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ABSTRACT - We will present some model independent tests to analyze the production 
mechanism and the decay of the N:t(1700>' Some of them a r e of general 
interest. 

INTRODUCTION. -

The N%:(1700) resonanc e has bee n studied in several reactions : 

+ ,,±(p ,,+ ,,-} "-p .--
+ + + K-p - K-(p " " -} 

pp - p(p ,,+ ,,-} 

pp~ p(p ,,+ ,,-} . 

(I) 

( 5+ 
The analyses 1-28) on the experimental data relative to the system suggest 2" as the most 

likely spin-parity assigne ment for the N%:( 1700) ; they give also some indications in favour of 
diffrac!ive production. Most of the spin-parity tests consist in the study of the angular distribu­
tion for the normal to the N:t decay plane(29}. In other tests one assumes that the N:t decays 
totally into II ++Tf-: however, it is very difficult to show this .. because the N* is very close to the 
threshold(25): in the various papers very different decay percentages are given. 

Also the diffractive hypothesis, which is often assumed in the tests .. should be verified, 

Our purpose is to present some model independent tests to be applied to the Tf+Tf-P system .. 
and particularly in the 1700 MeV region. Only some very general hypotheses are formulated and 
some of the above assumptions on the N* could be tested. We also outline that many of the argu­
ments we will present are of general interest. 

In section 1 we shall discuss some tests, with their limitations, on the density matrix . ele­
ments. 

In section 2 we shall write some functions to be used in the fit to the decay angular distribu­
tion, in order to determine the value of the N* spin .. the matrix e l ements and the decay parame­
ters to be inserted in the Dalitz plot Analysis. We also indicate a t est for s -channel and t-channel 
helicity conservation. 
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In section 3 we discuss the Dalitz plot analysis. We show that it is possible to write a func­
tion depending on 7 free parameters. with only a general hypothesis about the background. Als o 
the branching ratios of the N* decay modes can be determined . 

1. - TESTS ON THE DENSITY MATRL,( ELEMENTS.-

At first, we observe that there are some limitations on the density matrix elements for the 
diffractively produced resonances(26). For example. in the N X production induced by proton-pr2, 
ton collision, we have 

P P ~p N* 

FIG. 1 

Q 
o 

where the N* is produced in the forward direction, Let us consider the consequences all . the z 
component of the N* spin.The initial system is described by a plane wave, which can be decom­
posed into spherical waves(29) 

By assunling the z axis lying along the direction of PI (see Fig. 1), it is no - (0,0), and 

1:1: 

£J~!.(O,O)= d
M

). 

(2) 

so that, in the expression (2), the third component of the total spin turns out to be l. This result 
can be intuitively understood by the following argument. 

For each partial wave J, consider the component of the spin along the incident proton direc­
tion PI 

_A -'9 " .....l) A 

J. PI = sl' PI + s2' P2 = ). ( 3) 

where 51 and -6
2 

are the spins of the two initial protons. So the third component along PI is in­
dependent of J. Now, because the N* direction pI in the eMS is very close to PI' we c an appr2 
ximate with _" ,v-,. ~ A"""''' 

J' PI = J. p' = sN*' P' + s3' P' = A - ). 3 . (4) 

We have indicated the spin of the N* as sN* and A as its third component in the Jackson reIeren 
ce frame (JRF)(29); on the other hand 53 is the spin of the outgoing proton and I. 3 its helicity. -
From (3) and (4) we can deduce I." A - 1.3 and, since II.I : 1, it follows thatlAI "'-3/2. This 
argument, which is also applicable in the helicity reference frame (HRF)(29), can be made more 
rigorous and quantitative by esamining the experimental go distribution for the N*. From (2) we 
have seen that the third component of the total spin in the forward direction in l; we want now to 
compute the probability to have the same value I. in a direction f.l "" (Q <p) Since(29) 

o o' o' 



the probability density of having ).. as third component is 

By considering the average angle go of the N* direction in the eMS, the total probability t.hat ). 
represents the 3rd component of the spin is 

IIp = !(2J+l)jQO[dJ).(Qo)]2dCOSQo' 

J- II.I . 0 

3. 

