Istituto Nazionale di Fisica Nucleare Sezione di Genova

 $\frac{\text{INFN}/\text{AE}-75/2}{24 \text{ Marzo } 1975}$

E. Di Salvo: STUDIO DELL'INTERFERENZA $\omega - \varrho$ NEL SISTEMA $\pi^{\circ} \dot{\gamma}$: REAZIONE $\pi^{-} p \longrightarrow \pi^{\circ} \gamma$ (x).

RIASSUNTO. -

Ci proponiamo di studiare il mixing elettromagnetico delle risonanze ϱ° e ω nella distribuzione di massa effettiva del sistema $\pi^{\circ}\gamma$. Poi ché del "rate" di decadimento della ϱ° in $\pi^{\circ}\gamma$ conosciamo solo un limite su periore, lo scopo principale del nostro studio è di tentare di determinare tale "rate". Determiniamo anzitutto la distribuzione di massa effettiva del sud detto sistema, in funzione delle variabili di Mandelstam s e t relative alla reazione $\pi^{-}p \rightarrow \pi^{\circ}\gamma$, interpretando le ampiezze di produzione della ϱ° e del la ω con un modello a poli di Regge semplice. Determiniamo quindi le condi zioni più opportune per studiare l'interferenza fra le due risonanze e confron tiamo la distribuzione di massa effettiva così ottenuta con la Breit-Wigner relativa alla sola ω : se ne conclude che, per rivelare sperimentalmente l'ef fetto di mixing, occorrerebbe una risoluzione molto superiore a quella che di fatto possiamo raggiungere con gli attuali dispositivi sperimentali.

1. - INTRODUZIONE. -

Studiamo la reazione $\pi^- p \longrightarrow n \pi^0 \gamma$, interessandoci al sistema $\pi^0 \gamma$

Nello scrivere l'ampiezza di tale processo, assumiamo che la reazione pro ceda esclusivamente attraverso la produzione delle risonanze ϱ^{o} e ω :

$$\pi^{-}p \longrightarrow \varrho^{o}n \longrightarrow \pi^{o}\gamma n$$
$$\pi^{-}p \longrightarrow \omega n \longrightarrow \pi^{o}\gamma n$$

Il decadimento $\varrho^{0} \longrightarrow \pi^{0} \gamma$ non è vietato da alcuna regola di selezione, ma non è mai stato determinato sperimentalmente. Il problema del decadimen to elettromagnetico di $\omega \in \varrho^{0}$ ha un notevole interesse, sia sperimentale che teorico. L'interferenza $\omega - \varrho^{0}$ è stata studiata nel sistema $\pi^{+}\pi^{-}$: sive de che i dati sperimentali sono meglio fittati da un mixing $\omega - \varrho$; naturalmente il decadimento $\omega \longrightarrow \pi^{+}\pi^{-}$ può essere solo di natura elettromagneti ca, in quanto viola la G - parità.

Le reazioni tipiche sono:

$$e^+e^- \longrightarrow \pi^+\pi^-$$

(esperimento di Orsay)⁽¹⁾

oppure (produzione):

$$\pi^{+}p \longrightarrow \pi^{+}\pi^{-} \Delta^{++}^{(1)}$$

$$\pi^{-}p \longrightarrow \pi^{+}\pi^{-} n^{(1)}$$

$$k^{-}p \longrightarrow \Lambda \pi^{+}\pi^{-}^{(2)}$$

$$\overline{p}p \longrightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}^{(1)}$$

L'interferenza $\omega - \varrho$ si spiega ammettendo che le particelle "fisiche" non siano autostati di G - parità, ma piuttosto un miscuglio di autostati. Ricordiamo che la $\varrho^{(0)}$ ha G - parità positiva e $\omega^{(0)}$ è a G - parità negativa, mentre gli stati di cui osserviamo il decadimento sono

(1)
$$|\omega\rangle = |\omega^{(0)}\rangle + \varepsilon |\varrho^{(0)}\rangle$$
$$|\varrho\rangle = |\varrho^{(0)}\rangle - \varepsilon |\omega^{(0)}\rangle$$

dove $\varepsilon = |\varepsilon| e^{i\psi}$, con $|\varepsilon| \ll 1$, è il parametro di mixing

Processo di formazione

Processo di produzione: con V indichiamo le particelle vir tuali scambiate.

