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SUMMARY. -

The bosonic spectrum and the Regge trajectories related with 
two specific non relativistic models (volume and surface models) for 
the quark-antiquark system are computed in detail. 

A connection between the model that gives the best predictions 
and a more fundamental field theory for the quar ks is also conside­
red and discussed. 

Within the framework of the SU(3) symmetry the scalar or 
pseudoscalar field theories are favoured by our analysis in comparison 
with the vector one. 

1. - INTRODUCTION. -

The idea of a dynamic al picture of the elementary particles 
based on the hypothesis of three subconstituents (quarks), considered 
as the true elementary objects, continues being, after some time sin 
ce its first appearance, a central point in particle physics(l). -

Many authors (2) proposed, with some success, very simple mo 
dels in which the relative motion of these constituents is non-relativi­
stic, both for describing the bosons (one quark and one antiquark) and 
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the fermions (three quarks). It may, however, appear puzzling ,to 
accept such a non-relativistic description without considering it as 
an approximate derivation of a more fundamental approach based on 
field theory. It makes, therefore, sense to ask under which condi­
tions the non-relativistic picture is justified as a meaningful approxi 
mation of a more correct dynamics and which are the implications, 
in a more basic theory, of the features that might arise from the ph~ 
nomenological models. 

A program that tends to this connection, involving quarks, is 
nowadays too ambitious, both for the weak experimental support that 
the existenc e of quarks has, and for the lack of a correct field theory 
dealing with fields considered elementary. One is then compelled to 
restrict the problem within more modest limits, In this paper we c0!:l. 
c entrate our interests on the bosonic particles and their Regge traj ­
ectories as physical predictions of the two-body quark-antiquark sy­
stem, and compare our phenomenological parameters wit h simpl e 
field theories that can be formulated in terms of local fields. 

It appears, thus, unnecessary to take into account delicate points 
such as parastatistics for the quark local fields, that seems to be una­
voidabl e for the baryonic states of three quarks, and one can assume 
that the quark fields are three Dyrac fields qa(x) [a = 1, 2, 3J (SU(3)-fu!:l. 
damental representation). 

In order to deal with "regular" theories we must introduce a 
bosonic field,the so-called gluon, besides the three spin 1/2 quarks 
a nd arrive at the three possible different interaction densities: 

(1. 1) 
- a 5 a 

L = g q )' q ¢; 
p p 

- a II. a 
L=gq)'rqB , v v ,.. 

where the index a is supposed to be summed from 1 to 3 and B ,¢, 1J1 
are the vector, pseudoscalar and scalar iiluon ic fields respectively. 
From these choices, at a fundamental level, different models follow . 
First of all we point out that the quark mass computed from a config~ 
rational quark-antiquark system may coincide or differ from the free 
quark mass according to the type of interaction considered. 

It i s straightforward to deduce the Heisemberg coupled equations 
for the local fields q a, '1/), ¢' B,.., which we name with general nota-
tion a (x) 

(1. 2) 
ilL 

= 0 , 

where L is the total Lagrangian density and av,..(x) is il,..av(x). 
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A reasonable approximation, that seems to be confirmed by the 
approximate validity of SU(6) and the absence of "exotic" states con­
sists in neglecting the virtual quark-antiquark pairs and treating the 
gluon field as an external field. 

It can be easily shown that under such conditions the wave con 
figurational equation for the quark becomes formally similar to the 
free particle equation for the scalar or the pseudoscalar case with 
the introduction of an effective mass mX = m-U(x) where U(x) is the 
potential of the equation related with th~ external field. On the contr~ 
ry for the vector coupling the classical field limit does not influence 
the mass term of the quark which keeps being m (mx=m) but changes 
the kinetical momenta as in electrodynamics. q 

Such a behaviour seems to permit the statement that if we accept 
the hypothesis of the existence of free quarks with large masses (or­
der 10 GeV), we may find a much smaller quark mass in their interac::. 
tions , if the basic field theoretical coupling is scalar (or pseudoscalar). 
This, under the assumption that the field theoretical models introduc ed 
above, are realistic. 

After reducing the field theoretical problem to a potential pro­
blem, we notice that the validity of a "static" approximation such as 
SU(6), favuours a non-relativistic description of the motion of the quark­
-antiquark system in its center of mass and a potential U(r) regular 
at r = 0 with finite range R. In fact the regular potential allows high 
binding energies, as we must expect, and at the same time , non - relati ­
vistic motion. 

The non-relativistic condition is R- l « m where m is the effec 
tive mass of the quark during its interaction with the antiquark. 

The square well potential raises the relevant question. on the 
mechanism that can produce a function of this sort starting from a 
Yukawa field interaction. This possibility is denied in perturbation the~ 
ry and can be explained in strong coupling physics because higher o£. 
der terms may be as important as the first order one. 

