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1. 

1. Introduction. 

Wigner '5 theorem (1,2) on ray transformations in Hilbert 

spaces plays a fundamental role in the foundations of quantum 

mechanics 
(3,4) . 

and l.t has deep connections with the mathematical 

theory of projective spaces 
(5-7 ) 

. In the proof of the theorem 

a crucial role is played by the Hilbert space structure and, in 

particular, by the positivity of the scalar product. On the other 

hand it has become more and more evident that indefinite metric 

spaces may be more useful both for the discussion of physical 

problems as well as for more genuine mathematical questions. As 

far as the physical applications are concerned the growing evidence 

comes mainly from the theory of quantum fields for which the use 

of an indefinite metric has been advocated several times in the 

(8-10) 
past as a solution of the divergence problem in quantum 

(11,12) . 
field theory and as a method to obtal.n better regularity 

(13-16) 
properties for theories previously regarded as untractable . 

For several physically interesting theories the use of an indefini te 

metric is not only a promising suggestion but an unavoidable fea-

ture if one wants to preserve some basic ~ro~erties of the fields 

I 
'" . d I . (17-19) like re atl.Vl.stl.C covarl.ance an ocall.ty . 

From a mathematical point of view the interest of in-
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definite metric spaces has been pioneered by the russian mathe-

" (20-22) h ' f 
mat~c~ans and we r efer to t e~r papers or general 

motivations as well as for an exposition o f the results obtained 

in that field. It may be inte r est ing to stress that indefinite 

metric spaces appear very useful also in solving stability 

problems in the classical theory of damned oscillations and in 

genera l as a powerful too l for solving systems of differential 

t ' (24) It' 1 '1 l' d' ff t' 1 equa ~ons . n par ~cu ar canon~ca ~near ~ e r e n ~a 

equations with a periodic Hamiltoni a n have been studied with 

, ' d f" t ' (25 ) success uSlng In e lnlte me rlC spaces . 

In the foll owing by an indefinite metric srace we mean 

an Hilbe rt space "H equipped with a bounded symmetric sesgui-

linear form <. " > = (. ,T) .) ,where (', .) is the ordinary 

scalar product in Hand T) has a bounded inve rse. In the 

physical as well as in the mathematical applications me ntioned 

above the basic quantity of the theory is the product <' ,' > 

rather than ( . , . ) For examnl e it is in terms of < ','> that 

one computes a ll the physical quantities of the theory or one 

discusses the mathematical properties of a given differential 

operator. 

It is therefore natural to ask t he question analogue to 

3 6 ~ 
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the statement of Wigner'theorem: given a ray transformation 

between rays of the Hilbert space H, 9reserving the modulus 

of the product <. ,. > I is it possible to imnlement such a 

transformation by a linear or antilinear vector transformation. 

The answer to this question is crucial for the foundations of a 

quantum mechanical description of symmetries in indefinite metric 

spaces as well as for the existence of semigroups associated to 

time evolution, space translation etc. 

As it will be clear in the following there are fundamental 

differences with respect to the Wigner'case, mainly because vector 

transformations preserving the indefinite scalar product need 

not to be bounded and therefore non trivial domain questions arise. 

Another delicate point is the linear structure of the domain on 

which the transformation is defined: as it will appear in the 

follmling it plays a crucial role. 

Before stating and proving the theorem it is necessary 

to give some basic defini tions and discuss some crucial features 

of vector transformations preserving the indefinite metric (!l -

unitary operators) (sect.2). The hypotheses of the theorem and 

their relevance will be stated and discussed in sect. 3. The 

proof will be given in sect. 4. 

36~' 



4. 

2 . Un itarv operators in indefinite metric spaces and their basic 

properties 

Def inition 1. By an indef inite metric space we mean a c omplex 

(separable ) Hilbert space H equipped with a bounded , hermitian 

and not degenerate sesquilinear fo rm < ', ' > ~ (', n') ( . , . ) 

being the ordinary scalar product in H , such that n is a 

self- adjoint operator with bounded inverse. 