10

In un esperimento di formazione, l'ampiezza sarà del tipo

(2)
$$F \sim (BW)_{\rho} + A e^{1\varphi} (BW)_{\omega}$$

dove φ è la fase relativa delle due ampiezze di decadimento. Notiamo che qui già il primo vertice è elettromagnetico, quindi vengono prodotti gli stati (1). In una reazione di produzione, invece, al 1º vertice, "forte", vengono prodotti gli autostati di G - parità, ma al 2º vertice interviene l'interazione elettromagnetica, che causa il mixing. Quindi l'ampiezza sarà del tipo:

(3)
$$F \sim \underbrace{T_{\omega_{o}} \quad T_{\varrho_{o}}}_{F \sim \mathcal{P}} \begin{pmatrix} D_{\omega} \\ D_{\rho} \end{pmatrix}$$

dove \mathbb{P} è una matrice (che in seguito definiremo) la quale non sarà diagonale, ma conterrà un parametro di mixing in dipendenza da ε .

Nella sezione 2 svolgiamo i calcoli per arrivare alla espressione della distribuzione di massa effettiva, cioè al modulo quadro dell'ampiezza (3). Oltre a definire P, dobbiamo determinare la fase relativa delle due am piezze di decadimento, nonché interpretare con un modello a Poli di Regge semplice le ampiezze di produzione.

Nella sezione 3, infine, determiniamo le condizioni (energia, momento trasferito, direzione di volo del π^{0}) che rendono massimo il termine di interferenza fra $|\varrho\rangle \in |\omega\rangle$; indi, in tali condizioni, determiniamo la distri buzione di massa che ci interessa e la confrontiamo con la Breit e Wigner r<u>e</u> lativa alla risonanza ω .

2. - DISTRIBUZIONE DI MASSA EFFETTIVA. -

L'elemento di matrice della nostra reazione è dato dalla (3), dove con \mathbb{P} abbiamo indicato il propagatore relativo al mixing $\omega - \varrho$:

 $\left[P = \frac{1}{M_2 - I W^2} \qquad M_2 = \begin{pmatrix} m_{\varrho}^2 - i m_{\varrho} \overline{\rho} & -\delta(m_{\varrho} + m_{\omega}) \\ \\ -\delta(m_{\varrho} + m_{\omega}) & m_{\omega}^2 - i \overline{\rho} m_{\omega} \end{pmatrix}$

dove I è la matrice identica, W la massa effettiva del sistema ($\pi^{0}\gamma$), δ il parametro di mixing: δ = 2.5 MeV⁽¹⁾.

Assumiamo come asse di quantizzazione per $\varrho \in \omega$ la direzione del protone, nel riferimento a riposo di Jackson⁽³⁾. Indichiamo con λ_1 e λ_2 la elicità del protone e del neutrone e con Λ l'elicità del γ finale. La for mula (3), più esplicitamente, si scrive

$$T_{\varrho} = T_{\lambda_{1} \lambda_{2} M}^{\varrho} \qquad D_{\varrho} = D_{M\Lambda}^{\varrho}$$
$$T_{\omega} = T_{\lambda_{1} \lambda_{2} M}^{\omega} \qquad D_{\omega} = D_{M\Lambda}^{\omega}$$

$$F_{\lambda_1 \lambda_2 \Lambda} = \frac{1}{\mu_{\varrho}} \sum_{M} T_{\lambda_1 \lambda_2 M}^{\varrho} D_{M\Lambda}^{\varrho} + \frac{1}{\mu_{\omega}} \sum_{M} T_{\lambda_1 \lambda_2 M}^{\omega} D_{M\Lambda}^{\omega} +$$