The presence and the role of non-central forces in the static 
potential limit of the coupled equation is also a good question to exa­
mine. A vector field theory would favour, as it does in Electrodynamics, 
a spin-orbit term of the Thomas type(3), thus an experimental answer 
on the shape of the spin-orbit interaction based on the best fit param~ 
ters, is quite relevant in order to draw remarks on the fundamental in­
teraction. 

As far as the internal symmetries present in our models are 
concerned , the vector coupling lagrangian considered above, isSU(3)xSU(3) 

37':' 
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chiral invariant while the other two violate the chialrity, being of 
course always SU(3) invariant. 

Before closing t h ese notes of introduction we like to mention 
that different couplings considered may provide different electromagne 
tic properties for the quarks a nd consequently for the nucleon and the 
bosons. 

A "large" effective mass, for instanc e, requires an enormous 
anomalous magnetic moment for the quark (in order to produc e the phy 
sical magnetic moment of the nucleon) whereas the "small" mass may 
not require it(4). 

A final remark we lik e to point out refers to the gluon partic le: 
it may be considered as elementary as the quarks or a bound state. 
In both cases it is interest ing to see how it is located in the SU(3) bo­
sonic representations, if it is a singlet or not, and whether it coincides 
with an experimental bosonic resonanc e already known or not. 

2. - THE NON RELATIVISTIC QUARK -ANTIQUARK MODEL. -

We assume here that the motion of the quark - antiquark system, 
in their center of mass, is non-relativistic and that the forces can be 
represented by a static potential, regular at the origin and c haracteri­
zed by a finite range. 

The consistency of our point of view is going to be checked 
"a posteriori" once we have fitted the phenomenological parameters 
of the potentia l with the experimental data. 

The input data are essentially the bosonic mass spectrum. Our 
potential is assumed to be SU(3) invariant. The SU(3) breaking effec ts 
are therefore introduc ed as a mass differenc e between the n, p quarks 
and the A. quark. At this point we deal just with one potential for all 
our octets and are now going to consider the different pos sible choices 
for it(x). 

We describe with a centra.l square well the main dynamical effects 
of the attractive quark-antiquark forces: we think in this way, we are 
taking into a.ccount the peculiarities that the quark-antiquark interaction 
must exhibit, namely the relevant binding energy, the non -relativistic 
motion and the finite range. 

(x) - Further physical assumptions are nec essary in order to extend the 
same phenomenological potential to the SU(3) singlets and we are 
not discussing this point in the paper. 
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In addition to the central square well interaction, we have consl 
dered three types of spin-dependent potentials, described by spin-orbit 
(:es), spin-spin (8182) and tensor (Q) operators respectively. 

As far as the radial dependence of these spin-dependent terms 
is concerned, owing to the phenomenological character of the approach 
we have taken into consideration two limit cases, namely either the 
volume square well potential of the same form of the central one, or 
the surface potential proportional to the radial derivative of the square 
well. 

Both choic es lead to solution of the SchrtJdinger equation in co~ 
pact form only when the orbital angular momentum is conserved. When 
tensor forces are effective, only the delta radial form allows exact so­
lution of the Schri:ldinger equation . 

This is the reason why we have tested separately both radial forms 
(referred so shortly as "surface" and "volume" model in the following), 
only for the spin-spin and spin-orbit potentials, while the tensor interac 
tion is assumed to be of the "surface" type (and the central interaction 
of the volume type) in any case. The restriction is justified by the fact 
that we expect the tensor strength to be much smaller than the spin-o!:. 
bit and spin-spin strength (and of course of the central one), because 
its typical role i s to mix the orbital angular momentum states in the 
coupled triplet states, and it looks very unlikely that this effect is re­
levant in the deepest bound states, which are the most interesting ones. 
Our conjecture is confirmed by the experimental fit (see section 3). 

All the details on the model employed, and the solution of the re 
lative Schri:ldinger equation are given in the Appendix. As a final step -
of these calculations one finds two kinds of bound state equations (eqs. 
A20, A. 21) for the coupled and uncoupled case respectively. 

and £, 

In fact one has to distinguish between two possibilities; namely: 

a) the triplet states (s=l) with orbital angular momenta i, =j+l 
=j-l, coupled together by the tensor interaction (parity (-)j). 

b) The singlet and triplet pure states with j= t and parity (_)j+l. 

