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SUMMARY. -

The bosonic spectrum and the Regge trajectories related with
two specific non relativistic models (volume and surface models) for
the quark-antiquark system are computed in detail.

A connection between the model that gives the best predictions
and a more fundamental field theory for the quarks is also conside-
red and discussed,

Within the framework of the SU(3) symmetry the scalar or
pseudoscalar field theories are favoured by our analysis in comparison
with the vector one,

1. - INTRODUCTION. -

The idea of a dynamical picture of the elementary particles
based on the hypothesis of three subconstituents (quarks), considered
as the true elementary objects, continues being, after some time sin
ce its first appearance, a central point in particle physics(l).

(2)

Many authors proposed, with some success, very simple mo
dels in which the relative motion of these constituents is non-relativi-
stic, both for describing the bosons (one quark and one antiquark)and
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the fermions (three quarks). It may, however, appear puzzling to
accept such a non-relativistic description without considering it as
an approximate derivation of a more fundamental approach based on
field theory. It makes, therefore, sense to ask under which condi-
tions the non-relativistic picture is justified as a meaningful approxi
mation of a more correct dynamics and which are the implications,
in a more basic theory, of the features that might arise from the phe
nomenological models,

A program that tends to this connection, involving quarks, is
nowadays too ambitious, both for the weak experimental support that
the existence of quarks has, and for the lack of a correct field theory
dealing with fields considered elementary. One is then compelled to
restrict the problem within more modest limits, In this paper we con
centrate our interests on the bosonic particles and their Regge traj-
ectories as physical prédictions of the two-body quark-antiquark sy-
stem, and compare our phenomenological parameters with simple
field theories that can be formulated in terms of local fields,

It appears, thus, unnecessary to take into account delicate points
such as parastatistics for the quark local fields, that seems to be una-
voidable for the baryonic states of three quarks, and one can assume
that the quark fields are three Dyrac fields qa(x) [a =1,2,3] (SU(3)-fun
damental representation),

In order to deal with '"'regular' theories we must introduce a
bosonic field, the so-called gluon, besides the three spin 1/2 quarks
and arrive at the three possible different interaction densities:

= ®

—a 5 a —a a

(1.1) Lg=8y9 9 ¥ Liy=g.o ¥u g  L,=g a4 ¥ q By,
where the index a is supposed to be summed from 1 to 3 and B, , ¢, ¥
are the vector, pseudoscalar and scalar gluonic fields respecﬁvely',
From these choices, at a fundamental level, different models follow.
First of all we point out that the quark mass computed from a configu
rational quark-antiquark system may coincide or differ from the free
quark mass according to the type of interaction considered.

It is straightforward to deduce the Heisemberg coupled equations
for the local fields q%, vy, (j, By‘, which we name with general nota-
tion a (x)

oL oL

da, O da,

(1.2) =0,

where L is the total Lagrangian density and a, (x)is o a,p(x).
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A reasonable approximation, that seems to be confirmed by the
approximate validity of SU(6) and the absence of "exotic" states con-
sists in neglecting the virtual quark-antiquark pairs and treating the
gluon field as an external field.

It can be easily shown that under such conditions the wave con
figurational equation for the quark becomes formally similar to the
free particle equation for the scalar or the pseudoscalar case with
the introduction of an effective mass m> =m-U(x) where U(x) is the
potential of the equation related with the external field. On the contra
ry for the vector coupling the classical field limit does not influence
the mass term of the quark which keeps being m (m3é=m) but changes
the kinetical momenta as in electrodynamics.

Such a behaviour seems to permit the statement that if we accept
the hypothesis of the existence of free quarks with large masses (or-
der 10 GeV), we may find a much smaller quark mass in their interac
tions, if the basic field theoretical coupling is scalar (or pseudoscalar),
This, under the assumption that the field theoretical models introduced
above, are realistic.

After reducing the field theoretical problem to a potential pro-
blem, we notice that the validity of a "static' approximation such as
SU(6), favuours a non-relativistic description of the motion of the quark-
-antiquark system in its center of mass and a potential U(r) regular
at r =0 with finite range R. In fact the regular potential allows high
binding energies, as we must expect, and at the same time, non-relati-
vistic motion,

The non-relativistic condition is R™} << m where m is the effec
tive mass of the quark during its interaction with the antiquark,

The square well potential raises the relevant question on the
mechanism that can produce a function of this sort starting from a
Yukawa field interaction. This possibility is denied in perturbation theo
ry and can be explained in strong coupling physics because higher or
der terms may be as important as the first order one,

The presence and the role of non-central forces in the static
potential limit of the coupled equation is also a good question to exa-
mine, A vector field theory would favour, as it does in Electrodynamics,
a spin-orbit term of the Thomas type(3), thus an experimental answer
on the shape of the spin-orbit interaction based on the best fit parame
ters, is quite relevant in order to draw remarks on the fundamental in-
teraction,

As far as the internal symmetries present in our models are
concerned, the vector coupling lagrangian considered above, is'SU(3)xSU(3)



chiral invariant while the other two violate the chialrity, being of
course always SU(3) invariant,

Before closing these notes of introduction we like to mention
that different couplings considered may provide different electromagne
tic properties for the quarks and consequently for the nucleon and the
bosons.