Therefore the density matrix for the N* produced in proton-proton collision is a 4 x 4 matrix; 
similarly, in pion-pion collision, we will have a 2 x 2 matrix. However, we must still take some 
symmetry properties into account: 

a) Owing to parity invariance (both in the HRF and in the JRF) we have 

J A-A' J 
~A' = (-) P - A -11' 

which is true in every frame with the y axis normal to the decay plane. 

b) The density matrix is a hermitian operator: 

c) Last 
tr P =}; P

AA 
= 1. 

A 
Then the density matrix for pp collisons has 7 independent parameters 

( 
a b+ic d+ie if 

) b-ic 
1 ig d-ie --a 
2 

d-ie - ig 
1 -b+ic 2'-a 

-if d+ie -b-ic a 

(5) 

The a, h, c., d, e, f are real parameters., with o ..... a < 1 - - ~ 

Now we examine what are the consequences of assuming spin 0 or 1 particle exchang"e in the 
crossed t-channel: 

pp ~ 5 -'" pN* 
where s is an intermediate virtual particle. 

We a re in the JRF, where the quantization axis is along the direction of the momentum trans 
fer ;i" in the N* center of mass: -

a) By assuminili that only a spin 0 virtual particle is exchanged" we expect that the z component 
of the N~~s :t 1/2, so the total prod)Jction amplitude contains only two terms. We can factorize 
the reaction and keep only 

o ...,. pN* 
for which we have Al 

-1. 
( 6) 

2 2 2 2 

(due to parity conservation). In this hypothesis the density matrix is 
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P ( 
1 
2 

b) If also a spin 1 virtual particle is exchanged, other matrix elements must be t aken into account, 
but with some limitations, The amplitudes to be considered are , in this case 

B Bl 1 BL .!. B B 1 1 Bl (7) 
1 3 1 1 3 

-22 -22 - - --
2 2 2 2 2 2 2 2 

T hen from (6) and (7) we have 

± ± ± 
P3- 3 

= }; I" I" 1"131"1_3 + F 1 3 I" 1 3 
A 

3 3 
).- ).--

22 2" 2 -22 - 2 - 2 2 2 

So if the experimental value of p is not consi stent with 0, we can deduce tha t there is an 
exchange of spin> 1. Sinlilarly, 3r?we assume that Ufe main contribution comes from spin 0 
exc hange (i. e. B <<. AL we have, at first order for the B amplitudes , only three independent 
nonvanishing matrix elements : PI l' Pl-l and P31 , as one can see by writing these matrix 
elements and inserting the amplitudes (6) and (7) into their exp r essions , 

2, - DECAY ANGULAR DISTRIBUTION. -

The angular distribution for the normal to the N* decay plane is(29) 

I(Q,'I') = 2J+1 
4rr 

); J P
AA

, 
AA' 

(8) 

where (Q, 9' ) is the direction of the normal with respect to the JRF or to the HRF, and A, A I 
values of the third component of the N* spin (either in HRF or in JRF). 

The g~ are defined in Chung(29) : it must be 

(9) 

By fitting the expe rimental distribution with the a bove function~ one could determine , in prin ­
ciple : 

a ) the spin of the NX, by fittin g the distribution with different values of J; 

b) the matrix elements of the resonanc e (7 independent real parameters for the N*, a s state d 
before), 

Howeve r, in most cases it looks quite difficult to fit the experiment al data with 2J+ 7 para­
meters . In the following, we will present some alternative methods to dete rmine both the spin 
and the produc tion and the decay paramete rs. 

2. 1. - Fitting m e thod, -

By integrating (8) over the azimuthal angle , one obtains : 

I(Q) = 2J+l }; 

2 fJ. 

2J+l 
2 

4:f 

( 10) 
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where a is the parameter defined in (5). 