The parity of the mesons in our quark model is in fact (_ l)e +1, 
.e being the orbital angular momentum whereas the charge conjugation 
number C for the neutral states is C=(-l) ~+s 

The bound state equations (see eqs. A20 , A21, A23 of the Appendix) 
are 

(2.1 ) J , 3 /2 ( W ~ 1 1) / J. 1 /2 ( W j 1 1)+ /\ K. 3 /2 (t..) /K. 1 /2 ( /\) + J- J- , J- ~ J- , J- J-

379 
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+V
j 

. J J-1 , 1;J - 1 , 1 

(2 . 1) 
. 2 

- [ V~ - 1, 1 ;j+ 1, 1 J = 0 

for the case (a ), and 

(2 . 2) cu
j 

J. 1/ 2(CU
j 

)/J ·+1/ 2 (CU
j 

)+J\K. 1/2 (A) /K. 1/ 2( f\)+V
j 

. = 0 JS J- JS ' J JS J- J+ JS, Js 

for the case (b), with s=o and s=l for the singlet a nd triple t pure state 
r espectively. 

The arguments of the J and K functio ns are the internal (equa 
tion A14b) arid external (A19) momentum times the interaction radius , 
name ly: 

(2. 3) 

(2.4 ) 

The reduc ed mass of the system m a nd the binding en er gy 
writ e as fo llows 

(2 . 5) m= 
m m 

1 2 
m +m 

1 2 
E =m +m -M 

1 2 ' 

where the choices of the quark masses m 1 and m 2 in the analyzed con ­
figurations a r e ex plained in Tabl e 1. 

F inally the connection between the matrix elements U
j ,n ' e 's , • s 

and the parameters Uc' Uss ' U .\:'s' Vss V ts' Vt (see Table II) vj 
",,'s ',lO s 

a r e given 

(2. 6) 

(2. 7) 

by equations (A6), here repeated for easy reference 

U
j

" IJ =<.t'S'j I U+U S . 5 2+U, i··s l~ Sj> 
I/, S," S C ss 1 "s 
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TABLE I 

Table of the experimental boson mass e s M (in GeV); m p ' mn 
and rnA are the quark masses. 

State m =m =m =m m 1 =mp=mn' m2=mA 
Itsj) 

1 2 p n 
particle M (GeV) particle M (GeV) --

1000) n O. 140 K 0.497 

Illo'> n 1. 016 - - - - --
n 

Illi) Al 1. 070 KA 1. 242 

1101) B 1. 233 K' 
A 

1.350 

lOll) 1211') 
, 

KX Ii ! 0.774 

I ! 
0.890 

III 2') I 3d) I A2 i 1. 310 KN I 1.408 
I i ! . ~ 

7. 

Note that volume and surfac e interactions are always distinguished 
by employment of symbols U and V respectively (see eq. A4). 

3. - FIT OF THE BOSON SPECTRUM. -

We employ now the model outlined in the preceding section, in 
both the surfac e and the volume version, to fit the boson masses shown 
in Table 1. The spectrum is not complete, and some resonanc es like "1, 
¢, ro, are excluded since their mass values require SU(3) breaking in 
the interaction (see section 5). 

Our problem is then to fit the eleven resonances given in Ta­
ble I, by the seven parameters m =mn, rnA' R, Uc' Vt and Uss ' U.ts 

V V . h" 1 " d"Pf "dl . I or ss l(.s ,n t e vo ume an sur ace mo e respechve y. 

As a starting point, an orientative analysis on the order of m~ 
gnitude of the parameters able to fit the data, and 0:1 the existence of 
possible ambiguities, may be carried out through the following steps: 

- choose the third c olumn of Table I , which depend on one quark mass 
only; 

- assume the principal role be played by the central interaction Uc' and 
neglect all spin depe ndent effects as a first approximation; 

- choose the lower a ngular momentum configuration (S and P respectively), 
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for the two coupled states Q and A 2, since in the above approxima ­
tion the coupling disappears. 

In this siJ'Y'.?lified situation the problem reduces to the fit of 
two degenerate states M =0.457 GeV (average value between the masses 
of nand Q; i=O) and ' M~=1.157 GeV (average among nn' AI' B, A 2; £' =1) 
by means of the three parameters R, Uc and mp' In this par tic ular c~ 
se the eqs. (2.2, 2.1) become 

(3.1) 

(3 . 2) 

with 

(3. 3) liJ o = RI/m (U -2m +M e). 
'" pcp 

The initial overdetermined problem becomes so undetermined, 
and we find a continuous set of parameters satisfying e qs, (3.1, 3.2), 
as shown in Fig. 1. 

Now we introduce gradually the sec ond quark mass m A (initial 
value: m A =mp), able to I' emove the dege neration between the 3 I'd and 
5th columns of Table I , and the spin depe ndent parameters (initial values: 
U =U. =V =V, =V =0), which remo ve compl etely t h e degeneration ss "vs SS ,,,s t 
among the rows of Table 1. 

" ,,-------------------------------, 

" 

" .. , •• 
R (Ii 

FIG. 1 - The fi gur e shows the 
ambi guity connected with the 
preliminary analysis descri­
bed in sec. 3. All sets Uc mpR 
extracted from the figure fit 
equally well the de generat e 
experimental spectrum M<>= 
=0.452 GeV (Q,= O) a nd Ml =1. 157 
GeV(R.=1), 



9. 