A "large'' effective mass, for instance, requires an enormous
anomalous magnetic moment for the quark (in order to produce the phy
sical magnetic moment of the nucleon) whereas the ''small" mass may
not require it(4),

A final remark we like to point out refers to the gluon particle:
it may be considered as elementary as the quarks or a bound state,
In both cases it is interesting to see how it is located in the SU(3) bo-
sonic representations, if it is a singlet or not, and whether it coincides
with an experimental bosonic resonance already known or not,

2.- THE NON RELATIVISTIC QUARK-ANTIQUARK MODEL, -

We assume here that the motion of the quark-antiquark system,
in their center of mass, is non-relativistic and that the forces can be
represented by a static potential, regular at the origin and characteri-
zed by a finite range,

The consistency of our point of view is going to be checked
'a posteriori' once we have fitted the phnenomenological parameters
of the potential with the experimental data.

The input data are essentially the bosonic mass spectrum. Our
potential is assumed to be SU(3) invariant., The SU(3) breaking effects
are therefore introduced as a mass difference between the n, p quarks
and the A quark, At this point we deal just with one potential for all
our ot(:t;ets and are now going to consider the different possible choices
for it\%)

We describe with a central square well the main dynamical effects
of the attractive quark-antiquark forces: we think in this way, we are
taking into account the peculiarities that the quark-antiquark interaction
must exhibit, namely the relevant binding energy, the non-relativistic
motion and the finite range,

(%) - Further physical assumptions are necessary in order to extend the
same pnenomenological potential to the SU(3) singlets and we are
not discussing this point in the paper.



In addition to the central square well interaction, we have consi
dered three types of spin-dependent potentials, described by spin-orbit
(£5), spin-spin (E-fl §2) and tensor (Q) operators respectively.

As far as the radial dependence of these spin-dependent terms
is concerned, owing to the phenomenological character of the approach
we have taken into consideration two limit cases, namely either the
volume square well potential of the same form of the central one, or
the surface potential proportional to the radial derivative of the square
well,

Both choices lead to solution of the Schridinger equation in com
pact form only when the orbital angular momentum is conserved. When
tensor forces are effective, only the delta radial form allows exact so-
lution of the SchrBdinger equation,

This is the reason why we have tested separately both radial forms
(referred so shortly as ''surface'' and ''volume'' model in the following),
only for the spin-spin and spin-orbit potentials, while the tensor interac
tion is assumed to be of the "'surface' type (and the central interaction
of the volume type) in any case. The restriction is justified by the fact
that we expect the tensor strength to be much smaller than the spin-or
bit and spin-spin strength (and of course of the central one), because
its typical role is to mix the orbital angular momentum statesin the
coupled triplet states, and it looks very unlikely that this effect is re-
levant in the deepest bound states, which are the most interesting ones,
Our conjecture is confirmed by the experimental fit (see section 3).

All the details on the model employed, and the solution of the re
lative Schr8dinger equation are given in the Appendix. As a final step
of these calculations one finds two kinds of bound state equations (egs.
A20, A.21) for the coupled and uncoupled case respectively.

In fact one has to distinguish between two possibilities,” namely:

a) the triplet states (s=1) with orbital angular momenta 4 =j+1
and ¥ =j-1, coupled together by the tensor interaction (parity (-)J).
b) The singlet and triplet pure states with j={ and parity (-)J*1,

The parity of the mesons in our quark model is in fact (~l)()’ +1,
{ being the orbital angular momentum whereas the charge conjugation
number C for the neutral states is C=(-1) Lts,

The bound state equations (see egs. A20, A21, A23 of the Appendix)
are

j ) )
(2.1) [wj—l,l Jj_3/2(wj-1,1)/Jj-1/f2(wj-1,1)+AKj-3/‘2(A)/ij1/2(A) +



] i J i
+ ()]
Vj—l, 1;j-1, 1] ["’j+1, 1J3+1/2( j+1, 1)/Jj+3/2(wj+1, 1)
(2.1)
J j ?
+ AR, + -1V : =0
'\K3+1/2(A )/Kj+3/2(A) V;;+1, 1;j+1, 1] [ j-1, 1;j+1,1 ]

for the case (a), and

j j j e
(2.2) ol Jj-lfz(sz)/Jj+1/2(sz)+ AKj-«l/Z(A)/Kj+1/2(,\)+vjs, is 0

for the case (b), with s=0 and s=1 for the singlet and triplet pure state
respectively.

The arguments of the J and K functions are the internal (equa
tion A14b) and external (A19) momentum times the interaction radius,
namely:

(2.3) o’ =R l/zm(Uj
Ls

Q,S,Q;S_E) ’

(2.4) A=Rl2me.