So we have a function with 2J+1 free parameters, taking into account the condition (9). Then, 
we can determine the nondiagonal matrix elements by fitting the distribution in Q" P with the ex­
pression (8), or by fitting the integrated expression J( '1'): 

1('1') = 2J+1 I 
4 rr 1111' 

J 

~11' 

We have to deal with 6 real parameters, since the remaining have been already determined, 

(11) 

Also the hypothesis that the helicity is conserved in diffractjve production can be tested ex-
perimentally by analizing the distribution I( rp) in the HRF (in this case we test 
SCHC) or in the JRF (then we test TCHC), Helicity conservation implies(30) that 11 = 11' = ).1 . 
From (11) it follows that the angular distribution is independent of the azimuthal angle. It can be 
useful to evaluate the moments of (11): 

1 
G = 

'V 2nN 

where N is the total number of events. The defined moments allow us to evaluate helicity conse!, 
vation violations. We note that this holds even if there is more than one (partial) decaying wave. 

2.2. - Moments method. -

The distribution (10) can be written as(29) 

2J __ 

I(g) = I Vrr(L+l) 
L=O 

We define the moments 

J JLJ J J ~- JLJ 1 JLJ] L I C (g + g ) a C + (-2 - a) C Y (g). 
f'=-J flO f' f' -f' 30 3 1 0 1 0 

1 N L -- J L J J J L J L J 1 J L J] 
ML=-N L YO(Q·)= Vrr (L+1) I C (g +g ) aC

3 
3+("2- a )C

1 
1 . 

'-1 1 JJ.O fJ. fJ. -fJ. 0 0 
1- f' 

(12) 

Since the number of moments equals the number of unknown parameters~ we c.an solve the 
linear system (12). 

Once the g~ and lIall have been determined, we can apply the moments method also to the 
distribution (8L for which the moments are defined as(29) : 

with 

H(L,m) 

1 N L 
H(L, m) = -N I,jJ (gk' 'P

k
) 

k=l mo 

JLJ 
(I P,,, C11'm11 ) ( 

1111' "" 

2.3. - The decay' angular distribution can be parametrized in more convenient ways if we develop­
ed gJ(29,31): 

f' W ~ 1</2 
g~ I I s;~2 jdW dEl dE

2 
T 2 

• 2\2rr)8 (W-W ) + r Wo 
o tot 

(13) 

where FJ()..) is the invariant decay amplitude of the NX---')o P1T+1T-, ). being the helicity of the 
proton aX"d JJ. the Z component of the NX spin along the body - fixed frame(29). Hence, dev1>t op­
ing in partial waves 
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I C k L-k L = 
ffi 1m 2 rn l rn 2 m 

4n(2L+1) 

2J+1 

1 L 1 J 
~ d"Z (.!!) C "2' 

Am 2 Mml'-m 

L 

I Sk' 
k=O 

We have expressed the helicity state as a function of the states with the third component m with 
respect to the Z axis in the body - fixed frame . L is the total orbital angular momentum, and due 
to parity conservation it must be either J - 1/2 or J + 1/2~ but not a mixture of the two waves. 

If N* is diffractively produced, Morrison's rule(32 ) suggestHhat L = J - 1/2 : this hypothesis 
can be tested . 

In this connection we observe that the f actorization(32} could be usefully tested for the reac ­
tions (It in order to further investigate the production mechanism. 

If we set : 

a = 

b 

c + id j L Lx 
dW dEl dE 2 K(W) A 1 A 1 

1'--- 1'-+-
2 2 

(see Chung(29) fon expression of K(W) ), 

a> 0 

b>O 

we can express the g~ in the distributionS(S}, (10). (11) as functions of a, b, c , d. Because of 
condition (9), we have 3 free parameters in all . 

This method is the nlOst convenient, since we can test th e two different orbital angular mo ­
mentum apmlitudes with only 3 parameters"; however we loose ~nformation about the decay para­
meters. Therefore we consider an alternative method, useful also in the Dalitz plot distribution 
analysis (see sect. 4). We know that the NX decays into: 

p;r+lT-
J 

a) incohe rently I 
I'-

b) p po R J 
I'-

c ) ++ - l;J l; n 
I'-

d) NO If + N J 
I'- • 

So we can write: 
J J J J J 

F = I +R +A +N 
I'- I'- I'- I'- I'-

and developing in partial waves , we obtain: 

J 
F = 

I'-

.! 4n(L+I) 
y 2J+l 

1 1 
.) L - J 

Ld- (.!':)C . 
m ).m 2 MI Il IJ. [

L 
T 

~(=D 

48 

K 
.! S + 

lV! k 

(14) 



K 
a 

M 
L CK L-K L 

m 1m 2 ml m 2 M 

7. 