Proposition 1 . Without loss of generality an indefinite metric 

space can be assumed have a metric operator wit h the property 

n 2 ~ 1 • Unless explicitely stated , we will i n the fol l owing 

assume that an inde fini te me tric snace h as n 2 ~ 1 

Definitio n 2. An operator U with DU ~ H ~ 6u and such that 

<Ux , Uy > <x , y> ( 1 ) 

i s called a unitary operator in · the indefinite metric space o r 

b rief ly a n-unitary operator . 

In the physical applications eq . (1) i s u sually the 

most one i s allowed to require s ince it may be difficult to 

j ustify add itional properties of U like linearity, existence 

of the inverse and/or i ts boundedness on the basis of purely 

physical considerations. For example in quantum field theory 

360 
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the invariance of the Wightman functions under a given maDning 

U , yields the validity of eq. (1) for the dense domain obtained 

by applying local fields to the vacuum. The extension of the 

mapping to every vector of H is often not possible. From a 

technical point of vie\~, since U is usually an unbounded operator, 

the closure properties of U are often useful. For these reasons 

it is of some interest to state the following 

Proposition 2. A n-unitary operator is a linear operator, it 

has an inverse which is an-unitary onerator and it is closable. 

Proof. We start by proving that U has an inverse, i.e. that 

Ux = Uy implies x = y . In fact, for any Z E DU 

o = <Ux-Uy,Uz> = <x,z> - <y,z> = <x-y,z> = (x-y,nz) 

and since nDU = H , one has x = y . Thus U-1 exists and 

D - D.U U -1 

i. e. U·1 is a n-unitary operator. Finally Vx,YED , ZED. 
U . U 

<U( ax+Sy) ,z > = <ax~SY,z' > = a<x,z'>+S<y,z ' > = 

= a<Ux, z> + S<Uy, z> 

369 
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i. e. 

<U(cxx+Sy) cxUx-SUy,z> = 0 

which implies 

U(cxx+Sy) = cxUx+SUy 

To prove that U is closable one first notices 

that VX£D
U 

(Ux,y) = <Ux,z> = <x,U'~> = (x,nU~"y) 

* nU -J ncU 
., 

Thus U exists, and D -IC D * U U 
Hence .. 

** ** D * = H· , U exists and U CU is closable. 
U 

Remark. The occurrence of an indefinite metric operator in 

eq. (1) does not allml to conclude, as in the positive metric 
: ..... . 

case, that U is bounded. This is a fundamental difference 

which makes n-unitary operators much more difficult to treat 

than unitary operators. For these reasons, in the mathematical 

l
' , d f' , , (21-24) 1terature on 1n e 1n1te metr1c spaces , the bounded-

ness property is required in the definition of n-unitary 

operators. However, since this prooerty is in general not 

shared by operator s occurring in the nhysical applications 
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we prefer to omit it in the Def. 2. 

Definition 3. An operator V with and such 

that 

<Vx, Vy> <y,x> (2 ) 

is called a n-antiunitary operator 

Proposition 3. A n-antiunitary operator V can be written 

as a product V ~ KU , where K is the comolex conjugation 

operator (in a suitable basis such that 

and U is a n unitary operator. 

nK ~ Kn ) , K2 ~ 1 , 

A n-antiunitary operator is antilinear, it has an 

inverse which is a n-antiunitary operator and it is closable. 

Proof. To prove the first part of Pro~osition 3 it suffices 

to note that U = KV is a n-unitary operator and therefore 

KU ~ K2V ~ V . The second part of Proposition 3 follows easily 

from Proposition 2 since K is a bounded antilinear operator 

with K-:l~ K . 

Just as antiunitary operators arise when one goes 

from real to complex Hilbert spaces, a new class of operators, 

closely related to unitary operators, naturally occurs when 

the "scalar" product is allowed to be indefinite 
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Definition 4 . An operator U with DU = H = 6u 

<U , U > 
x y 

= -<x,y> , 

8. 

and such that 

(3 ) 

is called a ~-pseudounitary operator. In a similar way one define~ 

~-pseudo antiunitary operators . 

