
401 

INFN/AE - 72/7 
11 Ottobre 1972 



SOME COMMENTS ON THE POSSIBILITY OF DERIVING THE PION 

CHARGE RADIUS FROM LOW ENERGY PION ELECTROPRODUCTION 

AT K2. = 0 

B. Kellett 

Department of Natural Phylosophy, University of Glasgow 

and 

C. Verzegnassi 

Istituto di Fisica Teorica, University of Trieste 

, 



- 2 -

SUMMARY. We discuss a sum rule which relates the pion charge 

radius to low energy pion electroproduction parameters evaluated 

at zero virtual photon mass. The conclusion is that extremely 

accurate data would be necessary to allow an unambiguous prediction 

to be drawn. 

Experiments on electron-pion scattering are at present 

being performed a.t Serpukhov, and it is hoped that their analysis 

will provide, with reasonable accuracy, the value of the pion 
.. 41. 

charge radius <: 11..; > ::: Y6 +T('(O) • In view of this possibility, 

we think it might be of interest to reexamine a sum rule 

which was originally proposed in a rather particular version 

by NicOlO and Rossi(l), and which relates the value of the pion 

charge radius to low-energy pion electroproduction parameters 
.2-

. evaluated at K (the virtual photon mass) equal to zero. This 

sum rule is only based on the electromagnetic current conservation 

and on the axioms of dispersion theory, and it might therefore 

in principle represent a more modest but useful alternative to 

the general Chew-Low extrapolation procedure to extract the 

pion 

data 

.2-
form factor at any K from high energies pion electroproduction 
(2 ) 

Actually, it is known that for some unfortunate 

kinematical accident this procedure does not seem to give too 

much information in this case, so that to derive the pion form 
. . (3) (4) (5) 

factor from high energ1es electroproduct10n data ' , one 
. (2) (6) (7) . 

is forced to resort to var10US models ' , ,all of wh1ch 

introduce however some assumptions which might prove rather 



- 3 -

. 1 (8) 
crUCl..a • 

To derive the sum rule one can start from the pion elec~ro 

production process which is treated as usually in the one-photon 

exchange approximation represented in fig. 1, where also the 

necessary kinematics is sketched. The invariant amplitude 

is defined as 
_.-,-_ 01 

~ 
where ~ is the electromagnetic current, andc( is the pion 

isotopic spin index. The isospin decomposition and our normalization 

convention for the amplitudes are the same as in ref. (8). The 

spin decomposition we choose is the following: 

conserv.ation which imposes the two constraints: 

One can easily see that the elementary pion exchange in the 

t-channel contributes to the amplitudes Tj-) and Ti-), but not 

to the combination 
(-) 

.A 

2 

7: (-) 
-+ 5 • 

2 "-
which is therefore a regular function of t at t = mTT' =jA- • The same 

is true, as one would expect, if one considers the pion as a 

Regge trajectory. In this case T~-) also receives a contribution 

which remains finite at t = -r 2.. (9), .and this allows Reggeized 
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pion exchange to be gauge invariant by itself, in spite of the 

exchange is not. fact that elementary pion 

Following Nicolo and R 
. (1) 

OSS1. ,we now rewrite the first 

of the constraints, eq.(3), for the isotopic (-) configuration 

in the form 

(5) 

2 
From the definition of the pion form factor ~,(k ), we have in 

"l-
the limi t t -'>j'" , 

(6) 

e 8,," 
where g is the pion-nucleon coupling constant, f!?N/4T1~ 14.7 

2ITN , 

and e /4. = 1/137. 

The asymptotic behaviour of the amplitudes T~ is given 
(9) ",-.:I. 

by Regge theory, and we find that T1 2 4 6 8 rv )} aS)l -"> e>O 
~ , , , , 

whilst T 'V)}. By writing an unsubtracted dispersion 
. 3,5,7 (_) .. 

relat10n' for T1 ' and by not1c1ng that the ourrent conservation 

constraints are automatically satisfied by the imaginary part 

of the amplitudes, we are led to the final expression: 

(-) 

?: (v·i ~ JA'· K~) 
I / I 

" 

This r e lation between FV(k
2

) and F~ (k
2

) must b e satisfied if 

t he current is conserved and the axioms of dispersion theory 

a r e correct. 

