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ABSTRACT 

In this second report we consider the internal motion of 

nucleons in the deuteron and its effect on the single scattering 

expression of the break-up cross section. In the outset we show 

that there is effect of the Lorentz transformation only on the 

interference terms of the cross-section. Then we point out 

the difficulties of the on shell extrapolation of the deuteriwn 

data and we propone, a practical, albeit approximate method 

of performing an "unfolded" phase shift analysis, that is taking 

in account the Fermi motion . 

• 
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1. Introduction. 

In liquid or gaseous deuterium experiment the neutron 

target is not only moving together with the deuteron, but it 1S 

moving in the deuteron C.M. and this movement is extremely faster 

than the first one. This movement is called in the literature 

as "Fermi motion". This effect was first considered by Ericson 

e Ericson (ER 66) for incident pions as a contribution to the 

veloci ty dependent part of It' -nuclei effective 'interaction: t h e 

effect, on the optical potential is the adding of one term of the 
'2. ' 

order, of (.\.\L.It/w.J. Successively Fllldt and Ericson (FAE 68) 

described with success 1t- deuteron total cross-section data 

using a multiple scattering expansion truncated to the double 

scattering term. Their theoretical assumption consists in neglecting 

the binding effect of the nucleus but to take in account their 

kinetic ebergy. While in the single scattering term the full 

effect of this hypothesis is calculated, the double scattering 

term is approximated" a la Glauber". This simplification is 
(WA) , 

abandoned by J. Wallace ' who cons1dered the effect of the 

Fermi motion on the whole angular distribution of nD elastic 

scattering at 766 MeV (BRA 68), 

even on the shoulder for I t I ~ 
scattering is known to dominate 

studying therefore the effect 
'2. 

.4 <..c.... .. 'Yc.) ,;here the double 

(ALB 69); the effect is ' rather 

small. He is taking all the TtN amplitudes on the mass shell, 

trusting in a slow dependence of such amplitudes on the off 

shell parameter. This assumption is very appealing, but it was 
+ not possible till now to test it in a clear cut case • 

The so called "off-mass shell dependence", was evaluated numerically 

by Landau (LAN 71) again for the case of ~ D elastic 

+ The best kinematical region to test the off-mass shell d ependence 
is the backward region of "It D scttering for energies around the 
33 resonance (WIL 72), where the single scattering is known to 
dominate. 
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scattering at 766 MeV for high momentum transfer. His ansatz 

is to assume that the amplitudes depends only on the energy 

squared s; the off~shell effect is calculated simply by taking 

for s, its off shell value. 

The elastic scattering is a very complicated case because 

even if you stick to the on shell prescription, there are two 

possibilities fro the definition of s, the initial and the final 

s for the scattering which are different, because the energy is 

not conserved in the vertex,whereas for the quasi elastic case, 

the final energy for the scattering corresponds to the off shell 

energy, while the on shell energy is given by the initial energy 

of the internal nucleon on the mass-shell. It is important to notice 

that Landau is choosing a parametrization for the nN amplitude, 

which consists of the sum of a resonant and' of diffractive part, 

which could influence considerably the importance of the effect. 

With the same model for the ~rl amplitude he calculated the Fermi 

motion effect on the defect of the total ~D cross section finding 

a very cimall defference with Glauber theory result. 

The above type of work is concerned with the calculation 

of the particle deuteron total or elastic differential cross 

section, once the elementary particle neutron and particle-

proton amplitude are known. The practical situation is usually 

just the reverse: knowing experimentally the particle deuteron 

total or differential ,elastic, differential anelastic cross section, 

we want to determine the particle neutron amplitude. This problem 

was solved already by 
, ~ 

of the K N total cross 

Wilkin et al. (CO 70) for 
T 

section from the K. D total 

the extraction 

cross section data. 

The procedure is to solve by iterative method the following integral 

equation 

(1. 1) 

where 
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That is at the beginning, they insert in the right hand side of 

the equation the folded total cross section and determine the 

first approximation for the unfolded one. Then this result of 

the first interation is inserted in the right hand side and so 

on. The method breaks down after the third interation, because 

of the appearance of unexpected oscillations. The same meth od 

was used by G. Lynch (LYN 70) with the modification of fitting 

the result of any interaction, with a smooth curve. The mathematical 

problem of the unfolding is studied in detail by Bundaru and 

Stamatescu (BUN 72). 