L el' [ 
.tmm' .tmm' 

(15) 

where Sk are the partial amplitudes of the N* incoherent decay. Of course they don't interfere 
neithe r among them, nor with the partial decay modes. On the other hand" we have : 

J 
R 

I' 

1 
2" 

cost L. 
1 m=-2' 

1 L .1 J 
d 2 (!!:)C 2 

Am 2 Mm I' 

and similar expressions for fj ~ and N~ 
The sum over partial waves runs from 0 to L , because only the lowest possible angular mo­

menta are supposed to contribute to the amplitude. More precisely, for a given total orbital an­
gular momentum L, if 11 is the angular momentum of the system and 12 the orbital an1::,11Jlar mo­
mentum of the proton with respect to the same system, we take into account only the value s for 
whic h L = 11 + 12 . 

The order of magnitude for the neglected amplitudes has been evaluated with non r e l ativistic 
scattering formulas(33): the greatest of these amplitudes r esults to be ~ 10% of the amplitudes 
taken into account . 

In conclusion it results: 

where 

So gJ can be expressed as functions of R and A ; they are L+2 positive parameters which can 
be rJ'lated to same parameters of the Dalitz plot ~istribution (See the following section). 

3. - DALlTZ PLOT ANALYSIS.-

If W is the effective mass of the f TT+ TT- system and E1~ E2 the pions energies in the eMS, 

":I:~:':' ::: "'''"'''"""'/"';::'':'[: 2 E ~IF~I: 2 + (I-E)f(W, E 1, E 2)a(W-Wmin)(W ma;<_W] 
24(21T)8 (W -Wo )+ f

tot 
Wo 

(16) 

where s is the Mandelstam variable of the whole system, M is the mass of the nucleon, E the per 
centage of the resonant amplitude (0 <. E <. I), F J the decay amplitudes of the Ni: and f(E 1, E 2, W) 
a function to be defined below. In the formula (l~), we assume that the Breit-Wigner resonanc e 
and the background add incoherently. The background is supposed to be a smooth function vanishing 
at the miniInum (W min) and at the maximum (W max) value of W, with a similar hypothesis for 
f(E l , E 2, W), as we shall see ; a is a positive paranleter. 

We impose(31) the condition: 
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1 JdE dE L IF JI2 = W f(w ) 
(4rr)3 (2J+1) 1 2 I' I' a o· 

We note that in this case r(Wo ) is the partial width for the Nt decay into p TT+n-~ while in (1 5) 
tot is the total N* with(31). . 

In order to have the normalization ,( I(W E l E2)d\V dEl dE 2 :: 1" .we must set: 

1
.1 s _ M2 
r-s-- W dW dEl dE 2 = 1. (17) 

The percentage E can be determined by integrating (15) over dEl and dE2 and fittin g the effec!! 
ve mass distribution: 

1 1 V s_1I1
2 

[ I(W ) = - - - 8 -- W E 
24 (2,,) s 

+ (l- E) F (W ) a(W - W . )(W -W) 
mIn max j 

(4rr)3(2J+1)W
O 

f (W ) 

2 2 2 2 2 
(W -Wo) +Wo f tot 

where F(W) = f dEl dE 2 f(E 1 E2 W) . 

As we sha1l see (efr . (2 1) ), F(W) doe s not depend on W. We now check t he functio n z: I F J 12 
in detail. Taking into account the previous hypothes is about the decay modes (see end IJ. JJ. 

of section 3), we may write ~ I F~12 follo wing Zemach(34) notation, The sum over the spin 

components results to be the contaction of an irreducible J - th rank tensor with its coniugate . the 
irreducible tensor being constructed by the ,/, 1f - momenta , It results : 

( 18) 

where 

(P2 appears k times ) . 