The occurrence of ~-pseudounitary operators i s tightly 

bound to the indefinite metrice, since <Ux,Ux> = -<x,x> would 

otherwise be untenable. It is important to stress that ~-pseudo -

unitary or ~-pseudoantiunitary operators may exist only in inde -

finite metric spaces in which the eigenvalues +1 and -1 of the 

metric ope rator n have the same multi~licity. They cannot exist 

if one multiplicity is finite and the other infinite or if they 

are both finite but unequal. 

A special subclass of n-ps eudounitary operators are 

those operators C which are bounded , self adjoint and satisfy 

C2 = 1 . They satisfy 

C T) C = -n (4 ) 

and they will be called n-reflecting operators. It is not difficul 

to see that a n-pseudounitary operator U can be written as a 

product U = CU where C i s a n- ref l ec ting operator and U is 

a n-unitary operator . Similar statements hold for n-pseudoanti-
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unitary operators. 

Proposition 4. A n-pseudounitary (n-pseudoantiunitary) operator 

is a linear (antilinear) operator, it has an inverse which a n-

pseudounitary (n-pseudoantiunitary) operator and it is closable. 

3. Ray transformations in indefinite metric snaces . 

Definition 5. Given a vector x £ H , the set of vectors of the 

form Ax, with I A I = 1, A £ C is called the ray associated 

to x and it will be denoted by x. The vector x is said to 

belong to x : x £ x 

Clearly if Y = ~x , I~I = 1 , one has y = ~ . 

For the rays of an indefinite metric space , one defines an ordinary 

scalar product 

~.y - I (x,y) I x £~, Y £ Y 

also denoted by I (~,y) I , and a semidefinite product 

x y = ~.~ = l <x,y> 1 
n 

also denoted by 

(5) 

(6) 
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In contrast with the Wigner case, some technical difficul-

ty arises because one cannot normalize the rays with resnect to 

the indefinite scalar product. It may be relevant to note that 

by the non degeneracy of the metric operator if a ray x satisfies 

x • y = 0 , V Y , then x is the ray 0 associated to the zero 
- T] 

vector. 

Definition 6. A ray transformation T is a mapping T 

of rays into rays. 

A ray transformation T is induced by a linear operator 

G in H if 
,... 

T : x .,. Tx = Gx In this case we will denote 

the ray transformation and the linear operator by the same letter , 

for simplicity. 

A special kind of ray transformations are those which 

preserve the semide finite scalar product between rays 

(7) 

and they are candidates to describe symmetry operations in indefi-

nite metric spaces. 

In gen e ral a symmetry operation is not defined for all 

the rays of H. It is reasonable howeve r to require that a 

3 7 ~ 
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symmetry operation T is invertible, defined on a set of rays 

associated to a dense linear manifold D of H ,and that 

it maps the rays associated to D onto a set of rays associat

ed to a dense linear manifold D' of H . The necessity of 

working with dense manifold is forced by physical interesting 

examples in which symmetry operators in indefinite metric spaces 

are described by unbounded operators. A very important example 

is provided by Gupta formulation of quantum electrodynamics in 

which Lorentz transformations are described by unbounded opera

tors. The operators described in the nrevious sections clearly 

induce symmetry operators. That any symmetry can be regarded as 

induced by an operator' of that kind is the result of the follow

ing theorem, ~lhich is the analogue of Wigner' s theorem, in inde

finite metric spaces. 

THEOREM. Let T be a symmetry operation, i.e. an application 

defined on a set D of rays aI an indefinite metric snace B 

onto a set D' of rays of H such that 

i) the set of vectors belonging to the rays of D is a linear 

manifold D, which is dense in H 

ii) the set of vectors belonging to the rays of D' is a linear 

manifold D' , which is dense in H 

37. 



12. 

iii) T is one to one from D to D' 

iv) 'I ~i Y £ .!2. 

then 

(8) 

a) there exists an operator U, such that 'Ix £ b, the 

vector Ux belongs to Tx 

b) U is either n-unitary or n-antiunitary or n-ps e udo

unitary or n-pseudoantiunitary. Clearly the last two 

possibilities can occur only if the eigenvalues +1 and 

-1 of the metric operator n have t he same multiplicity. 

Remarks 1. The assumption . that D is linear and dense may be 

justified by physical consid~rations on symme try operations. 