We will propose here a method for unfolding the phase 

shifts and elasticities for a separate channel. The procedure 

makes use of the , derivative f 'ormula for the folded cross section. 

In section 2 we show that only on the interference term 

, there is record left of the Lorentz transformation from the 

deuteron Lab. system, to the particle nucleon C.M. system (even 

if we take in account the internal motion of the nucleons). 

In section 3 we define the off-mass shell dependence and 

we clarify the meaning of the hypothesis which is done in the 

literature. 

In section 4 the derivative formula is expressed through 

characteristic deuteron quanti ties ( « p.~ , <t6"» and the 

unfolding procedure is outlined. 

In Appendix C we review some of the deuteron wave functions, 

used in the literature, giving some new parametrizations. 

In Appendix D the expression of the CEX and CP scattering 

with the inclusion of the D wave. 

In Appendix C the case of half phase space is considered 

in the charge preserving process. 

G 
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2. Relativistic invariant treatment. 

In the previous paper w have assumed in the calculation 

of the single scattering amplitude, represented by the diagrams 

of Fig. I 2, that the incident particle is so fast that .we can 

·consider the bound nucleons as fixed in the laboratory system. 

If the same notation of I is mantained we have for the single 

scattering operator 

-

-

1. 
[ (A- S/2. (ti.e.+ s~") (pl~- i>/L-t) 

'''''* ~u.t~ - e.. ~ lUc.~E.S)o/L 
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where --9 -t>'" . -l> I 
? ~ (r-4 - 1'"» ~ _ 1> 

"2-
..... 'l. '1. 

w..>t '2. (~- E 5'") - \,-S 
C" 'l. 'l. 

I.J.i} == l w....- £",) - tz-~ 
In a more compact notation 

" T "" (lbt?~)o/'l. [ ( C~-\- "D~o:,:t. -t- ~f'1 ~".J + .~ G", ~'f.t) 'l'l-1;) 

(2 .2) 

whe re 
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U4. [~(A-
(w. ... 4- LU1 - E: S)A (~-+ E , • .l/'" 

where 
+ \M1- tS ) J 

.t -= --t \'l-:L ( Il-i ~ - tLS"~ - 1,)..12-

. 
J Q - If!?. 

't\= i f" (~~,,- p"; ... ) - 'V<J /'l., IVI( = f2. r-~)( 
A, B may be still operators in the isospin space. 

For further development we write the formal expression of (2.1) 

(2 .3) 

with self understanding meaning of T4 and TS' 

9 
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In the assumption that there is no ,t = 2 component of the 

wave function, the sum of the matrix elements squared is 

L 1<.fIT It)\2,,. (LI<~IT"t.:/I'l) lf2.l p's) + 
t~ ~~ 

( L I <~ I ~ S 1 ~ ~ 1'2. ) 't'l. (r .. ).+ 'lL ~2-¥1~1i-l 'fiTs li"1}r(r,,)'l'( P5:) (2.4) 

\. {~ . -fl 
where \~) and I~) are the initial and final spin states of the 

nucleon pair. The initial states cover the triplet subspace, and 

the final states run over the whole Hilbert space. It is possible 

to show, using group theoretical techniques (GOL 64, p.862 n.18), 

that 

I 
3 

1\ 'l.. 
~ L I J.u...1T~I~"7\ 

..... w.! 
(2.5) 

whe re m,m' are the final and initial spin projector of the 

nucl e on+. Therefore the first two terms in expression (2.4) are 

r e lated to the differential cross-section which· are invariant 

quantities, while the last term has to be expressed through the 

amplitudes C. D. F. G. , which are the spin amplitudes for a 
1 .1.. 1 .1.. 

gen eral reference frame. The sum of the matrix elements squared 

(2 .6) 

-t i ~t~cfC5+ c;~Gs1 'fCP.")4'(.fs) 

.i d-.f' _I "\ 1<l.U.IT:\tM>\'l. 
2. d.Q.~ 4<'"L)~' • 

whe r e 

u.-
\. -

t h e r e fore only in the interference term there is trace left of 

t he difference between the particle deuteron and the particle 

+ In this particular case this relation can be shown directly 
c alculating both sides 

10 
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nucleon reference frame. 