, 
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Since the right-hand side of eq. (7) is independent of Y 
it can be evaluated at any convenient Y value. In particular, 

if one chooses V = cD and assumes that rz-(-) vanishes at the 

point 

limit 

(v =00, 
2 

k -? 0, 

2 k 2 ), h t =.f\, ten eq. can be written, in thr 

in the particularly simple form*: 

, ' " &Q t-) 

= 2 ) ch.' ~ ((>, ';1.')": K';"O) +-rr (0) - t~ (0) .=.. v' , (8) 
1/8fjTiri 0 r(ol=- Jd_Tr:<')/,(~~O 

k"- . 

which is the Nicolo and Rossi sum rule (1). 

From a formal point of view, 

another famous current algebra sum 

eq.(8) is very similar to 
(10). . 

rule relat1ng the der1vate 
_v "2-

at K = ° of ~~(KJto that of the axial vector nucleon form 

factor G,. (K~), which reads: 

I V --- -+:1.. (0) 

00 I (_) 

) 
OIV' VI -, I J. l..) - In-, () (V, .::.K :0. (9) 

e-r;, V' . I 
. 11 0 "" 0 

[j-i(f,d:;; (U(f,(Z)/6'n(o)' 

However, from a practical point of view, whereas eq. (9) seems 

to be rather satisfactory in the sense that the integral on the 

r.h.s. appears quickly convergent, so that only a few low energy 

multipoles are sufficent to saturate it reasonably(ll), the 

same is probably not true of eq. (8). Nicolo and Rossi actually 

evaluated the dispersive integral in eq.(8) by approximating 
... 

it with the N33 resonance contribution treated in the isobaric 

model approximation and found the result 
, • t/ 

-+'11' 10) - -r; (0) tv 

"--(-) 
* of course the same result follows substituting for ( in (7) 

an unsubtracted dispersion relation. 
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, 'I 
which is about one tenth of the expected value of -t<i (~) (12) 

Therefore they concluded that their result was in agreement with 

the idea that the pion form factor was more or less equal to 

the Dirac isovector electric form factor. But we do not believe 

that their evaluation provides very strong evidence 
( -) 

for 
-- ~'I +7f (,,) ~ -fA {oj • Even if C- (V·t~JA2. 1( ') really 

I /) 
does vanish 

as Y -'> cD , which, on .the basis of Regge theory, does not seem 

likely, the convergence of the right-hand side of eq. (8) would 

be rather slow, so that a saturation with low-lying resonances 

is a dubious procedure • We 
0- (-) 

assuming that L (,/ =0<) , 

have checked the result eq. (10) by 
l.- 2 

t ~A ,k = 0) does in fact vanish, 

and by using the experimental multipoles for the integral • 

Briefly, the transverse multipoles at k
2= 0 were taken from the 

recent phenomenological analyses of pion photoproduction (13,14), 
(-) 

and the resonant longitudinal multipole Ll was assumed 

a constant proportion of E~-), at least in the first resonance 

to be 

region. 
L-

As we expected, the cut-off of around EJ~ 500 MeV, imposed 

by our first resonance region parametrization of the multipoles, 

was not high enough, and the integral clearly receives important 

contributions from the second and higher resonances. Furthermore, 

we found that the integral received an important contribution 

from L(-). This is not,in itself, of great importance, but taken 
1 

with the slow convergence of the integral, it does mean that 

any attempt to saturate the sum rule (9) with a ~(1236) isobar 

will not be reliable. _v 
conclusion t;r ::::: t";i. It is interesting to notice that the 

has also 
(3) 