The condition that D' is a dense linear manifold requires 

some comment since one might hope to prove the linearity of 

D' as a consequence of the linearity of D and as a by

product of the existence of U. This is however not possible: 

see at the end of the sketch of the proof and ref. 26. 

2. It has already been mentioned that an indefinite metric space 

(according to Def. 1), can be reduced to a space with a metric 

n satisfying n 2 = 1, by a suitable transformation. It is 

37~ 
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important to note that this can be done without spoiling the 

assumptions of the theorem. Namely, if T is a symmetry 

operation in an indefinite metric space H with ~ bounded 

hermitian and n~l bounded , it is possible to introduce a 

new Hilbert scalar product [. , .J and a new metric operator 

such that 
~2 ~ 
~ = 1 , <','> = [" ~ • J and all the assuJ!lptions of 

the theorem still hold. 

Before closing this section we will sketch the main 

lines of the proof of the theorem. A complete proof will be given 

in the folloWing s ec tion. An exposition with all the technical 

details can be found in ref. 26. 

One of the basic tools we will us e is a set of vectors 

{e.} , e. E D 
l. l. 

properties 

A) 

B) 

i = 1, -1, 2, -2, •.. , which have the following 

(e.,ne.) = 
l. ) 

<z,e.> = 0 
l. 

<e. ,e.> = sign (i) 0 .. 
l. ) l.) 

Ve. 
l. 

=> z = 0 . 

(9) 

(1 0) 

They are the analogue in D of the ortonormal complete set which 

plays a fundamental role in the usual version of Wigner's 

theorem (~= 1 D = H). The existence of the vectors {e . } is 
l. 

far from obvious in the present case since in general the vectors 

37~ 
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+ 1 
of the subspaces H- = ~(1±nJH do not belong to O. 

Moreover the vectors e
i 

will be found in such a way 

that also the se t {e ~ , e~ E Te,} is a " complete orthornormal set 
J. J. -J. 

with respect to n" , i.e. they satisfy 

A) <e ' 
n 

e ' > = A <I (1 1 ) 
m nm 

B) <z , e ' > :;: 0, 
n 

Ve ' 
n 

=> z = 0 • ( 12 ) 

Another basic step of the proof is that every ray 

associated to a finite linear combination of t he e~s is transform-
J. ' 

ed into a ray associated to a finite linear combination of the 

corresponding vectors e ' 
i 

Th e construction of the operator U 

is first given for special finit e linear combinations of the e 's 
i 

and then extended to the generic vector of 0, as in the proof 

of Wigner's theorem , in ~ef. 3. Finally U is shown to be either 

n -unitary or n-antiunitary or n-pseudounitary or n-pseudo -

antiunitary. A crucial and difficult point in the proof of the 

theorem is the extension of U from , 0 - {gene rated by fini te 
o 

linear combinations of the e, 's} to 0 since U is unbounded. 
J. 

In general if o ) x .... X EO, as 
o n 

n-+ co , Ux will not converge 
n 

to a limit in H. To define U on any vector of 0 we shall 

first define U on a s uitable sequence X E 0 
n 0 

n = 1, -2, 2, -2 

and show that at each step the d e finition of U on x is con
m 

37" 
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sistent with the definition of U on I R, I < I m I 

One might think that the linearity of D' is an un-

necessary assumption if one restricts the theorem to the proof 

of the existence of U on D 
o 

A counterexamnle shows that 

this is 
(26) 

not possible 

4. Proof of the theorem. 

In the proof we will assume that both + Hand H 

have infinite dimen s ions. If this is not the case the required 

modifications are straightforward. 

Lemma 1 OED and T 0 = 0 . 