11 
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3. Folded differential cross section. 

As seen in the previous paper (I) and in the section 

before the single scattering approximation is expressed through 

the following form . 

+ 

The dependence on the virtual mass is present, since 

the scattering process is only quasi-real. The relation between 

the Mandelstam variables is still satisfied, provided the virtual 

mass is taken for the internal nucleon 

(3.2) 

which compared with the relations of type (B.t), gives the 

equivalence 

C3. 3) 

The off mass shell dependence is no t known and it is expressed 

in (3 .t) as a double de pendenc e on ~* of the amplitude 

1~ 
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One dependence through s and the other one direct.One get the first one 

plotting s as function of m . The direct dependence of the 
.It 

amplitude on m is not known, but what ever it is, the variation 

of m* affects the dependence of T4 on s : for instance let us 

take a separable dependence 

(3.5) 

this will modify the normalization of the s dependence. Let us 

now take a general dependence and expand it in Taylor series 

around the point m* = m 

1\ 

T (S, t, I.M.) + (3.6) 

It is not unreasonable to assume the 

::~\ ~ ~ 0 
... = ..... 

and therefore for m "t near to m 

\3.8) 

This is a function which in principle can be calculated because 

it corresponds to the on mass shell dependence of T and s. 

In s there is still the dependence on the virtual mass and on 

the momentum of the particle. In the above assumption (3.7), 

this is an approximate way to calculate both the effect of 

virtuality of the process and the effect of Fermi motion. 
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The variable -t :I.?, does not depend on the virtual mass of the ,. 
internal nucleon, but if we use a partial wave expansion for -r 

through th C.M. ' amplitudes, we need to determine the corresponding 
... 

C.M. angle In this determination, we have to take in account 

that the internal nucleon has unphysical mass: this is done 
-I> 

considering for every value of fs~the internal nucleon is 

t hought as a physical particle with a light mass. ' Therefore for 

t he scattering on nucleon 4 

where 

whe r e 

L 2. '2. .... -'11-
, "2.~ - 1.M.2. -LU., -+ 2.. E'2. E. 0-

2.9~ qt 

[$- ll..L4..~ l.L( 'l..) 'l..] [oS - l~-lM'2j2. ] 

~S 
and a nalogously for the other scattering. 

+ , 
ThlS d ependence is easily seen, looking at formula (2.~) where 

V .. > with above assumption)become simply 

, 1 . 
'A 
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obtained in that way are different in 
~ 

and P-S are identical. Therefore if we want 

to parametrize the data for the deuteron cross section as a 

function of cose~, which in the most suitable choice for the 

phase shift analysis, we have to take some care in the integration: 

i.e. we have to consider 2 different angular regions 

1) the region of large angles - ~ ~ 

that we call the "spectator" region 

2) the region of small angles 

that we call the "overlapping"region 

q is the C.M. momentum of the elementary particle nucleon 

scattering, in the assumption that the internal nucleon is at 

rest in the laboratory system and 
------~---=--------~ 

1... '-C. o ) - w.~ + w.~ - 2. £.~ J w.~ + f~ + c.~ to '2. f-zh..o u 

and AOIl f"'\.! 

In the first region the amplitudes sum incoherently in the folded 

differential cross section: in other words the kinematical 

region where 4 spectator, is not overlapping with the region 

where 5 is spectator, as it shown on fig. 3 of I. 

In this e4'-
case we fix the angle and we make the convention 

that this angle is referred to the particle 3 - 4 in the region 

where [Ls ~ p... and to the particles 3 - 5 in the region where 

These two regions are not distinguishable if the 

two nucleons are identical as in charge exchange: in this case 

experimentally the slower nucleon is assumed as "spectator" 

and the angle is referred to the faster nucleon and the scattered 

particle. 

In this region the folded deuterium cross section are 
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'2. <t (:>OJ '"L ~ 
~ l 'f ([<-5)\ c{ \'s 

if 

+" (e"" ) _ (3.10) 

is the folded deuterium differential cross section and 

(3.11) 

is the unfolded nucleon cross section. 