been drawn by Brown et al., who have interpreted 

their high energy electroproduction data in terms of a model 

proposed by Berends(6). This model makes essentially use of the 

hypotheses thet ~(-) vanishes at infinity, and that the dispersive 
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'" integrals are saturated by the N3" resonance. Therefore, it is 

not surprising that its final answer is in l ine with the Nicolo 

and Rossi result. This also shows that the sum rule eq. (7) might 

be really a simple alternative to, or at least a check of the 

more general procedures commonly used to determine the pion 

form factor from high energy pion electroproduction. However, 

we think that a safer way to exploit it is to give up the assumption 

of the asymptotical vanishing of '[' (-) 
.' 1. t-
oJ) ' -t ~r) K ) and choose a 

finite 

of the 

value of Y to work. This would correspond in the scheme 

models (2),(7)to the introduction of an unknown subt r action 

constant. As a simple example, we choose to evaluate eq. (7) again 
, 

1 
at K = 0 at the ')) value which corresponds to the physical threshold, 

1. e. V:a Yo =- J'" (2 11;r)i1dI1;;-) ' In this way, the dispersive integral 

will become very quickly convergent and dominated by the lowest 

multipoles. The reason why we are limited to the case K z.. = 0 is 

that the only experimental data available for the real part of the 

multipoles are photoproduction data. Moreover, since the minimum 

physical. value of t raises with K 2-, the distance from the 
2-

unphysical point t =)N to the physical t-range will be minimum 
1-

at K = O. 

We consider first the integral over the absorptive part. 

The factor N 1/V,3 ensures rapid convergence and since the d-waves 

are purely real for some distance above threshold, we ignore this 
(.,( ~ . (')./ c-) 

contribution to the integral. Notice that ~"v L is to be 

calculated at 

factors of I q I 
2-

t =)~ , outside the physical region, but the additional 

in the imaginary part e nsure the rapid convergence 

'of the multipole expansion. To evaluate the integral numerically, 
. (13) (14) 

we use the phenomenolog1cal transverse's-and p-waves ' 

and the following prescription for the longitudinal multipoles: 
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(-) ( - ) 

Jm Lof- rv S6 I.j-r .. £0'1 
{-I 

'j'M L1..+ ""' C}6 ~ "..", 
{-} 

E :f--r 

(-) (11 ) 

J'lY\ Li.- "-' O. 

The reason why we use this prescription is that it is suggested 

b th b V G hI I d ' , 1 t ' . (15) d b o y on e en s 1sperS1ve eva ua 10n an y current 
(16), , 

algebra calculations • In th1s way, we obta1n: 
cD 

2 -V/' J ;)1>r (-) 1. J I _4 --rc- , (~~r' i ~)'1 ~ h' _~~ V = d. 2. /0 IN, (12) I 
11 e.@nN )/1 (yI L_ Vo

2 
) 

0 

The integral is completely insensitive to the cut-off for E!~400 

MeV, and the result is very small, being approximately 0.5 % 
• V 

of FI (0). As was observed in the evaluation of the Nicolo and 

Rossi sum rule, there 

L(-) ' t'bt' t 

(-) 
is a tendency fbr the dominant M1 and 

I con r1 u 10ns 0 cancel, so the result is probably sensitive 

to our assumption eq. (11). However,since eq. (12) is much smaller 
• V 

than F1 (0), even a factor of two uncertainty in the integral 

is unimportant, although we would consider our result to be 

more reliable than this. We conclude, 

=i~s~a~n~y~ appreciable difference between 
H 

be . produced by Re '(: (V./i- ')'~ K~" 0). 