In r ef, (l8 ) we have indie ated with PI and P2 the TT + and TT- momenta , in the N* res t frame. As 
in ref. (14) formula (18) contains L+1 partial waves which add incoherently and which are descri ­
bed by the Tli; furthermore, it contains the partial decay modes we have previously seen in (13). 
desc r ibed by Z J : 

where P
3 

is the proton momentum in the N% r est frame, '11'12 the effective mass of the n+".­
system, Wl3 the mass of prr- and W23 the mass of prr-. :f3tJ (W13) is the l'.++ propagator: 

with analogous formulas for !13 (W12 ) and !13 N(W23 ). The b , hI>' bN are real positive parame­
ters, 'P and VI are the relative phases of the p and the N%Of1470 ) decay amplitudes with r espect 

r 
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to the ~ ++ amplitude . 

In Appendix I we illustrate a differential technique to ciculate the contraction of the irredu­
cible tensors, and we present a general formula for TJ: T . Here we summarize the results for 
the most likely spin assignements for the N*: J = 5/2 and 7/ 2 . 

5 5 5 * 5 5* 
5 I 2'12 2_ 2-. :1'4 - 2--

J =2' ~ F ao T (P1):T (P1) + a 1 T (P1,P2):T (P1 P2) + 
fl fl 

where 

7 
J = -

2 

where last term is similar to 

To have explicitly the tensor contractions, 
ger, L = J - 1/2), (See Appendix). 

the following expressions are useful (J half-inte-

• 2L 
A C p 

J_ J..... L ( ) T (p) : T (p) --:"---,-- L+l 
2L+l 

* J . ..=. _~ J.... _ ... 
T (P ... P a) : T (P ... P a) = 

2L 
C p (L+l) t A - 2 P L' (1) 

L ~ 
2L+l (p) + -'::;;2-

p 

* J-. _,_ J __ ..... 
T (p ... pb): T (q ... qa) = 

L L 
C p q (L+l) { A - L-A - P' (x) 

L ~ ~ P (x) + _L_ 
2L+1 q P L L 

dy + 

+ i: p ~ b P~ (x) dx + :2 Pi. (x) dx dy + PI., (x) b (dX~ } 

,,:here PL(xl is .... the L-th L .... egend~e Polynomi~IJ PL(x) and ft{x} ...!re its first and second deriva­
hves; x = p . q, where p and q are the unIt vectors of p and q. The dx, dy, d (dx) are defined 
in the Appendix. 

5 ... 
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The parameters ao' aI, a2, co' c l ' c 2, c3 are real and positive and can be considered as 
free parameters; however they can be related to the decay parameters appearing in expression 
(14), By comparing this expression with (IS), we obtain; 

E fL k k Is 12 L. ). G ).MM' oM aM' k 
fL MM' 

(19) 

,.J;,>J:" L. G fL a 1 a 1 Ib +c +d 12 
'" " ~ ).MM' ).MM' M M' 1 1 1 ' 

(20) 

Therefore 

J
' ± 
dW dEl dE

2 
K(W) a

k 
T~; T~ = L. L 

fL ).MM' 

So we de termine the parameters ak and a relation among b
Ll

, bN, bpI rp , V1 . 

Last, we try to describe the background with a phenomenological function, The system p 1T+ 11-

C an contain the following states: 

a) N± resonance 

b) 1\++".­

c} N*o n+ 

d) p p 

e) 3 uncorrelated particles , 

Case a) has alr eady been discussed. For incoherent decay we formulate the same hypothesis 
used to write the effective mass distribution (II), So we have: 

(21) 

where 

with similar expressions for 1.6' IN' ~ . 

The q12 is the two pions momentum in the f eMS, q13 and q23 are defined in a similar 
way, One can express them as functions, respectively, of \V121 W 13' W 23' The coefficients 
fJ, ),,). ,0 are r e al and positive paramete rs, with 

fJ + "I + ). + a = 1, (22) 

In conclusion, taking into account the conditions (16), (17). (19), (20), (22) we have defined a 
Dalitz plot density distribution with 7 free parameters, 
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4. - CONCLUSION. -

We have seen some different tests to be applied to the TT+ 1f- P system and in particular to 
the N*(1700) resonance. Now let us briefly discuss the advantages and the limitations of each 
m e thod. 