In the "overlapping" region ; the amplitudes sum coherently, that 

i s , the two regions overlap to a certain extent and therefore 

we have to change our attitude. 

Since none of the nucleon can be assumed as a "spectator" we 

hav e to choose one and refer our scattering angle to the process 

wi t h that nucleon as "spectator". 

The choice is rather arbitrary, but we mantain the above convention 

whe n the two nucleon are identical and we choose the proton 

fo r the quasi-elastic scattering. , 
The scattering angle ~ relative to the second amplitude in 

(2.1) is related to 9 ~ through t;:3 



\ 
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(3.11) 

In this region the folded differential cross section (neglecting 

the relativistic effect for the interference term) 

f La .... ):. 
ce. .,. 

k?. 
+ 2 

t. ) 

If (p..:,) tlfs) o.V (3.12) 
dS2.~ 
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~'lJ 

t C P-.,) 'tl fs) 0. V 
d,S'L:y. ( 3 • 1 3 ) 

Till now, the analysis of neutron amplitude was done using the 

formalism given in r. We will call it "folded" analysis: this 

can be improved using the formules (3.8), (3.9), (3.12), (3.13) 

The method, we suggest here, is to parametrize the amplitudes 
. .... 

as function of s and ~ and determine the parameters with a 

best fit of the folded cross section, in a large region of 

energies and the whole range of angles, with expression (2.12) 

or (2.13). The pa rameters of the "folded" analysis can be 

the starting values of the "unfolding" procedure. 

) 

1~ 
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4. Qualitative consideration on Fermi motion folding effects. 

In order to gain intuitive insight of the folding effects 

due to the Fermi motion we consider only the incoherent part of 

the cross section, neglecting in this way the interference: 

this is a good approximation even in the "overlapping" region 

because the interference is always a minor part of 

cross section (in the worst case of the order 10%) 

the differential 
+ 

• \'/i th thi s 

simplification we can apply the simple Taylor expression of 

differential cross section inside the integral proposed by 

Faeldt and Ericson (FAE 68) and then revived by G. West tWES 71) 

where 

+- -' '2. 

where € is of the order of the binding energy of the deuteron 

and T is the kinetic energy of the spectator nucleon. Neglecting 

the contribution of the binding energy 

(4.3) 

The flux factor which according to t3.9) has to be folded together 

with the differential cross section, can be approximated in the 

following manner (HIR 70). Starting from tI.3.2S) and 

+This is not true for an experiment with good angular resolution. 
In the forward direction the interference is counting for 100%. 

19 
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neglecting the off shell effect 

~) rv ~ lr-2. P.) '4 - \. U.l2,l)..A. )"l. 

cp 1M. p-~ 

_1 E2. nc.>str,. rv 1.. + 1:.2. p..cosl:7!> '"" V ~ -+ 2. fa U4 '-5 , p ... 1M. 5 

Using the Taylor expansion for the cross section (4.1) and the 

above expression for the flux factor, we find 

f(s)= u(so) ~Jp-ll-+ 'fCo~e- )q''''CP-) 
~a lM. 

1. 

~ lp.. lS-So} (H- ~c.ol<.'7 )~"'crl.) 
~ ... U&. 

-+ (4.5) 

+ 
o.~ l ~ ..I. 1'- l~-<;o) (1+ ~ ~ ... r Col \9 ) t'2.( V-) ....... 

Z c;I, S ... (10 .. \M. ~"'So 
where 

~. d.'l~ (c;:- 50) <. lot ~ Co~& ) '\.,'2 c p.) 
< i!"..., 

:;::.- C-ls ~2.+u..,)-
(1 ... l.M. 

