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SUMMARY. A discussion on K13 decay is given, in the framework

of SU(3)XSU(B) equal-time and light-cone commutation

relations. .

Klgldecay is undoubtedly one of the most interesting.and
popular topics in the field of weak interactions. The reason,
essentially, is that not only the experimental information on
Kl3 decay allows precise checks of some basic assumptions of
the theory of weak interactions, but, also, it represenfs a
sensible test of the theoretical approaches which are a&ailable.
My talk will be devoted to a short survey on Kl3 decay, looking
at the problem from the point of view of current algebra,.
light-cone algebra and-related techniques.

. Let me start by briefly introducing the K1 _ process.

3
A very gratifying point is that the experimental data strongly
recommend the simple Cabibbo ‘description of semileptonic decays,
based on V - A hadronic currents with octet behaviour under

SU(3). Accordingly, the object of interest for the decay K~+ﬂf€§&

.is the matrix element

@IV = 14,00 (peq)r
+f (m(# cw,k} € = b=, )

(k2), G4ls) .
where \/ —\/ is the vector part of the AS:AQ
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2
hadron current, and ‘Yﬂz_a £ \ff, £ (f‘mk-rmm\ in the physical

decay region.

A third form factor'is-usually introduced :
Ay ) JF 2

-’;(la)_-F+(K)+ : ()

14 T

- m® (@)
which is induced by the SU(3) breaking :

‘L<7t\'3#\/}&\\'<—>*= (- ’“’MJWCCV—Z) o

Rather than in terms of f+, f , the process is better described
by the form factors £, , £, with which most of the theoretical
predictions are concerned. It seems reasonable to assume a -

linear variation for all Kl form factors :

£, () = £, () (¢+ e \J‘)

2.~ £ (o) :t+’\°»c’"
e (' o & Mo\ o
TR - m% Nl "
o = Ay ‘%(0) -t L ) (o)

Actually, the. assumption of linear dependence for both £ g £

.amounts to implicitly neglect j\ so that, within our
parametrization (4), only ‘?((ﬂ and '>i+ (on ’>\o and >\+ )
are significant.,

How looks our experimental knowledge of g (0) and ’>\-\;?‘
The least we can say, to be optlmlstlc, is that it is controver51al

The best established case 1s )L3 s Wwhere an overall fit
"gives )

% (0)=-0.853 020 ; >\+-__- 0.048s0012 =

Ke3 data, on the other hand, seem to suggest smaller values of
)\+_(typlcally, 0.029 + 0.006) so that, by combining Kpe3 and
(2)

Ke experlments we flnd

3 |
%(o’)=;0,65:o,1o ; ')\+='-o.03411-0,'oo'g " (8 s
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Finally, the result ?(0) = 0.00 + 0.18 can be found in the

literature, which has been derived from the branching ratio

FCK;J)/F(“Z'-Q assuming x_‘_”—t: 0.03.(1)

data point towards a negative and sizeable value of T%(O) 3

Anyway, most of the

since‘f = 0 in the SU(3) limit, this result does not seem, at
first sight, easy to fit in the current picture of SU(3) as
an approximate symmetry of the hadrons.

" Now, 'the thoretical aim is to evaluate the form factors,
or, at least, to get predictions on them.

A first possibility is represehted by simple theore%}cal
models, like e.g. K* dominance of £, which gives P ::g;;%<102‘\

’

in rough agreement with most of the Ke3 data. '

; Alternatively, one can exploit general statements on the

weak currents, like current algebra (and light-cone algebra),

concerning their transformation and partial cénservation properties.
SU(3), of course, is the first candidate, and the information

which comes from the aigebra of SU(3) charges alone is the

well-known relation (3) "
¥(0)§¥+(0)=i+0(5‘8) ' (7)

which states that the departdre of f+(0? from its SU(3) symﬁetric
value is of second order in the breaking. Thi% result; although

of extreme importance, has not proved enough, so far, to producet

a quantitative prediction on K1, decay, since a reliable evaluation
‘of the corrections (( E;) is hot at hand (4); the only immediate
indication which we can derive, assuming octet dominance,

is the limitation f+(0)<.1. Moreover, a rela@ion of the kind_*

in Eq.(7) is not easy to test, since only the product f+(0)x'

sin 9<-_ is determined by experiment, gc being the Cabibbo angle.
We are lead therefore to extend our considerations from

SU(3) to the SU(3) x SU(3) algebra generated by the vector

and axial vector currents, supplemented by the PCAC hypothesis,
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namely, to soft-pion theory. Soft—pion_theorems are, among the
predictions of current algebra, the easiest to test experimentally
~ and, es well known, fhey work in many cases so well that we are
inclined to consider‘the.smallness-of the pion mass, which is

the essence of the PCACIessumption, not as a dynamical accident
but, more seriously, as the manifestation of an approximate

chiral SU(2) x SU(2) symmeétry -of the hadron world, exactly realized
.in the limit My = 0. Ih our case, the soft-pion result is :
represented by the Callan-Treiman relation, which states that,

in the limit of vanishing mass and momentum of the emltted pion :

fmi) s § iy = B2 ®

6r, in terms of the form factor £ : :
£(mi) = % -. (9)