As we have seen, the I(Q, '1') in (8), or the int~grated distributions I(Q) and 1('1'), allow s us 
to determine, in principle, both the spin and the density matrix elements of the N:t( 1700). The 
moments method looks more sure than the fitting method, as in that case we only take the average 
values of some angular functions (ex. the Legendre functions). However, the first method pres€.!:. 
ted in sect. 2.3 seems to be the most effe ctive, since we need not consider the integrated distri­
butions (we have only 2J+3 parameters): when we fit the I(Q), we neglect the rp dependence and 
the parameters so determine d are probably not best to fit the I(Q, rp). Last, we have purposed the 
Dalitz plot analysis, in connection with the latter method in sect. 2.3, as an alternative way to 
determine the spin for the N%:. This analysis, which generally does not seem to be appreciated 
in studying the N%:, has SODle advantages. First, we can also determine the decay modes; secon~ 
ly, expression (15) is independent of the production process; and last, if we consider more than 
one partial wave J, we have no interference terms(29). 
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APPENDIX. -

Zemach(34) gives the following formula for contraction of tensors 

L L 
J ~ il:.. CL q P 

T (p): T (q) = 
2L+1 

If we follow the differential technique suggested in the same reference, we obtain, by substituting 
q-+q+a 

:I: 
J - r: J - J ~ -~ J T (p): LT (q) + LT (q ... q a) +... = 

2L+l {1+L 9/+ ... }. 

,,- I\~ 1 
where dx = (p. a - x q. a)· - . 

q 

Now, if we compare the coefficients of a in the r. h. s. and 1. h. s. of the equation, we have: 

L L 
:r ,,- Cpq { 

TJ(~p) . TJ(q~ -q;:;) = ~ TJ(p~): TJ(q~) + L (L+1) p' (x) dx + 
.... q L(2L+l) L 

.., ~ 

In a similar way we can substitute p ...:;. p + b in the last expression, obtaining 
L L 

{

,,-eo Cpq-
~ TJ(P}: TJ(~) + ~ ) I (L+l) p' (x)dy-

P L 2L+1 _ L 

:r J ...... _.. J_~ __ 
T (p ... pb): T (q ... q a) = 



12. 

where 

- A-
- b A. P' b" .... ... 

- i . ( - A q - -- p " q) p ' (x) - i • 
p p L 

eLL 
A A l L P q p. b 

• p ll q P"(x) dy + --
L _ L(2L+l) P 

r(L+l) p' (X) dx - i;; (p" ~ ~ L q 

eLL { L P q 
+ (L+I) Ip"(X)dXdy+ P' (x)6(dx) 

L2(2L+l) . L L L 

.~ 
- 10 [

..... - ,,-i) A _") 
bAa _ ( p . blpAa 

pq pq 

• -'Jo" .... ....,,,, A ..". .... a a .... A A ~ ~ ........ "'-'"' 

-.3.2 (bAq_(p.b)pAq) PL'(X)+iO(~-~ pAq)PL"(x)dy-
pq q q 

. ~ 
- 10 

~ ~ A 

( b .E..:..E. "') " --J " .... - - p A q P
L
" (x) dx - i.· p II q 

P P 

,, -- ... -1 
dy = (q ' b - x P . b)­

P 

lr:t) · .... A~"''''''' A....., 1 
6 (dx) = pq L.:" a - (p • b)(p . a ) - (q . a ) p dYJ 

Note that in the text we have omitted all 0 i terms , becaus e they wanish when we sum over the 
he licities of all the final protons: 

r u (m) o. u (m) = tr o. = O. m 1 1 

By s uccess ively applying the differential technique, we can calculate eve ry mixed term of the 
type 

J (I) (k) J (I) (r) 
T (p ... p q ... q) : T (p ... p q ... q) . 
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