The reduced mass of the system m and the binding energy
write as follows

m, m
(2.5) m= l; e=m_+m_-M,
m1+m2 1 2

where the choices of the quark masses m; and m, in the analyzed con-
figurations are explained in Table I,

]

Finally the connection between the matrix elements UJE' "

. B
V%' o L and the parameters Uas Uss’ U o Vss Vg Vt (see Table II)

are given by equations (A6), here repeated for easy reference

j = Z . = = - _ _
) = 1 ot g = 5
(2.6) Ug's',f&s <.{. s JIUC+USSSI sz-i-ULSi S |Q5J>

i ey = . ’
(2.17) VQ,S,J%S- 4L s'JlVSSsl sz+VQS.Q s+VtQ’Q,SJ>
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TABLE I

Table of the experimental boson masses M (in GeV); m,, mp
and m, are the quark masses,

‘Sg‘fat-t; m, =m,=m =m, #Iil_l:mp:mn’ mg=m

i particle | M (GeV) | particle | M (GeV)

looo> w 0.140 K 0.497

l110> 7 1.016 -

[111> A, 1.070 K, 1.242

|101> B 1,283 Ky 1,350
lo11d 211> 0 0.774 KX 0.890
l112)]312> | A, 1.310 | Ky 1.408

4 . i

Note that volume and surface interactions are always distinguished

by employment of symbols U and V respectively (see eq. A4).

3.- FIT OF THE BOSON SPECTRUM., -

We employ now the model outlined in the preceding section, in

both the surface and the volume version, to fit the boson masses shown
in Table I. The spectrum is not complete, and some resonances like 7,
¢, o, are excluded since their mass values require SU(3) breaking in
the interaction (see section 5).

Our problem is then to fit the eleven resonances given in Ta-

ble I, by the seven parameters m =m , m,, R, Ug, Vi and Ugg, Ug

or Vssvy,s in the

"volume' and "surface' model respectively,

As a starting point, an orientative analysis on the order of ma

gnitude of the parameters able to fit the data, and on the existence of
possible ambiguities, may be carried out through the following steps:

choose the third column of Table I, which depend on one quark mass

only;

assume the principal role be played by the central interaction L and
neglect all spin dependent effects as a first approximation;

choose the lower angular momentum configuration (S and P respectively),
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for the two coupled states g and A,, since in the above approxima-
tion the coupling disappears,

In this simplified situation the problem reduces to the fit of
two degenerate states MO=0.457 GeV (average value between the masses
of mw and o ; 9;=0) and M;=1.157 GeV (average among 7, By, B, Ags £=1)
by means of the three parameters R, U, and m_. In this particular ca
c p .
se the eqs, (2.2, 2.1) become

(3.1) mOJ_l/z(mo)/Jl/z( mo)+AK_1/2(f\ )/Kl/z(/\)- 0,
(3. 2) ®, Jl/z( ml)/J3/2(m1)+AK1/2(A )/Ks/z(/\) =0,
with

(3.3) w, = R\/mp(Uc~2mp+ME).

The initial overdetermined problem becomes so undetermined,
and we find a continuous set of parameters satisfying eqgs. (3.1, 3.2),
as shown in Fig, 1.

Now we introduce gradually the second quark mass m ; (initial
value: m, =m ), able to remove the degeneration between the 3rd and
5th columns of Table I, and the spin dependent parameters (initial values:
UsszUﬁ,szvss:V&',s:Vt:O)’ which remove completely the degeneration
among the rows ofTable I,

&0

FIG. 1 - The figure shows the
ambiguity connected with the
preliminary analysis descri-
bed in sec. 3. All sets U, mpR
extracted from the figure fit
equally well the degenerate
experimental spectrum M 4=

=0. 452 GeV (¥=0) and M; =1. 157
GeV (£ =1).
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The fit is performed now by the electronic computer, through
minimization of the mean square error , by means of the complete
equations (2.1), (2.2).

Since the equations are not linear, the first approximation values
of the parameters are obviously important in determining the final re-
sults. This is the reason why the calculation has been repeated several
times, starting from different sets of R, Uc, mp within the range shown
in Fig, 1.

The best agreement with experiments (see Fig. 2) has been rea
ched by means of the set of parameters (la) and (1b) of Table II, in the
framework of the "volume'' and "'surface' model respectively.

In order to give an idea of how much the ambiguity studied in
Fig. 1 may be considered removed by the complete analysis, we have
reported in Fig. 3 the spectra obtained by starting from the region of
very low R values (sets 2a, 2b of Table II), The detailed values of the
masses calculated by means of the parametfers of Table I are given in
Table III.

Finally note that in Figs, 2, 3 all resonances theoretically found
in the analyzed energy have been reported, i.e. also "'spurious' reso-
nances not experimentally observed.