Proof. OED since D is a linear manifold. Furthermore since 

T-1 is assumed to exist, V xED' one has 

Since D' is dense in H, I<TQ, ~>I = 0, V X E H, and 

TO = 0 

Lemma 2. There exist a set of vectors i = 1- {O} , 

such that 

37P 
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A) <e. , e, > = sign (i) 0, 
~ J ~j 

B) <z, e, 
~ 

> = 0 , Vi => z = 0 

C) e, E D , Vi 
~ 

Proof. The vectors e , are found by induction starting from an 
~ 

orthonormal basis of eigenvectors of n : {x" nx, = sign (i)x. 
~ ~ ~ 

i = 1 , -1 , 2, -2 . . . } Let {E,} be a sequence of positive 
~ 

00 

numbers such L E~ 
1 

and let { f , } be of that < - a set 
~ 1 6 1 

-00 

vectors of D such that II x, -f , II < ". , then one defines 
1 1 1 

where (f" nf,) 

e, - ( f , , n f,r 1/2 f I 

is positive since 1 
E, < 4 

(13 ) 

. The induction 

is performed by ordering I - {a} in the following way 

1, -1, 2, -2 ... 

- C( (f - L e 
n n n 

1<i <h-1 

- C( 'f 
n n 

e _ C( (f 

and by putting 

(e"nf )e , + 
~ n ~ 

C( 
n 

(e"nf) e .+ 

I 
-n+1 <i<-1 

n n n ~ n 1 
1 <i< -n n+1 <i< -1 

(e., nf )e, ) 
1 n 1 

n > 0 

(e"nf)e,) 
1 n 1 

(14 ) 



_ C( 

n 

-
C 
.L 

n 

17. 

C( _ (-f , nf r l/ 2 

n n n 
n < a (1 5 ) 

The coefficients C( are well defined since the scalar products 
n 

in eq. (14) and (15) can be shown to be strictly positive. The 

e so 
n 

defined clearly satisfy C) . Pronerty A) and B) can 

be proved by induction on e
k 

, k less than n in the sense 

of the above ordering. 
(26) 

Lemma 3 Z £ D' , I <~I Te >1 = a -n 
, Vn, => Z = a 

Proof. a = 1 < z, Te > 1 - -n = 1 <T-l_z, e > 1 
-n 

Vn => T·l z = a => z = a 

Lemma 4 . Let {e' } 
n 

be a chosen sequence of vectors e' £ T e 
n -n 

then for any z = I a e with K a finite set, there exists 
n£I< 

n n 

a finite sequence a' 1 a' 1 = 1 a 1 such that z' = I a' e' 
n n n n n 

n 
belongs to T z 

Proof. Let z' be a vector belonging to T z and a' -n 

<e' , z'>/<e', e'> . Because of eq. ( 8) , a' -I a only if 
n n n n 

n £ K Since D' is a linear manifold I a' e' and z'-I a' e' 
n n n n 

n n 
belong to D' and <z' - I a' e' e'> = a , Vk 1. e. 

n n k 
n 

z' = I a' e' and 1 a' 1 = 1 a 1 by eq. (8) 
n£K 

n n n n 

Lemma 5 . For any set of vectors e' £ T e , one has n -n 

J81 



<e'f e'> = a<e ,e > , 
n m n m 

vlith (X2 = 1 (X indepe ndent of nand m . 

Proof. For a generic vector x = 

X' E T~, one has by Lemma 4 

a, e, 
l l 

K 

= J<x ,x>J = J<x ',x' >J 

Since this equation must hold for a ny choice of 

follow s <e ~, e ~ > = a.<e " e , > with (X2 = 1 
l l l l 

city of 11 For n f' m eg. (1 6) is trivially 

both sides vanish. 

18. 

(1 6 ) 

a finite set , 

the a. 's 
l 

, it 

bv -, the hermiti-

satisfied since 

After these pre.J.iminary Lemmas we may now pass to the 

construction of the operator U. As a first step we have to fix 

the sequence of vectors e I £ T e . 
n -n The prescri9tion is give n in 

the following Lemma , in terms of a suitable s equence of vectors. 

Lemma 6 . Let {z} be a chosen s equence of vectors such that 
n 

z = 
n 

n < 0 (17 ) 
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Z = n L n-1 
b

k 
e

k 
, n < 0 

n 
-2 <k<-2 

(18) 

Z = b l e l +b. l e. l , n = 0 
0 

(19) 

with b
k 

sign k > 0 . Then one may choose e' £ Te 
n -n 

such 

that 

V 
n 

(20) 

Such a choice of the e' will be denoted by Ue 
n n 

and z' 
n 

by Uz 
n 

Proof. el E: T~l 

and e I E: 'I'e -1 _-1 

is chosen arbitrarilY and the ~hase of z ' 
o 

are chosen in such a way that Z I = b 1 e i + b_l e-i 
o 

By induction, whe n passing from zN to ZN+1 ' the nhase of 

z' 
N+1 

is chosen so that b~N = b 2N ' the Dhase of e' being 
2N 

already fixed, and ek , k > 2
N

, is chosen in such a way that 

b' = b k k 

The next step in the construction of U is the extension 

of the vector mapping from the z 's to arbitrary vectors. 
n 

is done through the following Lewroas. 