$$+ \alpha \sum_{M} (T^{\varrho}_{\lambda_{1}\lambda_{2}M} D^{\omega}_{MA} + T^{\omega}_{\lambda_{1}\lambda_{2}M} D^{\varrho}_{MA})$$

dove:

$$\alpha = \frac{\delta(m_{\varrho} + m_{\omega})}{\mu_{\varrho} \ \mu_{\omega}}$$
$$\mu_{\varrho} = m_{\varrho}^{2} - W^{2} - i \ m_{\varrho} \Gamma_{\varrho}$$
$$\mu_{\omega} = m_{\omega}^{2} - W^{2} - i \ m_{\omega} \Gamma_{\omega}$$

A questo punto calcoliamo $\lambda_1 \lambda_{2\Lambda} |F \lambda_1 \lambda_{2\Lambda}|^2$, cioè sommiamo sugli stati finali e mediamo su quelli iniziali. Sarà ovviamente

$$\frac{\mathrm{d}\sigma}{\mathrm{dt}\;\mathrm{d}W^2\;\mathrm{d}\Omega}\sim\sum_{\lambda_1\;\lambda_2\Lambda}\left|\mathrm{F}_{\lambda_1\;\lambda_2\Lambda}\right|^2$$

essendo $\Omega \equiv (\theta, \varphi)$ la direzione di volo del π^{O} (opposta a quella del γ) nel riferimento a riposo del sistema $\pi^{O}\gamma$ $(JRF)^{(3)}$. Occupiamoci ora del deca dimento del ϱ^{O} e della ω in $\pi^{O}\gamma$. Possiamo scrivere le ampiezze di deca-dimento come⁽⁴⁾:

$$T_{MA}^{\varrho} = \sqrt{\frac{3}{\varrho\pi^2}} f \frac{e}{m\pi} WA p D_{MA}^{1*}(\varphi, \vartheta, 0) e^{i\varphi\varrho}$$
$$T_{M}^{\omega} = \sqrt{\frac{3}{\varrho\pi^2}} g \frac{e}{m\pi} WA p D_{MA}^{1*}(\varphi, \vartheta, 0) e^{i\varphi\omega}$$

dove f e g sono le costanti di accoppiamento di $\varrho \in \omega$ relative al decadimento in $\pi^{O}\gamma$:

(5)
$$X = \frac{f}{g} = \sqrt{\frac{l\varrho}{l\omega}} < 0.33$$

secondo i dati delle tavole di Rosenfeld⁽⁷⁾.

Ai fini del nostro calcolo è importante la fase relativa $\varphi = \varphi_{\omega} - \varphi_{\varrho}$ tra le due ampiezze di decadimento. Nell'esperimento di Orsay⁽¹⁾, è stata studiata la reazione:

$$e^+e^- \longrightarrow \pi^+\pi^-$$

La fase relativa di cui alla formula (2) è risultata essere all'incir ca $\varphi \sim (\pi/2)$. A questo punto, ci chiediamo che relazione c'è tra la fase misurata in questo esperimento e la fase $\overline{\varphi} = \varphi_{\omega} - \varphi_{\varrho}$ relativa alle ampiezze di de cadimento nella nostra reazione.

i	$\pi^+\pi^-$	e ⁺ e ⁻	$\pi^{0}\gamma$	i	$A_2^+\pi^-$	e ⁺ e ⁻	$\pi^{0}\gamma$
π ⁺ π −	F ₁	F_2	F ₃	$\pi^+\pi^-$	F'1	F ₂	F3
e ⁺ e ⁻	F ₂	0	0	e ⁺ e ⁻	F'_2	0	0
πογ	F ₃	0	0	πογ	F'_3	0	0
i	Q ⁺ π ⁻	e ⁺ e ⁻	$\pi^{0}\gamma$	i	$B^+\pi^-$	e ⁺ e ⁻	$\pi^{0}\gamma$
π ⁺ π-	$\mathbf{F}_{1}^{''}$	F_2	F3	$\pi^+\pi^-$	$F_1^{\prime\prime\prime}$	F ₂	F3
e ⁺ e ⁻	$F_2^{\prime\prime}$	0	0	e ⁺ e ⁻	F_2^{m}	0	0
$\pi^{0}\gamma$	$F_3^{\prime\prime}$	0	0	$\pi^{0}\gamma$	F_3^m	0	0

A questo fine, consideriamo una serie di reazioni.