The fit is performed now by the electronic computer, through 
minimization of the mean square error fJ, by means of the complete 
equations (2.1), (2.2). 

Since the equations are not linear, the first approximation values 
of the parameters are obviously important in determining the final re­
sults. This is the reason why the calculation has been repeated several 
times, starting from different sets of R, Uc' mp within the range shown 
in Fig. 1. 

The best agreement with experiments (see Fig. 2) has been re~ 
ched by means of the set of parameters (1a) and (1b) of Table II, in the 
framework of the "volume" and "surface" model respectively. 

In order to give an idea of how much the ambiguity studied in 
Fig. 1 may be considered removed by the complete analysiS, we have 
reported in Fig. 3 the spectra obtained by starting from the region of 
very low R values (sets 2a, 2b of Table II). The detailed values of the 
masses calculated by means of the parameters of Table I are given in 
Table III. 

Finally note that in Figs. 2,3 all resonances theoretically found 
in the analyzed energy have been reported, i. e. also "spurious" reso­
nances not experimentally observed. 

Let us now draw our conclusions: 

- the ambiguities found by "central forces" analysis (Fig. 1) cannot be 
considered completely removed by the final best fit, since the mean 
square errors relative to solutio:ls (1) are only slightly lower than 
those of solutions (2): 

- the absence of spurious states seem to be a better argument in favour 
of solutions (1) with respect to solutions (2), than the mean square error 
magnitude; 

- on the basis of the same arguments, one may conclude that solutions 
(a) (volume model) are clearly better than solutions of type b (surface 
model); 

- solution (1a) is the best in absolute sense; 
- the tensor potential is always very low, and is practically zero in the 

case (1a) (by taking Vt=O the modifications introduced into the spectrum 
1a are unappreciable). This means that the coupling is unessential, 
and that the Q, KX(A 2 , KN ) states are almost pure S(P) states. Furthe!:. 
more the lack of analysis with volume tensor terms is not at all dramatic; 

- s·pin dependent potentials are in general small in comparison with the 
central one, justifying "a posteriori" the analySiS on the degenerate 
masses MoM1' which we were started from. 
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FIG. 2 - Comparison between the experimental spectrum, and 
the theoretical ones obtained by means of "small" quark masses 
(solutions 1 of Table II). The "spurious" states obtained by the 
surface model (solution 1b), are shown separately. 
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00 
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So~ution 

la 
Ib 
2a 
2b , 

R m =m p n 

fermis 

0.4706 1. 576 
0.3806 1. 128 
0.2140 18.538 
0.2ll0 18 . 516 

State I tSj > 

I 000) 

1110> 

~Illl> 

1101> 

lOll> 12ll} 

Ill2) 1312} 

TABLE II 

m). Uc Uss U is I v ss v 
S 

V
t Q .", /1:{Mexp-M)2~ 

GeV 

1.795 3.473 -0.201 -0.131 0 0 -0.004 0.043 
1. 271 3.105 0 0 0.527 0.430 -0.051 0.050 

18.732 38.389 -0.100 -0. ll2 0 o I 0.024 0.050 
18.738 38.455 0 0 0.010 0.184 I 0.044 0.060 

I 
--- -- --- --- -- - - - < ._-- --

TABLE III 

Theoretical masses (GeV) 
Particle Experim ental -

masses (GeV) Fit (Ia) {lb} (2a) (2b) 

" 0.140 0.316 0.215 0.304 0.316 
K 0.497 0.493 0.302 0.487 0.529 

"n 1. 016 1. 076 1. 131 1. 032 1. 094 

Al 1. 070 
! 

1. 178 1. 325 1. 162 1.194 

KA 1. 242 
! 

1. 318 1. 367 1.344 1.402 

B 1. 233 I 1. ll9 1. 328 1. 167 1. 205 
K' 1. 350 ! 1. 258 1. 375 1. 348 1. 414 A , 

I 
[! I O. 774 

I 
O. 508 O. 564 0.402 0.316 , 

KX i 0.890 0.688 0.635 0.588 0.528 I 

A2 I 1. 310 1.424 1. 420 1. 378 1. 224 

KN I 1. 408 1. 566 1. 228 1. 560 1. 432 
L I 

I 

I 
, 

.... .... 
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n: 

Spurious Theor. Exper. Thear. Spurious 
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Volume !fodel 2 "-) Surface Modp( 

FIG. 3 - Comparison between the experimental spe£. 
trum, and the t heoretical ones obtained by means of 
"large" quark masses (solutions 2 of Table II). Note 
the presence of spurious states in the low region of 
the s pectr um. 
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4. - REGGE TRAJECTORIES.-