. \.M.. (4.6) 

= 

Note that we have assumed the non relativistic approximation 

for the kinetic energy of the spectator. We notice that in 

the first order term (4.6) only the term 1n cos~er is 

surviving, that is in absence of the flux factor the term in 

2 



- 20 -

cos 6fdoes not contribute at all in the folding with Fermi 

motion, this statement is correct only to the first order, but 

in the case of cross section rapidly rising with energy 
.. T 

as for instance the differential cross section KN4>\< N at 
",. 

fixed angle (around 700 MeVlc and cos & = .75), is almost 

exact: in other words the behaviour with energy of the cross 

section can be approximated by a straight line and for 

straight line the linear contribution to the folding with 

Fermi motion is exactly zero. The above derivative formula, is 

accurate inside few per cent (see Figs. 1,2,3), for a cross 

section which can be fitted locally be a second order polinomial. 

The unfolding procedure is therefore consisting of the following 

steps 

1) Parametrize the phase shifts and elasticities, obtained in 

the folded analysis. 
~ 

2) Minimize the ~ , fitting the experimental cross section 

with the derivative formula (derivatives ean be calculated 

numerically or even analitically). 

3) The new parameters, found, i n this minimization program, give 

the unfolded phase shifts and elasticities. 

We notice that the first term of the derivative formula is giving 

the form of the cross section used for the rtfolded rt phase 

shifts analysis. Therefore the unfolding means just adding 

two terms to : the first one. 

21 
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APPENDIX C 

First of all we give some definitions, used in the literature 

concerning the wave function of the deuteron in coordinate and 

in momentum space and the so called form factors. The representation 

of the deuteron wave function in the momentum space and the spin 

space of the deuteron is 

(C. 1) 

where "It If'l. are respectively the Sand D wave function , and 
-I> ) 
J is the spin of the deuteron. The operator which multipl ies 

the D wave is called the tensor operator and can be more tradi 

tionally expressed through the spin of the individual nucleons 

" i 4>,.. '1. J 1.[ ... 1\ .... " ---i>l 0:::; -[ ~(I.,,) -I). ""- 3(~.~ )(6"5,q) -~'(¢'S (C.2) w: 'tJ 'li 
The matrix elements of this operator on the various triplet 

states are linear superposition of spherical harmonics with.e.= 2, 

It is easy to show in either rapresentation that 

(C.3) 

Therefore the norm of the wave function is 

<1ft If' '7 ~ l4'~( qJ ~~ + ~ -hr.. ~ ~'l.\f~(q) c? q -

= S~; (q) d.'? 9 + S '1';('1) q~ 9 = 'P S'" ? p= 1.. 
The same can be done in the coordinate space 

(c. 4) 

(C.S) 
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w(>tJ 
T 

(C.6) 

The relation of the momentum wave functions with u and ware 

(C.7J 

In standard sil~l;:;:J- e scattering approximation for elastic scattering 
~~.~Q, 

the operator..e. ,has to be averaged on the ground state of 
...../;) 

the deuteron lwhere A is the three-momentum transfer) 

(C.8) 

since on triplet states 

where 
<>Q 

So(~) ~ ~ ~1tjo(.lkJt.)[\J11t.) -1- \x,?'clt.?1 
() 

0() 

~lkJ = 'l. J clJt, j'4(~Jt.) [uCIt.J utnlt.) 
o 

The f irst is called "charge" form factor and second "quadrupole" 

fOl~ factor. The connection to the charge and the quadrupole 

moment of the deuteron is given by the following relations 

(C.10) 
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We list hereafter some deuteron wave function and compare 

afterwards their features. 

1. Asymptotic wave function. 

The simplest deuteron wave function one can think of, 

1..S the so called "asymptotic or pole" wave function; this 

wave function, only for the S state/contains only one parameter, 

the binding energy of the deuteron 01. 'l. ,and is very useful -w.. 
for simple model calculation 

1. (C.1l) 

The wave function in coordinate space has wrong behaviour at small 

distances. 

2. Hulthen wave function lHUL 57) 

This wave function is going to finite value for small 

distances 

tpotq)::: JL ( 1-
(?>;+cf' ) ~~o(l. (C.12) 1t'V2 

J:L ( - 0.1'(. - ~tr. ') i <po\lt.) e e.. ---
i~rc 

It, 

where 
3=-. .~(I'2. 