therefore, that =i~f~t~h~e~r~e 
• • V 
F~(O) and FI (0), it must 

The evaluation of the 
r: (-) 

real part of C presents greater 

difficulties. Equation (13) 
!?' (-) 

involves Re ~ at the unphysical 

point t =fo'L., and since cos e (t =1',' ) = 90/19", multipoles for all 
(I 
~ values enter with finite weight, and we cannot eyaluate the 

sum . Since ~(-) is regular at this point, however, we know that 

this sum convergences ultimately to a finite limit, and the best 

that we can do is to assume that~-) does not vary appreciably 

, 
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2-
if we continue away from t =~ to the closest physical value 

t = t at a fixed value of V • Since we have c hos en Y at it s o 
photoproduction threshold value, we can evaluate Re ~ (-)at the 

physical pion photoproduction·,.threshold where t = to = - I1r j( /1;!"-) 
and assume that since ~ (-)does not have any poles in t in this 

neighbourhood, its value is unchanged by this continuation. 

The multipole expansion for Re'C (-)(v. .t. 1<:0) is 
v, v :J/ -

[t~ ] 
(-) 

3 [ ~r- +~l.J 
H 

~ - ,- 1:- + + 
'i t1 't-1" 

(_J 
(13) 

L .LMt--. ll1 ft_:t3ft 1-J 1-) Lot. + 7( ~ +--J-t ..... 2/1-t-j" Ko 

[ llr-' (2 nte) ] (-) l' + tA. " . Ko Ir/;.o r\ -t-,I"'\ 

, ' 

where 

r _ [1-< - h4-+- , u ;. L!- - 2 L -1 t • 
;I 

I~JJ7fI) fiji/iii 

fh+- - E~ ... - t1~- - £'1- - ~ 
Iii /1-

(14) 

(-) (-) (-) 
Among these six parameters, only E o+ ,y and z can be 

(1·3) (14) 
considered as known at the moment ' • To try anyway an 

t-l 
evaluation, we have taken 7\ in the Born approxima\,ion (which 

is the usual assumption one makes to derive E o~, y and z from 

the experimental data) and have used for ~(-)and L~~)the dispersive 

evaluation of Von Gehlen(lS) which is in line with the current 

~19 
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(16) 
algebra results obtained by Furlan et al. .Neglecting the 

indetermination on each parameter, we would obtain: 

, 1/ 

.. +rr {oJ -- Tj.. (0) (15) 

which, taking the Wilson 

of the proton as 

(12 ) 
world average for the charge radius 

2.. -</2-
<:: JL? > o 814 :t 0 Q.f5 

I I (16 ) 

would correspond to 

- _2-

l-rr (D) q 05~3 /IA (17) 

to be compared with 
'7 ? 

GE 
--

(C> ) 0
1
0553:r q 002 j.)., (18) 

/ 

However, the result eq.(lS)is rather unstable with respect to 

small variations of the six parameters: actually, the small final 

number comes from the difference between two large and opposite 

members. Therefore, a measurement of these quantities of an 

extreme accuracy would be necessary to make the result reasonably 

safe. This is an unfortunate situation which resembles very 

strongly what happens at high energies. Even in that case the 

Chew-Low extrapolation would require data of an extreme accuracy, 

well beyond those available at the moment (2). ~ 
Since we expect some continuity in the properties of the 

amplitudet(-)when we move away from threshold to low energies, 

we think that this instability of the l.h. s. of eq. (7) at K2..= 0 
will persist when 1) varies in this energy region. Therefore 

our (unfortunately negative) conclusron is that it appears very 

, 

unlikely, although in principle possible, to derive any information 

about the pion charge radius from low energy electroproduction 
2 

at k = 0 Uhrough the sum rule eq. (7), ba'sed on the most general 
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* axioms of dispersion theory. Since a similar conclusion holds 

about the possibility of determining in the dispersion theory 

framework the pion form factor from high energy electroproduction(8~ 
we think that one should seriously start thinking about the 

possibility that one-dimensional dispersion relations alone might 

prove unable to solve the problem of the shape of the pion form 

factor, and that either some extra information would be needed, 

or perhaps some different technique should be employed. Work along 

these directions is now in progress. 
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* ~ The possibility of using eq(7) atK i 0 for small Y values appears, 
from the previous discussion, rather unlikely. 
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