The equations for the bound states, already considered in sec­
tion 2 and derived in detail in the Appendix, are written in such a fashion 
that they permit, in a straight-forward way, the interpolation to continuous 
complex values of the total angular momentum j. We thus obtain the so­
-called Regge trajectories j(s) associated with our spectrum of particles; 
more precisely we achieve the trajectories of the real part of j beca~ 
se we always neglect the decays of the bosons and consequently the im~ 
ginary part of j. Once the quark masses are fixed, the formalism gives 
four 'different types of bound state equations, leading to four trajectories. 
More precisely: 

a) the coupled triplet equation (2.1) provides one trajectory with 
the choice ml =m2=mp=mn (particles Q and A2), and anbther one in the 
case ml =mp '=mn' m2=m). (particles KX and Kn ); 

b) the pure triplet case (eq. (2.2) with s=1) gives twotrajecto­
ries (particles Al and KA) with the two choices for the masses; 

hand 
c) the particles 1'C and B from oneAand KKA from the other, lie 

on the trajectories corresponding to the singlet equation (2.2) with s=O; 

d) the trajectory related to the particle 1'C n is deduc ed from the 
coupled triplet equation, for the peculiar case j=O, where the selection 
rules allow one orbital momentum only (t =s=l). Such an equation reads 

(4. 1 ) 

It is an immediate consequence of our model to conclude that 
the A2 and the Q particles have overlapping trajectories, in agreement 
with the degeneracy observed experimentally. 

Fig. 4 shows the comparison between the experimental masses 
and the trajectories calculated by means of the set of parameters la 
of Table II. 

The general behaviours are satisfactory both for the intercepts 
at s=O and the slopes, for the volume model with small masses, even if 
a certain little curvature is present. In Fig. 5 the same trajectories 
are shown for s ranging between 2 and 10 GeV2. The trajectories are 
still rising at 10 GeV2 where they however deviate remarkably from 
the straight line. The solution lb (surface model) provides completely 
absurd trajectories (see Fig. 6). 
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FIG. 4 - Plot of the Regge trajectories calculated by the param~ 
ters (la). The experimental masses are shown for comparison, 
and correlated by arrows with the corresponding trajectories. 
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FIG. 5 - Continuation of the Regge trajecto­
ries of Fig. 4, between 4 and 10 GeV2 . Note 
the different scale for sand j. 
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FIG. 6 - Plot of the Regge trajectories calcula 
ted by parameters (lb). 

5. - CONCLUSIONS. -

15. 

SU(3) breaking. The mechanism of breaking the SU(3) symmetry with 
the difference of the mass values between the quark and the n-p doublet 
works nicely in most bosonic states such as n , nn' AI' B, (1, A 2, K, KA' 
KA, K X

, K N, but exhibits its limit s in not providing the experimental 
masses of some resonance such as 00, ¢' "I , "I', where one probably has 
to introduce an SU(3) breaking term directly in the potential. 

This fact however seems to be a minor point in comparison 
with what we have achieved from Our analysis. 

The volume and the surface models. Our phenomenological analysis 
dealt essentially with two different choic es of non-relativistic potentials, 
called the volume and the surface models. 

38!) 



16. 

The former, by lookin g at the best fit, appears much more reali 
stic than the l a tter. In fact our "surface" solutions, . both with small 
and high masses, predict spurious states in the spectrum and absurd 
behaviour of the Regge trajectories (see Figures 2 , 3 and 6). 

Coming instead to the volume models we obtain an adequate inte£ 
pretation of the spectrum by means of small effective quark masses 
(mn=mp=l. 57 GeV, bm"O. 22 GeV), strong central attractive forces, less 
strong but equally essential spin-orbit and spin-spin forces (Uss=-O. 201; 
U ~sr-O. 131 GeV) and almost zero tensor forces (Vt= -O. 004 GeV). The 
last result justifies completely our initial guess on the tensor force 
and predicts phys ically ' no mixture between the different orbital angular 
momentum states in the coupled triplets. 

Th e evaluation of the Regge trajectories provides rising traj ecto 
ries j{s) with a behaviour that in the range of s between 0 and 3 GeV2 
is quite satisfactory from the experimental point of view, and gives the 
correct intercept at s=O. One should notice that the R egge trajec tories 
are computed in terms of the parameters determined from the spectrum, 
without any adjustment. 

The range of the forc es is R=O. 47 f. This number verifies well 
the kinematical condition of non-relativistic motion (see section 1). As 
far as the possible relation between our phenomenological range and a 
gluon particle is concerned, we obtain for this a mass around O.420GeV. 

This elementary object can be made coincide with an 3U(3 ) singlet, 
scalar, pseudoscalar or also vector. We must consider the value obtained 
for its mass just as an indicative order of magnitude and not at all defi 
nite. In order to complete the predictions that our volume model gives, we 
notice that if the reduced quark mass obtained for the quark anti quark 
system, is verified also in the three quark system, it is consistent with 
the anomalous magnetic moment of the nucleon, where an effective quark 
mass of order of the third of the proton's gives the correct order of 
magnitude{ 5). 