Let us now draw our conclusions:

- the ambiguities found by ''central forces' analysis (Fig. 1) cannot be
considered completely removed by the final best fit, since the mean
square errors relative to solutions (1) are only slightly lower than
those of solutions (2):

- the absence of spurious states seem to be a better argument in favour
of solutions (1) with respect to solutions (2), than the mean square error
magnitude;

- on thebasis of the same arguments, one may conclude that solutions
(a) (volume model) are clearly better than solutions of type b (surface
model);

- solution (la) is the best in absolute sense;

- the tensor potential is always very low, and is practically zero in the
case (la) (by taking V=0 the modifications introduced into the spectrum
la are unappreciable). This means that the coupling is unessential,
and that the Q,KX(AZ,KN) states are almost pure S(P) states. Further
more the lack of analysis with volume tensor terms is not at all dramatic;

- spin dependent potentials are in general small in comparison with the
central one, justifying "a posteriori' the analysis on the degenerate
masses My M;, which we were started from.
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FIG. 2 - Comparison between the experimental spectrum, and
the theoretical ones obtained by means of 'small" quark masses
(solutions 1 of Table II). The "'spurious'' states obtained by the
surface model (solution 1b), are shown separately,
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TABLE I

——
= - 2
- R mo=mp| my U, ¥ Uy | Ves o % |es \,/z(Mexp-M) AN
Solution
fermis GeV
la 0.4706 1,576 1.795 3.473|-0.2011{-0,131 0 0 -0.004 0,043
1b 0.3806 1.128 102700 3.105 0 0 0,527 0.430| -0.051 0.050
2a 0.2140 18,538 18,732 [ 38.389|-0.100} -0,112 0 0 0.024 0,050
2b 0.2110 | 18,516 18.738 | 38.455 0 0 0.010 0.184! 0. 044 0. 060
TABLE III
Theoretical masses (GeV)
State |3sj> Particle| Experimental -
masses (GeV) Fit(Ia) (1b) (2a) (2b)
| 000> L1 0. 140 0.316 0.215 0.304 0.316
K 0,497 0.493 0.302 0,487 0,529
|110) T 1.016 1,076 1,131 1.032 1,094
|111> Al 1.070 1.178 1.325 1,162 1,194
£ K, 1,242 1.318 1.367 1.344 1,402
|101> B 1.:233 1,119 1.328 1,167 1.205
K.‘A 1.350 11,258 1.375 1,348 1.414
0 0. 774 ! 0.508 0.564 0,402 0.316
|o11> |211> KX 0.890 0.688 0.635 0.588 0,528
Ag 1,310 1,424 1,420 1.378 1.224
>
|112) '312 KN i 1.408 1.566 1.228 1.560 1,432

1
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M (Gev)

- 1.5

A

Spurious Theor. Exper. Theor. Spurious

T g \ s
o R

Volume  Model 2 &) Surface  Model 2k)

FIG. 3 - Comparison between the experimental spec
trum, and the theoretical ones obtained by means of
"large' quark masses (solutions 2 of Table II). Note
the presence of spurious states in the low region of
the spectrum.
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4. - REGGE TRAJECTORIES. -

The equations for the bound states, already considered in sec-
tion 2 and derived in detail in the Appendix, are written in such a fashion
that they permit, in a straight-forward way, the interpolation to continuous
complex values of the total angular momentum j. We thus obtain the so-
-called Regge trajectories j(s) associated with our spectrum of particles;
more precisely we achieve the trajectories of the real part of j becau
se we always neglect the decays of the bosons and consequently the ima
ginary part of j. Once the quark masses are fixed, the formalism gives
four different types of bound state equations, leading to four trajectories,
More precisely:

a) the coupled triplet equation (2, 1) provides one trajectory with
the choice mj=mg=my=m, (particles g and Ag), and another one in the
case m1=mp'='rnn, Mg =m » (particles K¥ and Kn);

b) the pure triplet case (eq. (2.2) with s=1) gives two trajecto-
ries (particles Ay and Kp) with the two choices for the masses;

hand
c) the particles w and B from oneAgnd KK'. from the other, lie
on the trajectories corresponding to the singlet equation (2. 2) with s=0;

d) the trajectory related to the particle @, is deduced from the
coupled triplet equation, for the peculiar case j=0, where the selection
rules allow one orbital momentum only (¥ =s=1). Such an equation reads

0 0
(4.1) o, J (“’11)/3/2 AR (AN)/K

1191/ 12 (AVO =0.

3/2 11,11

It is an immediate consequence of our model to conclude that
the Ay and the g particles have overlapping trajectories, in agreement
with the degeneracy observed experimentally,

Fig. 4 shows the comparison between the experimental masses
and the trajectories calculated by means of the set of parameters la
of Table II,

The general behaviours are satisfactory both for the intercepts
at s=0 and the slopes, for the volume model with small masses, even if
a certain little curvature is present, In Fig, 5 the same trajectories
are shown for s ranging between 2 and 10 GeV2, The trajectories are
still rising at 10 GeV2 where they however deviate remarkably from
the straight line. The solution 1b (surface model) provides completely
absurd trajectories (see Fig. 6).
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d " s (Gevd) ‘
FIG, 4 - Plot of the Regge trajectories calculated by the parame
ters (la). The experimental masses are shown for comparison,
and correlated by arrows with the corresponding trajectories,
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FIG. 5 - Continuation of the Regge trajecto-
ries of Fig, 4, between 4 and 10GeV2, Note
the different scale for s and j.
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" ! s (Gev?)

