Istituto Nazionale di Fisica Nucleare Sezione di Milano

> INFN/AE-73/10 18 Dicembre 1973

M. Brini-Penzo and A. Pullia: FOCUSING DEVICES FOR A NAR-ROW-BAND NEUTRINO BEAM AT HIGH ENERGY. -

INTRODUCTION -

In the new range of high energies now becoming available at the large accelerators (NAL and future SPS), a narrow-band neutrino beam can be conceived as a facility exploiting the forward peaked particle production and involving important advantages from the experimental point of view. There would be substantial simplifications in the evaluation of the ν -spectrum; furthermore the knowled ge of the incoming neutrino energy (within errors of the order of \pm 10%) would be a valuable information to complement the measurement of the "visible" energy of the event.

A narrow-band neutrino beam can be in principle obtained by the decay of a monochromatic beam of neutrino parents. Several designs based on quadrupole systems have been $proposed(1 \div 4)$ and realized⁽⁵⁾. We studied a different system^(6,7,8), based on focusing elements similar to the horns⁽⁹⁾ used up to now in the neutrino experiments at CERN.

1. - DESCRIPTION OF THE SYSTEM -

A system realized with one horn only was the object of a first study(7, 8) on a device for focusing parallel to the beam axis only the parents with the right momentum: the others, coming out of the horn not parallel to the axis, were eliminated by means of a tunnel with a small radius or, realistically, by a system of slits. In an optical comparison the focusing system is represented by a point sour ce (target) of π and K placed in the focus of a lens and by a collimator (tunnel), (see fig. 1 a)).

(b)

FIG. 1 - a) Optical representation of the focusing system with one horn; b) Optical representation of the focusing system with two horns.

The results were encouraging, because the resulting spec trum has a characteristic dichromatic shape, with two separated peaks corresponding to neutrinos ν_{π} (from $\pi \rightarrow \mu_{\nu}$) and $\nu_{\rm K}$ (from ${\rm K} \longrightarrow \mu_{\nu}$) with the maximum momentum allowed by the kinematics (0.43 p_{π} and 0.95 p_K respectively).

The $\nu_{\rm K}$ peak, which is the most interesting one, is howe ver, only a factor 6 above the background. Therefore, as it is unlike ly to obtain substantial improvements with one horn only, we use in the system studie now⁽⁶⁾ two horns, designed in the following way: the first one focuses into a slit only the parents of a given momentum, which are then aligned in a beam parallel to the axis by a second horn. All the other parents, of a different momentum, do not cross the slit. In the optical comparison the focusing system is represented by a first lens (first horn) giving the image of the source of π and K (target) in a definite point (slit) which constituted the focus of a second

lens (second horn) (see fig. 1 b)).

2. - DESCRIPTION OF THE LAYOUT.

As an example of the proposed method,⁶ we describe in detail the neutrino narrow-band beam which can be set up at CERN SPS with a primary beam momentum of 200 GeV/c, selecting π 's and K's of 100 GeV/c momentum. A schematic layout of the beam is shown in fig. 2 a); the longitudinal sections of the two horns, indicated as R₁ and R₂, and the slit are shown in detail in figgs. 2 b) to d).

 $\frac{\text{FIG. 2}}{\text{beam; b)}} = \text{ a) Schematic layout of the focusing section of the neutrino beam; b) Longitudinal section of R₁; c) Longitudinal section of R₂; d) Longitudinal section of the slit.$

The procedure used to design R_1 was the following: the vertex A_1 was fixed at 5 m from the origin 0 (assumed point-like) of the parents trajectories of 100 GeV/c momentum, the neck had a diameter of 16 mm, the entry surface was chosen conical with a half aperture of 2.5°; then the exit surface was defined by the points obtained interrupting every trajectory when its direction pointed to a focus at 20 m from the origin 0; the current of the horn was assumed to be 300 kA. The resulting exit surface is parabolic-like. In the figure the

3.

exit points corresponding to the trajectories leaving from the origin at different angles starting from 2 mrad (the minimum angle focused) are shown. This value of the minimum angle is due to the necessity of keeping the neck of the horn wide enough in diameter (\geq 16 mm) to stand the mechanical and thermic stress⁽¹⁰⁾ and the requirement of limiting this focusing section of the beam to a reasonable length. Con sidering the K production spectra⁽¹¹⁾ at 100 GeV/c for a primary momentum of 200 GeV/c, one can see that the fraction of K flux corresponding to the angles less than 2 mrad, which is lost, is less than 10% of the total.

Then R_2 was designed assuming again a conical entry sur face but with a half aperture of 10°, the neck again with a diameter of 16 mm, the vertex A_2 at 13 m after the slit; the exit surface was obtained by interrupting every trajectory when it was parallel to the axis; again the current was assumed to be 300 kA and we get a parabolic-like exit surface. The crossing angles of the trajectories at the slit are indicated in the figure on the corresponding exit points.

The two horns have a small diameter, 12 cm for R_1 and 16 cm for $\mathrm{R}_2.$

We have assumed a tunnel with a diameter of 2 m except in the region of R_1 where its diameter is only 6.5 cm to eliminate immediately the unfocused particles. At 20 m from the origin 0 the slit can be obtained by a block of some thick material (Fe or Pb) shaped as shown in fig. 2d). The angle between the surface S and the axis is 6 mrad, taking into account the maximum exit angle of parents from R_1 (5.6 mrad). The distances a and d were optimized (as described in the next section) taking into account the finite dimension of the tar get to obtain minimum spread and maximum intensity of ν_K peak.