H 0:::. 
(..1-oot--L-

'2. 0\. 2. (?> dv+(3 
This wave function is already realistic enough to attempt with 

it rough calculations. However one has to bear in mind that in 

a "j..'l. analysis of elastic electron scattering it can be rejected 

with a high level of confidence lELI 69). This result can be 

understood looking at the comparison between the charge form factors 

for the Hulthen w.f. and the Bressel and Kerman w.f. lfig.6), 

which gives a reasonable fit to the electron scattering data. 

3. Moravcsic-Gartenhaus wave function. 

The Gartenhaus wave function was parametrized by Moravcsic, 

with simple exponentials lMOR 58) . 
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8 • i. M L(-~)~ \jJ(9J - -nf2: . «'~Cf"2.. ~=:\. ~ 

q>(1t..) M .1:-
g , _d.~1t. - ~ (-1.)\. €.. -

~ 
It. .. .:::~ 

where 
8 . • + (C.13) 

L(-~)~+J 
.. 

Although this wave function was not considered in the analysis 

of electron scattering, it is easy to realize that it is very 

similar to the Bressel-Kerman wave function from the comparison 

of the form factors (fig. 6). The D part of the wave function 

was parametrized in three different region of the coordinate 

space a~d therefore it ~s not too helpful in actual calculations. 

4. Bressel-Kerman wave function. 

The previous wave function ulr) ~s presenting an r 3behaviour 

at r = 0, which is simulating the so called core, coming from the 

repulsive part of the potential (showing evidently in the 1S 
o 

nucleon nucleon phase shift). This wave function presents the 

same cha rac teristic at small distance (so called "soft core"). 

The S wave and D wave part can be parametriz ed as exponentials 

(BAX 68 ) 

(C.14) 

This analytic form is parti~~Iarly useful for the calculation 

of the electric and quadrupole form factors. 

5 . Gaussian wave function. 

Sometimes for rough calculations, it is useful to represent 

the wave function in momentum space as a single gaussian 

+ The parameters are reported on table I 

I 
I 
I 
I 
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(C.15) 

The behaviour of such model wave functions is compared with the 

Gartenhaus Moravcsic in Fig.7. 

6 Multigaussian wave function. 

It is well known that any function can be represented as 

superposition of gaussians of different slopes. To mantain the 

analytic form of most of the result of deuteron physics, and in the 

same time to stick to realistic wave function, we can parametrize 

it in term of gaussians 

It'Qt q,...} <=f t 'Ft ~ [~~~ 9'7.J 
.\.. .. , 

(C.16) 

o/~ (~) = q'l ~ G:l ~ c- ~~ c:fl.] 
~J.' The fit of the Gartenhaus-Moravcsic wave function in the momentum 

space is extremely good for q ~ .4 while for q >.4 GeV/c the 

two curves are slightly departing as shown on fig. C.3. The numbers 

for the amplitude and the slopes for a Ps = .933 and P
D 

= .067 are 

given on Table I. This parametrization was used allover the previous 

(I) and the present paper. 

On fig. 7 the behaviour of t;he Hulthen wave funtion 

(only S wave) is shown. This comparison shows very little difference 

between the two wave functions for q ~ .25 GeV/c, but further on 

there is very poor resemblance. The difference in this last region 

is the cause of the discrepancy between the correspondent charge form 

factors (Fig. 6) 

In the figure ~ we show the behaviour of the probability 

distribution for nucleon having momentum q 
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- .::: 
d.q 

(C.l7) 

This is arbitrarily normalized in such a way that 

(c.18) 

which corresponds to assume weight 1 in the extraction of the 

neutron cross section. It is easy to see that there is a great 

difference in the large momentum region between Gartenhaus-Moravcsic 

with only S- wave and the same with both waves. The Hulthen 

distribution with only S wave stays in the middle. 