Cioè abbiamo scritto le matrici K relative a vari processi aventi in comune stati iniziali o finali, trascurando le reazioni con ambedue i vertici e.m.; si noti che alcune reazioni sono virtuali, cioè ad es. la ϱ^+ è una particella virtuale scambiata secondo il diagramma di cui all'introduzione. Ora scom poniamo le ampiezze secondo un sistema ortonormale completo di stati n >a momento angolare e massa definiti. Si ha:

$$\langle \pi^+\pi^- \langle D \rangle \pi^+\pi^- \rangle = \sum_n \langle \pi^+\pi^- | D \rangle n \rangle \langle n | \pi^+\pi^- \rangle$$

e formule analoghe per le altre reazioni: con $|\pi^+\pi^-\rangle$ indichiamo un'onda pia na. In sintesi si ha

$$F_i = \sum_n C_{in} F_i^{(n)}$$

Nell'approssimazione in cui trascuro le reazioni con entrambi i vertici elettromagnetici, ho (Teorema di Fermi-Watson)⁽⁵⁾ che per ciascuna ampiezza appartenente a una data matrice K (vedi schemi sopra) la fase relativa a un dato $|n\rangle$ è la stessa:

$$\varphi_{1}^{n} = \varphi_{2}^{n} = \varphi_{3}^{n}$$

$$\varphi_{1}^{'n} = \varphi_{2}^{'n} = \varphi_{3}^{'n} = \varphi_{2}^{n} = \varphi_{3}^{n}$$

$$\varphi_{1}^{'n} = \varphi_{2}^{'n} = \varphi_{3}^{'n} = \varphi_{2}^{n} = \varphi_{3}^{n}$$

$$\varphi_{1}^{'nn} = \varphi_{2}^{'nn} = \varphi_{3}^{'nn} = \varphi_{2}^{n} = \varphi_{3}^{n}$$

$$12$$

essendo φ^n le fasi delle ampiezze scritte nel precedente schema. Questo vale in particolare per $|n\rangle = |\varrho\rangle e |n\rangle = |\omega\rangle$, che sono le ampiezze che interessano nel nostro processo. In particolare, hanno la stessa fase φ_{ϱ} le ampiezze delle seguenti reazioni

dove A_2^+ e π^+ possono essere riguardate come le particelle virtuali scambiate nella produzione di ϱ . Analogamente per la produzione di ω :

Le suddette reazioni hanno la stessa fase φ_{ω} . Possiamo allora concludere che la fase $\overline{\varphi} = \varphi_{\omega} - \varphi_{\rho}$ che ci interessa è praticamente uguale a quella misurata a Orsay:

$$\overline{\varphi} \sim \frac{\pi}{2}$$

Dobbiamo occuparci ora delle ampiezze di produzione: le interpretiamo con un modello a Poli di Regge semplice, che nelle reazioni di produzione di ϱ e ω ha sempre dato buoni risultati.