Lemma 7 . Let 

z 
n 

{z} be a sequence of vectors defined by 
n 

b, sign (i) e, 
1 , 1 

This 

(21) 

where b, are the coefficients entering in the definition of the 
1 

:3 8 < 
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-
Z 's. 

n 
Then Zl = 2 n 

lil <2 
b, sign(i) e! = Uz E Tz and for 

· n L L n n 

any two vectors x, y of the set {e,} U {z } U {~ } 
L n n 

<x,y> = a<x',y'> _ a<Ux,Uy> 

Proof. B:( Lemma 4 , Ic,l 
L 

= I b , I . 
L 

By choosing the phase of z' 
n 

such that c I = b l 

by using eq. (8) one gets = b, sign(i) 
L 

(22) 

and 

Lemma 8 . Let XED, with <e, 'x> > 0 , Vi , and let x' ;;Uxbe cho· 
L -

s.!'!n in the ray ~in such a way that 

.'--

a<e~ , x'> >0 , where 
J 

j is 

the index nearest to 1 , (in the ordering of Lemma 2), for which 

<e.,x> ~ O. Then, one has 
J 

<e'"x'> - a<e x> 
l. - i' Vi 

Proof. It suffices to exploit eq. (8) for the vecto rs x and 

(23) 

z 
n 

Lemma 9 • Let y E D such that <e ,y> >0 
k ' 

fo r at l e ast o n e 

k • Then 3 y' = Uy E T Y , such tha t ei the r 

Vi (24) 

or 
<Ue ,Uy> = a <e , y> 

i i 
, Vi ( 25 ) 



Proof. putting 

and denoting by 

·k = 0 , one 
0 

<e' 
k 

,y'> = a c
k 

0 

<e.,y> ~ c . exe (i •. ), 
1 ' l ' 1 

k 
o 

the i ndex nearest to 

chooses y' - Uy E Ty in 

c. > 0 , -11 < • 
1- -

< 11 

1 such that 

such a .,ay that 

and defines . ~ so that 
0 

<e' y'> 
i' 

1 

= a c, exu ( i $ ': ) 
~ - 1 

21 • 

Then, for any vector x = I 
iEK 

d . e. , 
1 1 

K a finite set, d.sign(i»O, 
1 

(x' ~ Ux being already defined in Lemma 8), eq.(8) for x and 

y gives 

I d,dJ.[exp i( •. - •. )]c.c. = I d.d. c.c. exp[i(.~-.~)] 
~ 1 J 1 J 1 J 1 J 1 J 

i. e. either • ~ = .. , Vi, or • ~ = - •. , V. 
1 1 111 

Lemma 10. Vz ED, 3 z' _ Uz E Tz such that either 

I) <e' z'> = a<e z> 
i' i' 

, Vi (26) 

or 

II) <e' 2'> = a<z,e,> 
i' ). 

, Vi (27) 

Furthermore the same equation holds for all the vectors of D. 

Proof. Given z, one considers the vector '" z = exe(-i.
k 

)z 

where k is the index nearest to one such that 
o 

'" > 0 . 2' = 

,3 8 

'" U z is then 

o 
<e

k 
,z> = 

o 
defined as in 
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Lemma 9 and one chooses 

'" '" '" z ' - Uz = exp(i<P
k 

) z' if <e' z I > = a<e , ,z> i' ~ 
0 

'" '" '" z' - Uz = exp (-1<P
k 

) z ' , if <e~,zt> = a <z ,e. > 
~ . ~ 

0 

The proof that in the first case eq. (26) holds for all the vectors 

of 0 and in the second case eq. (27) is valid for all the vectors 

of 0 essentially follows the argument given in ref. (3) for the 

standard Wigner's theorem (see Appendix). 

