_}1 F = ¢, T (py): T (py) +¢, T (p, P, Py): T (p; p, P,) +

7%

0O | =3

7
E-—- - = 2 - > > S D E 2
: + : : Z
+ ¢, T (p; Pyp,): T (py P,P,) + ¢, T (p,): T(p,) + [A
L
T 5y 12 2
where last term is similarto &~ : 27,
To have explicitly the tensor contractions, the following expressions are useful (J half-inte-
ger, L=17J - 1/2)_ (See Appendi:;)l:‘

c.p
s s —— (L#l
T (p): T (p) T (L+1)
ot :
J‘—) — 5 J* - > CLP (L+1) _ﬁ'g 2 PL(I) 2 A —’2]}
T (p...pa): T (p...pa} = T ( " ) + pz La -(p* a)
L L »
J b 3% Cp el o e i
T (B...pb): T (d...qa) = T qq Lpp P (x) + dy +

1 5B
* 3 Pp— PL(x) dx + —é- Pi(x) dx dy + PL(X) 6(dX£|}

where PL(x) is the L-th Legendre Polynomial, Py (x) and _aP]'L(x) are its first and second deriva-
tives; x =p - q, where p and q are the unit vectors of p and q. The dx, dy, 4 (dx) are defined

in the Appendix,

can
b
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The parameters a,, @1s 89, Cos €y, Cy, C3 are real and positive and can be considered as
free parameters; however they can be related to the decay parameters appearing in expression
(14}, By comparing this expression with (18), we obtain:

“F T - P k k ! Iz
ek Ty E'J-%IM' v Om w1k (19)
*
kS = B iy Ib o |2 -
(A % A%}MnGlMM' M "M g g (20)
Therefore
JdW dE, dE, K(W)a T =¥ F g° ok oF A
et Tie MM AMM' MMk
K
J A d N M
. = a a
fdw dE; 48, KN E52 8" = B & Ghoo, G %o

Bk AMM'

So we determine the parameters ap and a relation among b, , bN, bp' P,

Last, we try to describe the background with a phenomenological function, The system pn*«~
can contain the following states:

a) N¥ resonance

b) AYT o~

c) n*o .+

d) pp

e) 3 uncorrelated particles,

Case a) has already been discussed, For incoherent decay we formulate the same hypothesis
used to write the effective mass distribution (11), So we have:

vy | By

-1

13)I Byty *

A= -1 Y 2 2
HE) B, W) = B 1) I‘Bp(wlz)l %13
2 (21)
1 2 =l
% - = -
“NMNO*(Wzs)’ Ayp® Ol (B, 4B, -2m }W- B, ~B)
where

1= /dE1 dE2| ﬁp (le)[2

with similar expressions for IA' Iy LF :

The qy, is the two pions momentum in the p CMS, 95 and Qyq are defined in a similar
way, One can express them as functions, respectively, of = Wy,, W;3, Wy4. The coefficients
B, vsA , 0 are real and positive parameters, with

Bry+a+a = 1, (22)

In conclusion, taking into account the conditions (16), (17), (19), (20), (22) we have defined a
Dalitz plot density distribution with 7 free parameters,
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4, - CONCLUSION, -

We have seen some different tests to be applied to the " n~p system and in particular to
the N*(1700) resonance, Now let us briefly discuss the advantages and the limitations of each
method,

As we have seen, the I(8, @) in (8), or the integrated distributions I{@) and I(®), allows us
to determine, in principle, both the spin and the density matrix elements of the NX(1700). The
moments method looks more sure than the fitting method, as in that case we only take the average
values of some angular functions (ex, the Legendre functions). However, the first method presen
ted in sect. 2,3 seems to be the most effective, since we need not consider the integrated distri-
butions (we have only 2J+3 parameters): when we fit the I(9), we neglect the ® dependencé and
the parameters so determined are probably not best to fit the I(6,9 ). Last, we have purposed the
Dalitz plot analysis, in c:onnectlon with the latter method in sect. 2,3, as an alternative way to
determine the spz_n for the N*, This analysis, which generally does not seem to be appreciated
in studying the N*, has some advantages First, we can also determine the decay modes; second
ly, expression (15) is independent of the production grocess and last, if we consider more than
one partial wave J, we have no interference terms
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APPENDIX, -
Zemach(34) gives the following formula for contraction of tensors :

L&
i CLq p

J > o~ & —' — -
T@:T(@= "5 3 [(LH)PL(x) -i0 - pAq p.L(X)]

If we follow the differential technique suggested in the same reference, we obtain, by substituting
qd—-d+d L
J J s - CLPLq T
T (p):| T (q) + LT (Cl...CIa)"'..:] =W{1+Lﬂa—-— +}

. { (L+l)-|—pL(x) + dx pL(XZ[ -i(g-pAQ) I:pL(X) +dx Pi(x_)]}

wheredx=(ﬁ-§-xa-g)-%.

Now, if we compare the coefficients of 3 inthe r.h.s. and 1.h.s. of the equation, we have:

x C qu
T(p) T( qa LT(p) T(q)+m{(L l)p (x)dx +
— A -
+ig Eﬁ:\ﬁ - L2 DA WP} (x) + AT pp () d{]}

In a similar way we can substitute p — E +Db in the last expression, obtaining
L L

+ A > P C P q =
Jo = Jea gq-a E'bTJ 'TJ-» I L+1) o
T(p...pb): T°(q...qa) = po { > (®): T (q) +—'L(2L+1) |_( )pL(X)dy

53
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I 1
& -
P B3

L(21L+1) p

A -
. A PEDA Loty g i s DA Gt _I+ .
ig (=Aq = P q)pL(x) P qu(x)dy_

o o)

-

I:(L+1) p} (x)dx - io (ﬁAﬁ = q;la PAT) Pl (=) ig " ﬁl\ap]':(x) d{l +

e quL BAs . i B
g bAa (p-bpAa
" (x)dxdy + p! (x)d (dx) - ig &
{(Lﬂ) |:pL R e R [ pq pq

+

L2(2L+1) :

N - A= A =
q-a ® A-A.‘-”\ L 1l : > E'ﬂa - 9-a AAA "(x -
U= (61§ (D b)p'\qupL(X)Ha( ~ T RAaByx)dy

A

o
b.
P

-3

I (-g- B)Aapi(x)dx -ig- fJAa [pi(x)d(dx) + pL""(x)dxdy]}

where

~

dy = (@ b-xp- b)

o=

1 e A K A
sax) = =[5 3- ¢ BG-2 - @ Dpay] .

Note that in the text we have omitted all 9 terms, because they wanish when we sum over the
helicities of all the final protons:

g u(m) aiu(m) = tr o, =0,

By successively applying the differential technique, we can calculate every mixed term of the
type
(r)

J < J
T (p(l)." p(l ) q... q) T (p(l).“ P Qsia CI) .
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