Consideriamo la reazione $p\pi^- \longrightarrow n \varrho^0$: le particelle che possono essere scambiate sono π^+ (a parità non naturale, UPE) e A_2^+ (a parità naturale, NPE). Analogamente, nella reazione $p\pi^- \longrightarrow n\omega$ le particelle che si pos sono scambiare sono ϱ^+ (NPE) e B⁺ (UPE). Abbiamo usato le ampiezze di produzione scritte da Hite⁽⁶⁾: tali ampiezze sono libere da singolarità cinematiche, inoltre ciascun polo di Regge soddisfa separatamente alle con dizioni di soglia (ipotesi evasiva). Per lo scambio di π^+ , ϱ^+ , B⁺ si suppone che l'accoppiamento sia senso-senso, mentre per l'A⁺₂ pare che funzioni meglio il meccanismo di nonsenso. Abbiamo le ampiezze

Parità naturale:

$$\begin{split} & \widetilde{f}_{1++}^{t} = R(s,t) \gamma_{1++}^{N}(t) \sin \theta_{t} \alpha \\ & \widetilde{f}_{1+-}^{t} = R(s,t) \gamma_{1+-}^{N}(t) (1 + \cos \theta_{t}) \alpha^{2} \sqrt{t} (2M)^{-1} \\ & \widetilde{f}_{1-+}^{t} = R(s,t) \gamma_{1+-}^{N}(t) (1 - \cos \theta_{t}) \alpha^{2} \sqrt{t} (2M)^{-1} \end{split}$$

(6)

14

Parità non naturale

$$\begin{aligned} &\widetilde{f} \stackrel{t}{\underset{1++}{}^{t}} = \mathbb{R}(s,t) \gamma_{1++}^{u} \sin \theta_{t} \alpha \\ &\widetilde{f} \stackrel{t}{\underset{0++}{}^{t}} = \mathbb{R}(s,t) \gamma_{0++}^{u} \cos \theta_{t} t^{1/2} \alpha \end{aligned}$$

dove

$$R(s,t) = \frac{1}{\Gamma(\alpha+1)} \frac{1+\tau e^{1\pi\alpha}}{\sin \pi\alpha} \left(\frac{s-1}{2s_0}\right)^{\alpha}$$

As. Hereinsteine

Con le condizioni di soglia

$$\gamma_{1++}^{N} = \alpha \gamma_{1+-}^{N} + \lambda(t)(1 - \frac{t}{4M^{2}})$$

$$\epsilon \gamma_{0++} = \alpha \gamma_{1++}^{u} \frac{t + m_{v}^{2} - m_{\pi}}{1 + t + \frac{t + m_{v}^{2} - m_{\pi}}{2m_{v}}} + \left[b_{1} \alpha + b_{0}(1 + \alpha) \right] \tau'^{2}$$

Per le notazioni vedi Hite⁽⁶⁾. Con γ^N e γ^u abbiamo indicato i residui a pari tà naturale e non naturale rispettivamente. $\alpha = \alpha(t)$ è la traiettoria di Regge cui appartiene la particella scambiata. θ_t è l'angolo di produzione della reazione "incrociata nel canale t: $pn \rightarrow \pi^+ v$ dove con v abbiamo indicato il mesone vettore, indifferentemente ϱ^o oppure ω .

M è la massa del nucleone, m $_{\pi}$ la massa del pione e m $_v$ la massa del mesone vettore. A questo punto, sostituendo nell'espressione di

$$\Lambda \lambda_1^{\Sigma} \lambda_2 |F_{\Lambda \lambda_1 \lambda_2}|^2$$

si ottiene

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{dt\,dW^2\,d\Omega}} &= \mathrm{cost}\left\{ \left(1+\mathrm{cos}^2\theta\right) \left[\left| \mathbf{A}_{1++} \,\xi^{\mathtt{H}} + \mathbf{R}_{1++} \,\eta^{\mathtt{H}} \right|^2 + \left| \mathbf{A}_{1+-} \,\xi^{\mathtt{H}} + \mathbf{R}_{1+-} \,\eta^{\mathtt{H}} \right|^2 + \mathbf{R}_{1+-} \,\eta^{\mathtt{H}} \right|^2 + \left| \mathbf{\pi}_{1++} \,\xi^{\mathtt{H}} + \mathbf{B}_{1++} \,\eta^{\mathtt{H}} \right|^2 \right] + \mathrm{sen}^2\theta \left[\left| \mathbf{\pi}_{0} \,\xi^{\mathtt{H}} + \mathbf{B}_{0} \,\eta^{\mathtt{H}} \right|^2 + \left| \mathrm{cos\,} 2\varphi \left(\left| \mathbf{A}_{1-+} \,\xi^{\mathtt{H}} + \mathbf{R}_{1-+} \,\eta^{\mathtt{H}} \right|^2 - \left| \mathbf{A}_{1++} \,\xi^{\mathtt{H}} + \mathbf{R}_{1++} \,\eta^{\mathtt{H}} \right|^2 - \left| \mathbf{\pi}_{1} \,\xi^{\mathtt{H}} + \mathbf{B}_{1} \,\eta^{\mathtt{H}} \right|^2 \right] \right\} \end{aligned}$$