A second type of solution obtained from the "volume" model has 
higher masses (mp =mn =18. 538 GeV) but creates serious troubles in the 
spectrum because it predicts spurious states in the range of masses 
below 1. 5 GeV (see Fig. 3), which are not present experimentally. 

The basic coupling. The picture that comes out from the "volume" model 
after determining its parameters makes one formulate, as we disc ussed 
in our introduction, conjectures on more fundamental descriptions nec es 
sarily based on the relativistic local field theory. 

We therefore continue here the discussion started in our first 
section when we proposed three possible relativistic renormalizable 



17. 

models with the introduction of a boson responsible for the quark-quark 
and antiquark-antiquark forces, the so-called gluon field. 

We must attribute it a mass around 0.5 GeV and owing to the 
fact that the effective quark mass comes out smaller than the expected 
free quark mass, we favour the scalar or the pseudoscalar couplings 
(spin or gluon). From these interaction terms one easily understands 
in a simple manner how the most relevant effect might be the drastic 
reduction of the mass of the quark, and the residual force is treated 
by a still strong non-relativistic potential. This does not mean that a 
vector basic interaction, with a vector gluon, is not possible at all. In 
fact the strong coupling theory allows the possibility that higher order 
contributions dominate above the lowest order ones, thus permitting 
the creation of a scalar force which needs the exchange of at least 
two vector gluons. In this case however, one has to understand the 
mechanism that enhances the scalar term from the many gluon exchan 
ge and reduces the others. 

We finally would like to point out that the square well potential, 
regular at r=O, is not necessarily contrasting the Yukawa trilinear co':!. 
plings such as those proposed in section 1, because of the strong cou­
pling constant . Indeed we may simply imagine a mechanism of cane ella 
tion at the point r=O between the Yukawa potential g2 exp( - p,r) /r due -
to the Horn term (gluonic exchange) and the superposition of Yukawa 
terms fm (J (a) exp(- ar)da /r coming from higher order contributions, 

a o 
th'lt eliminates the singularity at 1'=0 and regularizes the potential at 
the origin. 

The Thomas term. Our spin-orbit potential is not very strong in comp~ 
rison with the central one but it is such that, in combination with the 
spin-spin term , determines one type of coupling (volume model) in­
stead of the other (surfac e). We therefore have here an argument against 
the validity of the vector coupling that, in analogy with quantum electro 
dynamics, should favour a spin-orbit potenti'll of the Thomas type(3). -

In our case such a term would provide a delta function on the 
spherical surface of radius R (R being the range of the central force) 
that is essentially what one obtains in our surfac e model which seems 
refused by th e experimental fit. 

Relations with previous work. Some results we obtain were already 
derived by several authors~with even Simpler assumptions on the sh~ 
pe of the pot ential. In particular we like to mention the dominance of 
the central forces in relation with the non central ones, the very little 
mixture of the orbital angular momentum for the Q and the A2 particles 
and finally some features on the bosonic Regge trajectories. These tr~ 
jectories, however, were related with a peculiar central potential, i. e. 
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the harmonic oscillator and, according to our knowledge, they were 
not connec ted with a more complete type of i nteraction that inc ludes 
non central forc es as well . 

B eing aware of the impossibility of drawi n g drastic conclusions, 
we point out however that many aspects of the whole analysis we made 
seem to be more consistent with a scalar (or the pseudoscalar) SU(3) 
i nvariant fie l d theory. Our results do not deny however th e fact that 
more fundamental th eories a nd wider symmetries (such as chiral SU(3) x 
x SU(3)) mi ght be possible with the vector interaction. 

The authors a r e pleased to thank prof. C. Villi for a critical rea 
ding of th e manuscript, and for valuable s uggestions . 
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APPENDIX. -

It is worthwhile to show with some details the formal treatment 
of the model on which our calculations are based. In fact, although si­
milar exactly soluble models are known in the literature{7}, the case 
of the tensor delta coupling has not been stressed so far, as in our 
knowledge. 