FIG. 6 - Plot of the Regge trajectories calcula
ted by parameters (1b).

5. - CONCLUSIONS, -

SU(3) breaking. The mechanism of breaking the SU(3) symmetry with

the difference of the mass values between the quark and the n-p doublet
works nicely in most bosonic states such as m, o Al, B, @, Ay, K, Kj,
K K¥*, Ky, but exhibits its limits in not providing the experimental
masses of some resonance such as o, ¢, n, M', where one probably has
to introduce an SU(3) breaking term directly in the potential,

This fact however seems to be a minor point in comparison
with what we have achieved from our analysis,

The volume and the surface models. Our phenomenological analysis
dealt essentially with two different choices of non-relativistic potentials,
called the volume and the surface models.

) 8 e
Jd 0 v
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The former, by looking at the best fit, appears much more reali
stic than the latter, In fact our "surface' solutions, both with small
and high masses, predict spurious states in the spectrum and absurd
behaviour of the Regge trajectories (see Figures 2, 3 and 6).

Coming instead to the volume models we obtain an adequate inter
pretation of the spectrum by means of small effective quark masses
(mp=mp=1.57 GeV, Am*0.22GeV), strong central attractive forces, less
strong but equally essential spin-orbit and spin-spin forces (Ugg=-0.201;
ULs‘:‘O- 131 GeV) and almost zero tensor forces (Vt=—0.004 GeV). The
last result justifies completely our initial guess on the tensor force
and predicts physically no mixture between the different orbital angular
momentum states in the coupled triplets,

The evaluation of the Regge trajectories provides rising trajecto
ries j(s) with a behaviour that in the range of s between 0 and 3GevV2
is quite satisfactory from the experimental point of view, and gives the
correct intercept at s=0. One should notice that the Regge trajectories
are computed in terms of the parameters determined from the spectrum,
without any adjustment,

The range of the forces is R=0,47 f. This number verifies well
the kinematical condition of non-relativistic motion (see section 1). As
far as the possible relation between our phenomenological range and a
gluon particle is concerned, we obtain for this a mass around 0.420GeV,

This elementary object can be made coincide with an SU(3) singlet,
scalar, pseudoscalar or also vector, We must consider the value obtained
for its mass just as an indicative order of magnitude and not at all defi
nite, In order to complete the predictions that our volume model gives, we
notice that if the reduced quark mass obtained for the quark antiquark
system, is verified also in the three quark system, it is consistent with
the anomalous magnetic moment of the nucleon, where an effective quark
mass of order of the third of the proton's gives the correct order of
magnitude(5).

A second type of solution obtained from the 'volume' model has

higher masses (m_=m,=18,538 GeV) but creates serious troubles in the
spectrum because it predicts spurious states in the range of masses
below 1.5 GeV (see Fig, 3), which are not present experimentally,
The basic coupling, The picture that comes out from the "volume' model
after determining its parameters makes one formulate, as we discussed
in our introduction, conjectures on more fundamental descriptions neces
sarily based on the relativistic local field theory.

We therefore continue here the discussion started in our first
section when we pI‘OpOSEd three possible relativistic renormalizable

o
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models with the introduction of a boson responsible for the quark-quark
and antiquark-antiquark forces, the so-called gluon field,

We must attribute it a mass around 0.5 GeV and owing to the
fact that the effective quark mass comes out smaller than the expected
free quark mass, we favour the scalar or the pseudoscalar couplings
(spin or gluon)., From these interaction terms one easily understands
in a simple manner how the most relevant effect might be the drastic
reduction of the mass of the quark, and the residual force is treated
by a still strong non-relativistic potential, This does not mean that a
vector basic interaction, with a vector gluon, is not possible at all. In
fact the strong coupling theory allows the possibility that higher order
contributions dominate above the lowest order ones, thus permitting
the creation of a scalar force which needs the exchange of at least
two vector gluons. In this case however, one has to understand the
mechanism that enhances the scalar term from the many gluon exchan
ge and reduces the others,

We finally would like to point out that the square well potential,
regular at r=0, is not necessarily contrasting the Yukawa trilinear cou
plings such as those proposed in section 1, because of the strong cou-
pling constant, Indeed we may simply imagine a mechanism of cancella
tion at the point r=0 between the Yukawa potential g2 exp(- ur)/r due
to the Born term (gluonic exchange) and the superposition of Yukawa
terms ‘/;100 o(a)exp(- ar)de /r coming from higher order contributions,

)
that eliminates the singularity at r=0 and regularizes the potential at
the origin,

The Thomas term., Our spin-orbit potential is not very strong in compa
rison with the central one but it is such that, in combination with the
spin-spin term, determines one type of coupling (volume model) in-
stead of the other (surface). We therefore have here an argument against
the validity of the vector coupling that, in analogy with quantum electro
dynamics, should favour a spin-orbit potential of the Thomas type(S)_

In our case such a term would provide a delta function on the
spherical surface of radius R (R being the range of the central force)
that is essentially what one obtains in our surface model which seems
refused by the experimental fit.