dove si è indicato

$$\xi = \frac{1}{\mu_{\varrho}^{2}\mu_{\omega}} \left[f \mu_{\varrho} \mu_{\omega} + ig \delta (m_{\varrho} + m_{\omega}) \mu_{\varrho}^{\varkappa} \right]$$
$$\eta = \frac{1}{\mu_{\varrho} \mu_{\omega}} \left[f \delta (m_{\varrho} + m_{\omega}) + ig \mu_{\varrho} \right]$$
$$15$$

the rominates

Se integriamo in d Ω , otteniamo

$$\frac{d\sigma}{dt \, dW^2} = \operatorname{cost'} \left[2 \left| A_{1++} \xi^{\mathsf{X}} + R_{1++} \eta^{\mathsf{X}} \right|^2 + 2 \left| \pi_{1++} \xi^{\mathsf{X}} + B_{1++} \eta^{\mathsf{X}} \right|^2 + 2 \left| A_{1+-} \xi^{\mathsf{X}} + R_{1+-} \eta^{\mathsf{X}} \right|^2 + \left| \pi_{0++} \xi^{\mathsf{X}} + B_{0++} \eta^{\mathsf{X}} \right|^2 \right]$$

Diamo qui i valori numerici dei residui e delle traiettorie del π , B, ϱ men tre trascuriamo l'A₂, il cui contributo è trascurabile.

	Particella π	+:	α _π =	-0.019+t	$\gamma_{0++}^{\pi} = 52.3$	γ_{1++}^{π} = 95.5
(7)	Particella B	+:	$\alpha_{\rm B}$ =	0.05 +0.73t	$\gamma_{0++} = 6.54$	γ ₁₊₊ = 2.18
	Particella Q	+:	α _Q =	0.56 +0.78t	$\gamma_{1++} = 10$	$\gamma_{1+-}^{\varrho} = 80$

Tali dati sono riportati da Barbaro Gualtieri, oppure sono ricavati dai dati sperimentali di Holloway⁽⁸⁾.

3. - CONDIZIONI MIGLIORI PER STUDIARE L'INTERFERENZA ω - ϱ . -

Ottenuta l'espressione della distribuzione di massa effettiva, ci proponiamo di determinare le condizioni che rendono massim'a l'interferen za fra $\omega \in \varrho$, e quindi anche le condizioni in cui è più opportuno studiare il decadimento del ϱ in $\pi^{0}\gamma$. Per quanto riguarda $\Omega = (\vartheta, \varphi)$, è opportuno sce gliere $\varphi = 0$, $\theta = \pi/2$

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}t\,\mathrm{d}W^2\,\mathrm{d}\Omega}\right)_{(0,\frac{\pi}{2})} = \mathrm{cost}\left[A\left|\eta\right|^2 + B\left|\xi\right|^2 + C\,\mathrm{Re}\,\left(\xi\eta^{\mathrm{X}}\right)\mathrm{e}^{\mathrm{i}\varphi_{\mathrm{P}}}\right]$$

dove $\varphi_{\rm P}$ = -41.8° è la differenza di fase tra traiettoria della B e la traiettoria della π