We start from the system of coupled equations which are derJ, 
ved in the general case of a scattering problem with non-central forces, 
in the non-relativistic limit{B}: 

l- i t"{,t"+I} 2 j] {x} 
{A.l} ~ {--2- + 2 +k}Q '.?" 05 , ,,+2mvo " " 0 ' ,{r} 'lJ.'o' ,0 {r}=O , 

t's'dr r .~" ss "'s, .... s "S, ... s 

where 

{A.2} v~" " Q' ,{r} = (?"s"jl v{r}1 ~'s'j>, {,s,,,,s 

are the matrix elements of the interaction, in the_ representation where 
the orbital angular momentum of relative motionl is coupled with the 
channel-spin 8{=51+52} to give the total angular momentum }i -I I}. The 
radial wave-function 'IJ.'{r} has the following asymptotic behaviour: 

{A.3} lim 'IJ.'"j, , n {r}or: 05 ,05 ,exp [-i{kr- t1T:/2}]-Sj, ., expr-i{kr-t' 1T:/2)J- ' . 
. "s, .... s t~ ss ts,,Q,s ~ 

r~oo 

Other symbols in eqs. {A.1} ... {A.3} are quite obvious, being only nece~ 
sary to remember that the center-of-mass frame of reference is employed . 

We assume the following potential: 

(A.4) v;" " n' .,{r}= u"j" " " ,g{r, R}+RV':" " '" ,05 {r-R}, 
."S,\-,8 "(,s,{,s ~s,'Vs 

where 

{A.5a) g{r,R}=1 forr~R, 

{x} - Units ll=c =1 are employed. 
{++} - Parity conservation is also assumed. 

39 <-
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(A.5b) G(r,R)=O forr>R, 

and 

(A.6a) 

(A.6b) V~"" ,,=<.e"S"jIV 5 1·52+V o e'5+VtQ\f,'S'j), 
" s , e. s sS ·" s 

with 

(A.7) 

In other words we introduce a volume (square well) interaction 
with central, spin-spin and spin-orbit components, and a surface (Dyrac 
delta function) interaction with spin-spin, spin-orbit and tensor compo­
nents. Throughout the paper, the cases Vss=Ve.s=O, and Uss=Uts=O 

are referred to conventionally as "volume" and "surface" mod e l respe.'O. 
tively. 

In the case sl =s2= 1/ 2, in which we are mainly interested, we 
have for each j two coupled tripl et states Ij - 1, 1,j), I j+1, l,j), and two 
pure (singlet and triplet) states !joj),\ jlj)(o), the matrix elements of 
the operators of eq. (A.6) being in this case : 

(A.8a) <~"S"jI5l' 52 1~'s'j)=+0Q,'Q," 0s's,,[S'(S'+1)-3/2], 

(A.8b) (lI.."s"j It· 51 t's ~ j) =+ o~, e" 0 s's,,[j(j+l)- V(e '+l)-S'( S'+l)] 

(A.8c) 

) e.' 1 j} 
'L 1 V' 2 

(x) - This is th e usual tensor operator of the literature , the factor 4 
coming from the fact that we employ the spin operator 5i =(1/2) (Ji 

(i=1,2). 
(0) - This is obviously not true i n the particular case j=O, where only 

two states 1000> and Ino), both pure, are allowed. However, for 
the sake of simplicity, all the forthcomin g discussion is referred to 
the general (jfO) case. 

39 
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For the coupled states eq. (A.1) leads to the following coupled 
equations (£, =j -1, j+ 1): 

(A.9a) 

[ 1_jU-1) +k2-2mvj . (r)]1JI j (r)-
d 2 2 J-1, 1;J-1, 1 J-1, l;t, 1 

r r 

- 2m v
j 

1 1 . 1 (r) 1JI. 1 0 1 (r) = ° J- J ;J+ ,1 J+1, ;·VJ 

-2mvj . (r)1JI j (r)+ 
J+1,1;J-1,1 J-1,1;t , 1 

(A.9b) 

While the two pure states equations assume the form (s=O, 1): 

(A. 1 0) [L_j(j+1)+k2 _2mvj . (r)]1JI j . (r)=O. 
d
22 JS,Js lS,lS 

t· r 

Eqs. (A.9) and (A.10) are decoupled everywhere but on the interaction r~ 
dius R, owing to the fundamental assumption of a 15 tensor interaction, 
so that the internal and external solutions may be immediately drawn. 
For the coupled case (A.9) we!have (to e '=j-1, j+1): 

(A.11a) 

(A.l1b) 

In other words the wavefunctions 1JIj .. ,1JI
j 

1 .. from one 
.• . ' j j J- 1, 1,J-1, 1 J+, 1,J-1, 1 
hand, and 1JI. 1 1 ' · 1 1,1JI· 1.· 1 1 from the other, satlsfy the same J- , ,J+ J J+1 , ,J+ J 

Schrodinger equations (A.9), but are subjected to different asymptotic 

(x) - For the definition of the regular (F£.) and irregular (G2.), ingoing 

(I~ = Gt -iFe) and outgoing (Ot =I~) solutions of the free Schodinger 
equation, as well as of other special functions which will be introdu­
ced later, see ref. (9). 
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conditions (A.3) and show therefore different external behaviour (A.11b). 
Then, by matching the internal and external logarithmic derivatives (t~ 
king carefully into account the discontinuity introduced by the <l function 
in the wavefunction derivative), with elimination of the coefficients A, B, 
one derives four equations for the S matrix elements. We use the follo 
wing compact form: 

(A.l2a) 

(A.12b) 

- exp [ -2i¢e, (), )JvL, \:"1 =0, 

where the choice .~ =j-1, ~'=j+1 corresponds to the first couple of equa 
tions, and the opposite choice to the second one. 