Relations with previous work. Some results we obtain were already

derived by several authors(6) with even simpler assumptions on the sha
pe of the potential. In particular we like to mention the dominance of

the central forces in relation with the non central ones, the very little
mixture of the orbital angular momentum for the @ and the Az particles
and finally some features on the bosonic Regge trajectories. These tra
jectories, however, were related with a peculiar central potential, i.e.

391
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the harmonic oscillator and, according to our knowledge, they were
not connected with a more complete type of interaction that includes
non central forces as well,

Being aware of the impossibility of drawing drastic conclusions,
we point out however that many aspects of the whole analysis we made
seem to be more consistent with a scalar (or the pseudoscalar) SU(3)
invariant field theory. Our results do not deny however the fact that
more fundamental theories and wider symmetries (such as chiral SU(3)x
xSU(3)) might be possible with the vector interaction.

The authors are pleased to thank prof, C, Villi for a critical rea
ding of the manuscript, and for valuable suggestions.
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APPENDIX. -

It is worthwhile to show with some details the formal treatment
of the model on which our calculations are based. In fact, although si-
milar exactly solublé models are known in the literature(7), the case
of the tensor delta coupling has not been stressed so far, as in our
knowledge,

We start from the system of coupled equations which are deri
ved in the general case of a scattering problem with non-central forces,
in the non-relativistic 1imit(8):

2
d® L"A"+1) .2 j _ (%)

(A.1)Ei‘[(_dr2+ £ R LI L g,s,(r)]wvs,,“(r)-o ,

where

(A.2) Vong ¢ i) =KL i} v LrstiD

are the matrix elements of the interaction, in the_representation where
the orbital angular momentum of relative motion{ is coupled with the
channcl-spin §(=§1+'§2) to give the total angular momentum 7t +). The
radial wave-function 9(r) has the following asymptotic behaviour:

. j - J - | T
(A.3) rli)mmwl's', Q’(Sr)oc 62’1’, 6sslexp [_l(kr_x'ﬂ/z)J_SUs',Q, Sexp[—l(kr—i JT/2)J "

Other symbols in eqgs. (A.1)...(A.3) are quite obvious, being only neces
sary to remember that the center-of-mass frame of reference is employed.

We assume the following potential:

i - |
(A.4) YU'S”, E,/,S,(T-')‘I-TQ’HSH’ Y,'S'Q(P’R)-{—RV Mg g 1! 6(r-R),
where
(A.5a) 8(r,R)=1 for r €R,

(¥) - Units h=c=1 are employed.
(++) - Parity conservation is also assumed.
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(A. 5b) 0(r,R)=0 for r> R,
and

J 2 S .8 0 S
(A.6a) UJ?,"S", Ui <Q," 'JlU +U Ssl.s2+U%SQ,-sPL s'i>,

j _ ngh - —
(A.6Db) V.Q,”s",?,'s'_<2’ 'J]V 578, ?’ K s+VQ|P, SJ>
with

i [t et s 4 et 0

(A.7) Q=4 [3(31 T) (5, T)/r" -5, sz]

In other words we introduce a volume (square well) interaction
with central, spin-spin and spin-orbit components, and a surface (Dyrac
delta function) interaction with spin-spin, spin-orbit and tensor compo-
nents. Throughout the paper, the cases Vss=V.Q,S:0s and USS=ULS=O

are referred to conventionally as "volume' and "'surface' model respec
tively,

In the case sl=52=1/2, in which we are mainly interested, we
have for each j two coupled triplet states |j-1,1,j>, |J+1 1, _]> and two
pure (singlet and triplet) states §joj),| jl_]g , the matrix elements of
the operators of eq. (A.6) being in this case:

(A.8a) <y'"s "jls, s, IQ'S'J—>=%6Q,'Q,” 65,8.1[5'(S'+1)—3/2],

(a.8b) LL"s"j|T 5| Vsiid=— Oy1gn Og1gnliGHD-R1(RH1)-s" (s 1]]

sl @les =2 Vao U @t ) (-0 e 6
(A.8c) S
g o2 g $or1 g
%0 0o 11 e 2}

(x) - This is the usual tensor operator of the literature, the factor 4

coming from the fact that we employ the spin operator §;=(1/2) 0;
(i=1,2).