A =
$$|R_{1+-}|^2 + |B_{0++}|^2$$
 B = $|\pi_{0++}|^2$ C = $2|\pi_{0++}||B_{0++}|$

A questo punto ci chiediamo per quali valori i coefficienti della e della sono uguali; in tali condizioni, infatti, l'interferenza fra le due risonanze è massima. Per ottenere le condizioni ottimali, si deve imporre

51	<i>π</i> ₀₊₊	=	B ₀₊₊
	R ₁₊₋	н	0

Sostituendo per π_{0++} , B_{0++} , R_{1+-} le espressioni (6) e i dati numerici (7), si ottiene un sistema di due equazioni avente per incognite s e t. La sua so-

luzione è

$$\begin{cases} s_{o} = 28 (GeV/c)^{2} \\ t_{o} = -0.7 (GeV/c)^{2} \end{cases}$$

In tali condizioni si ha

$$\left(\frac{\mathrm{d}\,\sigma}{\mathrm{dt}\,\mathrm{dW}^2\,\mathrm{d}\Omega}\right)_{(0,\frac{\pi}{2})} = \mathrm{cost} \left|\eta^{\mathrm{X}} + \xi^{\mathrm{X}}\,\mathrm{e}^{\mathrm{i}\,\mathcal{P}_{\mathrm{P}}}\right|^2$$

Indichiamo con x il rapporto f/g; secondo la formula (5) è

x < 0.3

Si ha, per la distribuzione di massa

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}t\,\mathrm{d}W^2\,\mathrm{d}\Omega}\right)_{(0,\frac{\pi}{2})} \simeq \cot\frac{1}{|\mu\omega|} \left[\frac{1}{|\mu\omega|} + \frac{2x}{|\mu\varrho|}\cos\varphi\right]$$
$$\Phi = \alpha + \beta - \varphi_{\mathrm{p}} \qquad \alpha = \operatorname{arctg}\frac{\left[\omega\,\mathrm{m}\omega\right]}{W^2 - \mathrm{m}^2_{\omega}} \qquad \beta = \operatorname{arctg}\frac{\left[\varrho\,\mathrm{m}\varrho\right]}{W^2 - \mathrm{m}^2_{\varrho}}$$

E' interessante studiare la suddetta distribuzione dando a x il massimo valo re che può avere secondo le tavole di Rosenfeld cioè 0,3, e quindi confrontar la con la Breit-Wigner della pura ω . Come si può vedere dal grafico, la pre senza della ϱ distorce di pochissimo la Breit-Wigner della ω , rendendola leggermente asimmetrica rispetto al valore medio della massa dell' ω cioè W = 0.783 GeV.

In conclusione, l'effetto prodotto dalla presenza della sulla distribuzione è di entità inferiore alla risoluzione sperimentale che possiamo raggiungere di fatto, e quindi non possiamo almeno in questo modo, determinare il rate di decadimento del ϱ in $\pi^{0}\gamma$.

RINGRAZIAMENTI. -

Sono grato ai proff. Di Giacomo e Mannelli, della Scuola Normale di Pisa, per i consigli ed i suggerimenti ricevuti.

BIBLIOGRAFIA. -

10.

- R. H. Dalitz and A. Zichichi, Meson resonances and related electromagnetic phenomena, Bologna (1971), Interference - and references quoted therein.
- (2) A. Bramon and Y. Srivastava, Phys. Letters 487, 265 (1973).
- (3) K. Gottfried and J. D. Jackson, Nuovo Cimento 33, 309 (1974).
- (4) S. Chung, CERN. 71-8 (1971) pag. 41 e seguenti.
- (5) H. Pilkhun, The Interactions of Hadrons (North Holland Pub. Co., Amsterdam, 1967).
- (6) G. E. Hite, CERN 68-7, II, (1968) pag. 24.
- (7) Chalouyska et al., P. D. G. CERN (1974).
- (8) Holloway, Phys. Rev. <u>D 8</u>, 2814 (1973).

18