3. - NEUTRINO FLUXES -

In fig. 3 the general layout of the neutrino beam is shown. We have calculated the ν -fluxes for this layout by a Monte-Carlo method, with the following data:

- the π^+ and K⁺ production spectra have been calculated by the Hagerdon thermo-dynamical model⁽¹¹⁾
- the decay tunnel is 510 m long
- the distance target-detector T-D is 830 m (corresponding about to the position of BEBC as detector) or 920 m (corresponding to Gar gamelle)
- the fluxes are averaged over a circular surface of 0.6 m radius
- the π and K absorptions in the walls of the horns are taken into ac count assuming a thickness of 3 mm

- the target is made of a thick material (W) and short (one interaction length) to approximate the ideal conditions of a point-source; the interaction length in W has been assumed $\lambda_p = 13$ cm for protons and $\lambda_{\pi, K} = 17$ cm for pions and kaons; the target is in such a position that the origin 0 of the beam axis coincides with the average interaction point; a beam stopper three interaction lengths long, just before R₁, with a radius r = 8.5 mm, absorbs the protons which have not interacted and the parents emitted at angles less than 2 mrad.

In fig. 4 we show the ν -spectra in Gargamelle calcula ted with the above data and for different dimensions of the slit, that is for different values of the parameters a and d (see Fig. 2 d).

FIG. 3 - General layout of the neutrino beam.

It can be seen that the best dimensions for the slit are a = 1 cm and d = 4 mm (with larger dimensions the peak becomes too large).

In fig. 4 also the contribution of the beam stopper as a me son source (hence a neutrino one), is shown for the configuration with d = 4 mm: it is negligible, mainly in the ν_{K} energy region.

Fig. 5 shows the energy distributions of parents π and K after the slit with d = 4 mm: the momentum spread of the parents (F. W.H.H.) is ~ 10 GeV/c.

In fig. 6 the ν -spectra in Gargamelle and in BEBC are shown together and compared with the ideal spectra: it can be seen that the $\nu_{\rm K}$ peaks are about a factor 3.5 under the ideal fluxes.

In table I the principal parameters of these spectra are reported.

We have also evaluated the expected events rates at 300 and 400 GeV/c primary momentum by multiplying the calculated ra-

T	Λ	D	r i		т
1.	А	D.	L.	Ľ	1

		v_{π} peak (43 GeV/c)		$v_{\rm K}$ peak (95 GeV/c)	
		BEBC	GARGAMELLE	BEBC	GARGAMELLE
Ratio I _{peak} /I _{background} :	200 GeV/c primary momentum	~250 high energy ~7 low energy	~250 high energy ~7 low energy	~100 high energy 25 low energy	~100 high energy 22 low energy
F.W.H.H. : $200 \text{ GeV/c primary momentum}$		~15 GeV	~15 GeV	~ 12 GeV	$\sim 12~{ m GeV}$
Neutrinos in the detector/ 10^{13} protons/m ² :	200 GeV/c primary momentum	2.8x10 ⁸	2.3x10 ⁸	$2.4 x 10^{7}$	1.5x10 ⁷
Event/rate/ton. 10 ¹³ protons ⁽¹⁾ :	200 GeV/c primary momentum	3.8x10 ⁻³	3.3x10-3	8.5x10-4	5.3x10 ⁻⁴
Extrapolated event rate for 300 GeV/c primary momentum		1.1x10 ⁻²	1 x 10 ⁻²	5 x 10 ⁻³	3.1x10 ⁻³
Extrapolated event rate for 400 GeV/c primary momentum		2.5x10 ⁻²	2.1x10 ⁻²	7 x 10 ⁻³	4.4×10^{-3}

(1) - The event rates are calculated assuming $\sigma_{\gamma} = 0.74 E_{\gamma} \times 10^{-38} \text{ cm}^2/\text{nucleon}$.

248

б.

FIG. 5 - Energy distribution of the neutrino parents after the slit.

FIG. 6 - Neutrino narrow-band and ideal spectra in Gargamelle and in BEBC for the best slit size.

7.

te at 200 GeV/c by the ratios of the corresponding π , K production spectra to the ones at 200 GeV/c (see table I).

REFERENCES -

- D.C. Cundy and M. Rollier, Narrow-band neutrino beams at high energy, TCL/Int. 72-3 (1972).
- (2) D. Keefe, Neutrino beams at high energies, UCID 10131 (1964).
- (3) V.Z. Peterson and D. Keefe, Neutrino beams from a high inten sity 200 GeV proton synchrotron, Informal Conference on experimental neutrino physics, CERN 65-32 (1965).
- (4) G. Petrucci, CERN/EA/Note 73-5 (1973); CERN/SPSC/T 73-9 (1973).
- (5) B.C. Barish, J.F. Bartlett, D. Bucholz, T. Humphrey, F.S. Merritt, Y. Nagashima, F.J. Sciulli, D. Schields and H. Suter, An exploratory study of high energy neutrino interactions, CALT 68-396 (1973).
- (6) F.A. Nezrick, A monoenergetic neutrino beam using current--sheets focusing elements, Proc. 1971 Particle Accelerator Conf., IEEE Trans. on Nuclear Science NS. - 18, 759 (1971).
- (7) M. Brini, C. Conta, E. Fiorini and A. Pullia, Preliminary cal culations on neutrino fluxes and focusing devices for the 300 GeV accelerator, ECFA report 72-116 (1972).
- (8) M. Brini, C. Conta, E. Fiorini and A. Pullia, Ideal fluxes and the use of conventional and non-conventional horns at the 300 GeV accelerator, ECFA report 72-152 (1972).
- (9) S. Van der Meer, A directive device for charged particles and its use in an enhanced neutrino beam, CERN 61-7 (1961).
- (10) J.M. Maugain, Private communication.
- (11) J. Ranft, Program SPUKJ CERN Computer Program Library . W 129 (1970).

8.