(o) - This is obviously not true in the particular case j=0, where only
two states | 000> and] 1107, both pure, are allowed, However, for
the sake of simplicity, all the forthcoming discussion is referred to
the general (j#0) case,

3} 9
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For the coupled states eq. (A.1) leads to the following coupled
equations (& =j-1, j+1):

2 ..
d jj-1) , .2 j j
— E = =
[dr2 2 K 2mvjul,1;j-1,1(1")]""3'-1,1;;1,, ()
(A.9a)
i =
20095 4 11, 1 ¥ 10, 1900
—vaJ (r WJJ (r) +
+i, 15-1,12 j=1,1;4,1
(A.9b)
)
d Li+1)(j+2) j j )
o +I RNy pier 1 %51, 1,8, 150

dr r

While the two pure states equations assume the form (s=0,1):

2
(A.10) [3_2_3(331)% 2va 5 )]wJS 1570
dr r

Egs. (A.9) and (A.10) are decoupled everywhere but on the interaction ra
dius R, owing to the fundamental assumption of a § tensor interaction,

so that the internal and external solutions may be immediately drawn.
For the coupled case (A.9) wethave (§, L'=j-1, j+1):

J 2

j : \/ j .
(A.11a) “’2,'1,9,1(1") Al'l,llFl'(r 2mU£1,£1+k ); r<R,

i _ ol (%)
(A.11b) wl'l,Ql(r)_Bl[IE'(kr)ak‘,E' 01101 gf(kr)] r>R

In other words the wavefunctions 1P5i . 5 w from one

T widd J J .]_1: 1;.]"1:1 J+1 l:J 1 1
hand, and wj-l 1'j+l,l’wj+1 15§41, 1 from the other, satlsfy the same

Schrodinger equations (A.9), but are subjected to different asymptotic

(¥) - For the definition of the regular (Fy ) and irregular (Gy), ingoing
(Iy =Gg -iFy ) and outgoing (0y =If) solutions of the free Schodinger
equation, as well as of other special functions which will be introdu-
ced later, see ref, (9).
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conditions (A.3) and show therefore different external behaviour (A.11b).
Then, by matching the internal and external logarithmic derivatives (tg
king carefully into account the discontinuity introduced by the ¢ function
in the wavefunction derivative), with elimination of the coefficients A, B,
one derives four equations for the S matrix elements, We use the follo
wing compact form:

i ] i ]
Sf,l g1 Z ((0 ) LL(“]J’S f:'lvf,l 01 21 )/OR’(A)‘
(A.12a)
—exp[21¢z(z)]|_z3 (co -Lg (A)]=0,
i j I3 )
“ LN T kL Ly (A1] 0, ,(2)/0y (1)
(A.12b)

- exp [-2if, (4 ):[Vél, gy U

where the choice ¥ =j-1, '=j+1 corresponds to the first couple of equa
tions, and the opposite choice to the second one,

In eqgs. (A.12) ¢5LU‘ =tg [F}L (A )/GL(}' )] is the hard sphere phase
shift and

do

L
Ly (2)5,(2)+ip, (=r[5=] o, ()

the external logarithmic derivative, while the internal logarithmic deri
vative Z reads:

§ 0 j
Z@s(m?«s)zR[_E;_]r=R/Fﬂ:(w )+Vl’,s Qs
(A.13)
- j J
“’asFe,-l‘“’zs)/F%‘ ) -+ g

All functions in eqs. (A.12) are evaluated on the interaction radious, na
mely:

(A.14a) A=kR,

i [ i 2
(A.14b) Ty RVZmUz L s +k
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From eqgs, (A.12) one gets (being as before {, ¢'=j-1, j+1):

S‘}/l EI_EXP [—Ziﬁz(ﬂ.)] X

(A.15a) [Zil(“’il)-Lf(l)][Z!]L'l“"%,rl)‘%“’]‘[Val ¢1]

X + . 3
[z} (@] )Ly ()] [2Zy,, (@, )-Ly (1)] - [V?,l e,'1]2

Sty grg-tore [0y a1+, ().

(A.15b)
2i I/PI{((;JL)P,‘,,,(;L)VSL1 gy

-[ij(“’g,l) ks (“][ g1 %'1)'La'("')]'[vj4’,1,?,'1~.|2

Finally, by matching the (internal and external) wavefunctions, one deri
ves four normalization constants, and is able to write down the wave-
function. The last constant is free for an overall ¥ normalization,

For the pure states, the S matrix elements may be derived eithur
from eq. (A.10) by a similar procedure, or directly from the expressions
(A.15) with the formal substitutions L, L' = j; 1>s(=0,1).

Since S;o,;jlzv‘;o,jlzo (see eqs. (A.8)), one gets:

J
. (o ) ( )
(A, 16) st | "exp[ -2i(, (JL)] ‘]S s ; s=0,1,

JS:JS J
2] (@3 )-Ly(4)

The unitary may be easily checked in egs, (A. 15) and is transparent
in eq. (A.16) since Z is real.

Now from eqgs. (A.15) and (A.16) one immediately finds the S
matrix poles in the complex k plane, for the coupled and pure case re-
spectively, namely:

j j “s
(3-17)[23-_1,1( je1,1 (7“)][ j*+1, 1(w;|+1 1 M] [ j-1, 1;5+1, 1] .
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(A.18) 73 (@3 )-L.(4)=0:- ,s=0,1.