Lemma 11 . The mapping z + Uz, Vz EO, defined in Lemma 10 is 

linear in the case I and anti linear in the case II. Moreover, 

in case I, for any two vectors x, YEO , one has 

<x,y> = a<Ux,Uy> 

and in case II 

<x,y> = a<Uy,Ux> 

Proof . Case I. Vx, YEO one has, Vi 

<ei,U(ax+by» = a<e, ,ax+by> 
~ 

= a<e~,Ux> + b<e ~,Uv> 
~ ~ .. 

(28) 

(29) 

and linearity follows from Lemma 3. To prove eq. (28), Vx, YEO 

<x,y> to, one puts <Ux,Uy > = exp[if(x,y))<x,y>. Then for 

"' 8 " J v 
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every vector ZED such that 

<x,y+bz> exp[if(x , y+bz)] = exp[if(x , y)]<x , y> 

+ b exp[if(x , z)]<x , z> 

For b = <x,y>/<x , z>, the above equation i mplies f(x , y ) = f(x,z). 

Putting z = e, , one obtains 
1 

exp[if(x,y ) ] = a 

This concludes the proof of the theorem . 

• 

J 8" 
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A P PEN D I X 

Comoletion of the proof of Lemma 10. SUDoose that 

x,YED suc h that 
i ljJ . 

<e ~ , x' > 
1. 

H i 
= o:<e"x>:: aC,e , <e ~/y'> = 

1. 1 1 

1. 
== a<y , e,> :: a.d,e 

1. 1. 
and that not all the phases (and 

1jJ.) diffe rs by multiples of TI 
1 

(otherwise eq. (26) and (27) 

may be reduced one to the other by an overall change of Dhase 

in the definition of x ' or y') 

The n one can find a continuo us curve x(t), tE[ O, 1] 

x(t) ED, with x(O) = x x (1) = y , such that Vt E [0,1 ] 

the phases of x(t) are not all differing by multiples of TI 

e.g. 

x (t) = ty - (1-t) x + l: 
i EK 

a.(t)e. 
1 1 

K a finite set , a. (t) 
1 

continuous functions on [0,1] 

a. (0) = a. (1) = 0 • By the properties of the extremes of the 
1 1. 

curve, the re must exist atE [0,1] such that there is a 

sequence 
-

xtt ) -+ x(t) 
n 

with the prooe rty t hat either 

<e' x ' (t ) > = a<e, ,x(t ) > , <e' x ' (t) > = a<e , , x(t) > 
i' n 1 n i' ]. 

or 

<e ~ ,x' (t ) > = a <x (t ), e , > 
1 n 11 1. 

-
<e' x' (t) > = 

i' a <x(t),e,> 
1. 

(A 1 ) 

(A2 ) 
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Suupose that case (A1) occurs. Then one shows that this leads 

to a contradiction. (The proof for the case (A2) is analogous) . 

To this ~urpose, let i, j be two indices such that the phases 

- -
of <e.,x{t» and <e. , x (t) > do not differ by multioles of 

~ J 

11 . Putting z .. (s) - e
i + se. one obtains z .. (s)' = e' 

i 
+ ste~ 

~J 

with s' = s V S £ C {s' = 

In fact, Vs £ C , using (A1) 

J 

s , Vs if case 

I<z .. {s), x{t»1 = 
~J 

This is possible only if s' = s , Vs E C . 

To find the contradiction one computes 

~J 

(A2 ) 

lim I < z. . (s), x ( t ) > I 
~J n 

in two . different ways. First 
n-+oo 

lim I < z. . (s) , x (t ) > I 
~J n 

secondly 

= l <z .. {s),x{t»1 = 
~J 

J 

occurs) 
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n-+oo 

lim 1 < z . (s) , x (t ) > 1 = 
i) n 

n-+oo 

lim 1 < z .. (s) , , x' (t ) > 1 
1.) n 

= lim I<e .,x(t » + s<e.,x(t »1 
1. n ) n n-+oo 

= I <e. ,x(~» + s<e.,x(~»1 
1. ) 
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