20 
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APPENDIX D 

The matrix element for the break up single scattering 

amplitude, which were listed in (I) in (3.4, 5, 6, 7) become 

with the inclusion of the D wave in the deuteron ground state: 

a) {or the singlet spin state of the nucleon pair in the final 

state 

(D.l) 

(D.2 ) 

b) for the triplet spin state 

< 0 0 ; i '('I T I 00 ; d. V) ;:: <. yl I a~ + ~ ~l. a.~ I yl) k)C' 

(D. 3) 

2!J 
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4'-'" 

<. i T~ jiy' l Tl 00; iv) = .(\'IN \ -C.-c~ \ \)"7)C 

"I< <'V ll \'-r+·I.~~bc~yv'/"kl<. [O ..... 'y'ft>(\1-S) 

- ~y'(~'5 IV'") '\J'2.('t5)-8v'Ylfo(~~) + ~Y\~IV/'4''l.l.t'~)] (D . 4) 

where 

We walk pleasantly along the same road of I and find the result 

f or t he cross sections 

where t he n ew weight factors are defined according to (3.24) of I , 

that is choosing the Jew (Ref. 6 of I) convention for the phas e 

space. 

(D.7l 

3,0 
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~ w~ = J.. ~ ?r..; { r.. 'Po ((1-s) - .(1.1 Os 1"-1 't'~ (fls)J'l. 
f'2. E!i 

-
(D . S) 

This last form factor an~ the first corresponds to t h e spin of 

the nucleon pair, directed along the orthogonal to the quantization 

axis, while the second corresponds to the direction of the spin 

along the quantization axis. 

To spare to the reader the effort of calculating the matrix 

elements of the tensor operator, we list them hereafter 

'2. 1\ 1. ( 'l.. h..~ 1. p- ~ d-I () 1"-"7 = ~ \, ~ P-c - \- ) ~ 

v: <ell ~ \0'> ~ ( r-~? p.i )~ 

f '('O\~\i'"7:::.a C~~+~f;\~)~ (D.10) 
. ~ i.. 

'l.. " . ~ 'l. h."2. ~. •• '\ -1. 
\'- t.1.1 t> I -1. "7 = Ii: (POX - 1-'1 - ~ ~r-Cl'"' ~ 

the other are calculated using the hermiticity and time reversal 

invariance of the operator. 

31 
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APPENDIX E 

We consider in this appendix the case of charge preserving 

scattering: in this ,,,ase the two nucleon in the final state are 

distinguishable and for convenience we can call the neutron 4 and 

the proton 5. The iso-spin state of the two nucleons in the final 

state is in this case 

(E. 1 ) 

the singlet spin matrix element is therefore derived from I.3.4 

and 5 

~T :: 

(E. 2) 

and the tripl et fromI.3.6 and 7 

"3 v v' 1 I '" _I l < 0 0; ~ v' I T I 0 0 ~ -i y '> + <':1 0 ; :1 v· \ T \ Q 0 ; -:1 v '> 
'.fi 

(E . 3) 

Squaring the matrix elements, averaging on initial spin states 

and summing over final states ,,,e get 

(E.4) 

t 2. ~r a;b
j 

T O;-~-t1('f'2.(f .. )- <.y'1.Cf,,)J} 
3 ... 
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where 

If we assume in ·.an ideal experiment to kill all the events with , 
neutron spectator l 'f ((>-.. ) = 0), ,,,e get, integrating on the phase 

-I­
space, the differential cross section for the elastic process k N : 

doing the same for the other nucleon, we obtain the differential 

v"'t> cross section for the elastic process ~ I 

(E.S) 

I\. ," ~ 

That is, identifying it with proper combination of isospin 

amplitudes, we obtain 

(E. 6) 

- l-ta- -+1) 

and the same for CI'} and b~ 
Integrating on the whole phase space the interference terms in 

(E.4) vanishes and we get (1.3.18) 

+ 
3 

(E. 7) 
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(f we integrate only on half space defined by the kinematical 

c onditi on r 5 <. \'- .. 

2 (E .8) 

2.~(~-t~--t ~-t-lCi)j'\'~(r")f}lp-s ' 

h <. 1'-. 
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TABLE I 

~i Ci 
"/ ! a· n· / . 

I 
1 1 .l 

(GeV/c) (Gev/c)-5/ (GeV/c) (GeV/c)- 5/2 (GeV/c) 

.5382 8.827x10-4 8.019x10 2 -4 2 1.344x10 9.357x10 

.8514 -2 -1 -3 -1 1.17x10 1.971x10 6.12x10 2.347x10 

.3589 2.089x10 -2 
4.437x10 -1 

3.432x10 -2 -1 6.254x10 . 