In particular, for pure imaginary momentum k=i V2me, being
the (positive) binding energy of the system, egs, (A.17) and (A, 18) are
the bound state equations. Nevertheless, in this particular case, they
are better written in function of the real argument

(A.19) A=RYV2me,

namely:

. . 2
™ i L) ] =
(A'ZO).LZj_l,l(wj—lJl) i- 1(7“)] {ZJ+1 1 (@541, J+1 ] l: §-1,1;5+1, 1] .

i - 2
(A,21) st(mJS)_LJ (A)_O; S_OJ 1:
where
oy, (-) (-) (-)
BN E Wl ST = .
(a.22) Ly (M) =R[ ] /0y (A == a0y (A) /oy (A)-

0(2:) being the (real) outgoing solution of the free Schr8dinger equation
for negative energy.

Since F, and O(_) are simply related to the Bessel functions J
% ¢ N L +1/2

and K " respectively one can use, in eqgs, (A.20) and (A.21), in

3

place of egs.(A.13) and (A.22), the following expression which is more
suitable for extension to complex j values:

- il i i
cots Js;-l/z(wiz,s)/Je+1/2(wzs) e

(A.23)

+

(A)+v

K£—1/2( Lo 0+1/2 s, bs

By means of the matrix elements (A.8), and making use of the
properties of the functions J and K, the Regge trajectories are immedia
tely drawn from egs. (A.20), (A.21) (A. 23).

Finally, although the equations developed so far through the S
matrix formalism are all we need for our calculations, it is worthwhile
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to outilne breafly the direct solution of the bound state problem, which
must lead obviously to the same equations (A, 20), (A.21), but gives in
addition the bound state wavefunctions,

We start as before with the coupled states: one immediately re-
cognizes that, in the bound state case, not only the Schrodinger equations
(A.9), but also the asymptotic conditions (A, 3), are the same for func-

y .
ions wil;j—l, . and w?xl;jﬂ, 1 SO that two labels may be dropped, by
writing w\i"-,js ?,'sE w.J?,s' Then the internal and external solutions (A.11)
become: ’
(A.243) wj (r) = Aj F, (r\/Zm(Uj ~ g)): r<R

£l L1 1,01 : g
(A. 24b) vl =8 ol Vame)

' 21 gpg T rEmES

and the logarithmic derivatives matching (A.12) read now:

] ] ] oyt
Aj~1,1[zj—1,1(mj—1,1) Lj—l(A)] !
(A. 25a)
] ] (-) (D i o
Aj+1,1Vj-1,1;j+1,10j-1(A)/Oj+1(A) 0.
] ] (=) (=)
Ay 1,1 Ve p, 1 QA0 PA) #
(A.25b)
] ] ] (-) "
A1, 115541, 1151, 1)‘Lj+1("\)] SR

The homogeneous system (A.25) admits non-trivial solutions

Al Al if and only if eq. (A.20) is satisfied, Then, from one of
j-1,1 J¥1,1

the equations (A.25), and from wavefunctions continuity on the interac-
tion radious one gets three of the four unknown coefficients (the latter
being as usual an overall normalization constant) and is able to write
down the wavefunction,

The pure states wavefunctions are obtained in a similar way, to
gether with the eigenvalue equations (A, 21),



26.

REFERENCES, -

(1) - D. Faiman, Nuclear Phys. B33, 573 (1971); R.P. Feynman, M, Kisslin
ger and F, Ravudal, Phys. Rev. D3, 2706 (1971).

(2) - G. Morpurgo, Physics 2, 95 (1965); R. H. Dalitz in High Energy Phy-
sics, Ecole d'Eté de Physique Theorique; C, De Witt and M. Jacob,
Eds, Les Houches 1965 (Gordon and Breach, 1966).

(3) - See A. Messiah, Quantum Mechanics (North Holland Publ. ), vol, II.

(4) - N.N. Bogoliubov, B, V. Struminsky and A, N, Tavkhelidze, JINR Pre
print D-1968 (1965); H.J, Lipkin and A, N, Tavkelidze, Phys. Letters
17, 331 (1965); J.J.J. Kokkedee, The Quark Model (Benjamin, 1969);
pag. 60.

(5) - J.J.J. Kokkedee, The Quark Model (Benjamin 1969), pag. 62.

(6) - See R, H. Dalitz, of Ref. (3), p. 320-321 and Fig. 10-3.

(7) - S. Yoshida, Proc, Phys. Soc. A69, 668 (1956); H, A, Weidenmlller
Ann. of Phys, 28, 60 (1964); K.F. Ratcliff and N, Austern, Ann. of
Phys. 42, 185 (1967); G. Pisent and F, Zardi, Nuovo Cimento 53B,
310 (1968); L. Drigo and G, Pisent, Nuovo Cimento 70A, 592 (1970).

(8) - M.L. Goldberger and K, M, Watson, Collision Theory (Wiley 1967),
Chapt. 7.

(9) - A.M. Lane and R.G. Thomas, Rev, Mod. Phys. 30, 257 (1958).