In eqs. (A.12) ¢t(),)=tg-
1[Ft (), )/G t ()..)] is the hard sphere phase 

shift and 

the external logarithmic derivative, while the internal logarithmic deri 
vative Z reads: 

(A.13) 

All functions in eqs . . (A.12) are evaluated on the interaction radious, na 
mely: 

(A.14a) ), = kR, 

(A.14b) 

39 t 
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From eqs. (A.12) one gets (being as before t e.'=j-1, j+1): 

(A.15a) 

(A.15b) 

Finally, by matching the (internal and external) wavefunctions, one der~ 
ves four normalization constants, and is able to write down the wave­
function. The last constant is free for an overall 't/I normalization. 

For the pure states, the S matrix elements may be deriv ed c ith l'l' 
from eq. (A.1a) by a similar procedure, or directly from the expressions 
(A.15) with the formal substitutions ~, ~,~ j; 1 .... s (= a, 1). 

Sinc e sj . = V
j 

. = a (s ee eqs. (A.8 )), one gets: 
JO, J1 JO, Jl 

IA. J 6) 

j j x 
. Z.(w.)-L . (.l.) 

SJ . =expr-2i~H)J JS JS J 
JS,Js - J ZJ (w J )-L.(.l.) 

JS JS J 

S = a, 1. 

The unitary may be easily checked in eqs. (A. 15) and is transparent 
in eq. (A. 16) sinc e Z is real. 

Now from eqs. (A. 15) and (A. 16) one immediately finds the S 
matrix poles in the complex k plane, for the coupled and pure case re­
spectively, namely: 

39':' 



24. 

(A. 18) 

In particular, for pure imaginary momentum k=i V~, being 
the (positive) binding energy of the system, eqs. (A.17) and (A. 18) are 
the bound state equations. Nevertheless, in this particular case, they 
are better written in function of the real argument 

(A. 19) A=Rv2mE, 

(A. 21) s = 0,1, 

where 

(A. 22) 

o~-) being the (real) outgoing solution of t h e free SchrlJdinger equation 
for negative energy. 

Since FJI, and o~-) are simply related to the Bessel functions J t +1/2 

and Ko / respectively(9), one can use, in eqs. (A.20) and (A.21), in 
,,+1 2 

place of eqs. (A.13) and (A.22), the fo llowing express ion which is more 
suitable for extension to complex j values: 

(A.23) 

By means of the matrix elements (A. 8), and making use of the 
properties of the functions J and K, the Regge trajectories are immedia 
tely drawn from eqs. (A. 20), (A. 21) (A. 23). 

Finally, although the equations developed so far through the S 
matrix formalism are all we need for our calculations, it is worthwhile 

39·f 
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to outilne breafly the direct solution of the bound state problem, which 
must lead obviously to the same equations (A. 20), (A. 21), but gives in 
addition the bound state wavefunctions. 

We start as before with the coupled states: one immediately re­
cognizes that, in the bound state case, not only the Schrodinger equations 
(A.9), but also the aSjmptotic conditions (A.3), are the same for func-

tions 'ljJJ l' . -1 1 and 'ljJo l' . ,so that two labels may be dropped, by It ,J, v ,J+1, 1 

writing 'ljJi n :: 'IjJ~ • Then the internal and external solutions (A. 11) 
'?,s <'s ·vs 

become: ' 

(A. 24a) 

(A. 24b) 

and the logarithmic derivatives matching (A.12) read now: 

Ai [zi (wi )-L(-) (II)] + 
.i-l,1 i-l,1 i-l,1 i-I 

(A. 25a) 
i i (-) (-) 

+A'+ 1 1 V'_ 1 1·'+1 1 0 '_1(/\ )/0'+1(1\) = 0 J , J , ,J ,J J 

(A.25b) 

+ A j [z i (co i ) L (-) (1\)1 - 0 
'+1 1 '+1 1 '1 1 '+ 1 .. . J, J, J+, J 

, The homogeneous system (A.25) admits non-trivial solutions 
AJ ,AJ if and only if eq. (A.20) is satisfied. Then, from one of 

J -1, 1 J+ 1, 1 
the equations (A. 25), and from wavefunctions continuity on the interac­
tion radious one gets three of the four unknown coefficients (the latter 
being as usual an overall normalization constant) and is able to write 
down the wavefunction. 

The pure states wavefunctions are obtained in a similar way, to 
gether with the eigenvalue equations (A. 21). 

" Q (\ •• v 
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