.8668 -2 -1 -1 -1 9.694xlO 5.388xlO -5.042xlO 7.421x10 I -2 -1 .3743 3.120x10 1.0139 1.5400 8.541x10 

.6875 -1 1. 5920 9.6698 3.155xlO 1. 3273 
1. 18003 -9.2825 1. 2 064 

.04570 -2.4939 2.4081 

-2.612x10 -1 
1. 9934 

-1 
2.5158 ' .. -2. 342x1 0 

5.9456 6.2232 

3.1971 4.3509 

-1. 026x10 -3 7.1188 
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TABLE II 

F· 1. "Ii G· 1. t 
(Gev/c)-3/2 (Gey/c) 

-2 (GeV/c)-7/2 (GeV/c) -2 

4.9965 2034.129 2.9742 7.925 

24 . 3705 408.220 21.4327 28.461 

9.4082 87.934 10.6916 111.632 

2 .1399 21.495 75.5395 99.161 

-. 06246 1.702 188.3457 388.459 

• , 

38 
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TABLE III 

T=O A B C D E 

, 

5 1/ 2 4.32E-2 3.25E-2 -1.21E-3 -2.04 1.71E1 

p 
1/2 -1.04E-2 1. 16E-4 6.43E-5 3.51E1 -2.88E2 

P 3/2 1.96E-2 -1.75E-3 4.16E-5 6.88 -1.l1E1 

D3/2 -7.34E-4 9.26E-5 -2.50E-6 -5.09 -1.32 

D5/2 -1.00E-3 7.62E-5 -1.53E-6 4.0ZE-1 -2.23 

39 
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TABLE IV 

T=l A B C D E 

5 1/ 2 .. 2.20E-l 3.76E-3 -S.68E-S o. O. 

Pl/2 -2.17E-2 1.S6E-3 -3.34E-S O. O. 

P3/z 9.84E-3 -3.08E-4 -1. 97E-6 1. 04E+ 1 -1.31E 1 

D .' 
312 -6.97E-6 -9.42E-6 3.33E-7 2. 17E 2 8.70E-l 

DS/z -6.39E-4 6. lOE- 5 -1.44E-6 8.67 -1.83E 1 

4 0 
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FIGURE CAPTIONS 

Fig. 1 The excitation. function for 0'b~ K-+NP for cos e-~=. 75 

in the single scattering approximation using Glasgow 

solution A ill of the energy dependent search for the 

K.N phase shifts. The dot-dashed line is the fixed 

center approximation (no Fermi motion). The continuous 

line is the result of folding the l<"N differential cross 

section, with a numerical integration (only the incoherent 

part). The dashed line is the result of the derivative 

fornlula up to the 2 0 order. The .experimental data are 

from Ref. GIA 73. (The parameter of Lea, Martin and Oades 

parametrization (LEA 68) for the solution AlII are given 

on table III ,IV). 

Fig. 2 The same for <r;I:>ffF = • 85 

Fig. 3 The interference effect for cos e* =.75. The dashed 

line is without interference. The continuous line is with 
, 

interference 

Fig. 4 The interference effect for cos ~~=.85 

Fig. 5 The same as fig. 1 but the derivative formula is calculated 

up to the 3rd order. 

Fig. 6 The square of charge form 

deuteron wave functions 

'2. 

factor $ C~/'t) for different 

1) dot - dashed line, asymptotic w. f. 

2) dashed line: Hul then w. f. 

3) ,dotted line : Bressel and Kerman 

4) ' continuous line : Gartenhaus Moravcsik 

Fig. 7 Comparison of different deuteron wave functions in the 

momentum space 

Id 
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1} continuous line :Gartenhaus Moravcsik ( tr wave and 

D wave) 

2} dashed line .. mul tigaussian 

3) dotted line : Hulthen (only $ wave) 

4) dott - dashed : 1 gaussian (only S wave) 

Fig. 8 Probability distribution of the slow proton at ' ~2."" .'18 ~q,V/c 

1) :dashed line G.M. (only ~ wave) 

2) ;continuous line: G.M. ($ wave and D wave) 

3} !dotted line Hul then (only $ wave) 

The experimentai data are from BGRT collaboration. 
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