Now, it happens that if we assume, according to PCAC, the
Callan-Treiman result to hold without sensible variations on
the pion mass-shell too, its simple linear extrapolation to the
physical region turns out to be inconsistentlwith the experimental
indication, -since we find, from Eq.(4), inserting the experlmental
values of :X‘+ ¢ ' _
?CO\Q ~0,32 and ‘?(0) ’:8'-0..2;1_)

in contrast with the figures (5) and (7).

This is not very pleasant, of course; if we believe that
the soft-pion picture has some adherence to the physical world.

+ Then; unless we want to invent some extra effects to explain

this failure;, the corrections to the PCAC result, due to the
finite size of the pion mass,must be taken into account before
trying a comparison with the experiment. The prescription to
extrapolate soft-pion theorems onto the mass sheli is not unique
and depends, so to say, on the author's taste. I choose to

review three among the most recent examples.
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A very simple approach is represented by the rest-frame
.saturation of equal-time commutation relations of SU(3) x SU(3)

charges and dlvergences, involving the non strange axial charges

Gi() to which, essentially, the plon is assoc1a%§ﬁ (5 ), and
2 - ' l
such that, in the spirit of PCAC, =§dx A O(fmn)
(6) '

The result is

-
(ﬂ-"“%ﬁ)g[(«“ﬁmn\z} e o -

K. fm,,,_fﬂn-— S <O\Yaﬁf), Q(kﬂ]l k_(?=°)> . (10)

By 4 (49, §(93:0.720

e " e (q’c"”“x)(“\ro‘w_k)) |
§(p)= 2 8-k ol X cno)"“\>}<’“\9)~\/)£“ k() -ct.-
= g i L‘ﬁx<0 S_’X(fo) #\/}f“(b;l “C>,‘=' ?Cﬂa‘ kg_,)

' B : () ' (r
_k’""'}P"OL'J'_ CD+/M§.] g}AAf\,Cx‘) = fma}f '(3.\’ ,XCx))

(11)

In shorthand notation é;
(u'mr)ﬂ(m—ma} s valona).

It goes without saying that, for ﬂTHt.:C) , the Callan-Treiman
relation is beproduced. It is easily realized that the extrapolaﬁion
is performed along a parabola in the (q, k}) plane, represented
in Fig. 1, connecting the soft-pion point C\r 20, K’ an.

to the nearest point of the physical region, CL-rn\rJ GWT “1
. indeed, Eq.(10) is a dispersion relation where both the "mass"

q2 and the momentum transfer ¥Qi are varying along this iine,

whose intersections with the“lines,of singularities“represent the
?a;ious contributions to the dispersive sum.

Let ‘us inspect very quickly the corrections to the Callan-

Treiman relation, which appear in Eq.(12). The higher commutator

[a Ql is essential in order to get rid of the pion crossed
l
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mass singularity at ﬁzzm}; )K‘z’=(“mk+f‘maz‘, proportional to
j;iﬁﬂﬂk:+ﬁhﬁ\{1, whose appearance would prevent us the possibility
to extrapolate the Callan-Treiman relation to a single phyéical
point, Such a commutator is, of course, outéide the current
algebra frame; so,t@is is the ideal case where to test models
of chiral SU(3) x SU(3) symmetry breaking: We have, moreover,
kinematical corrections (which are seen to work in the right
direction but to be not enough) and a dispersive continuum
which might be, as a matter of fact, an()(“ﬂﬁfhfmx), since the
integration threshold is C)(hnf); A quantitative discussion
of the corrections is not easy: opinions are diverging, and.
so far, a definite conclusion has not been reached. For example,
on the basis of simple, model dependent estimates, Banerjée(7)
has claimed that the Callan-Treiman relation(namely,approximate
chiral SU(2) x SU(2) symmetry) and the experimental data can
be compatible: a dip of ~F(\L?‘) somewhere around k,"‘ :ka- k‘m,t)z‘
is required. This conclusion, which has received support from
several other authors, is tackled by the opponent party, tfying
to interpret daté rather in terms of near SU(3). Anyway, a good
experimental information on.?(k})near the edge of the physical
- region would be of much help in clarifyling things. The situation
concerning.@(k%)is sketched, qualitatiéely, in Pig. 2.

The second method which I would like to mention starts
£ rom the SU(3) x sU(3) %g§ht—cbne algebra, and has been developed

by G. Furlan and myself « Light-cone physics has represented one

"of the most exciting topics of these recent times and shows nice
features of simplicity. Being not willing to enter details, I
limit to remind that it seems reasonable to abstract the light-
cone current commutation relations from the free quark model (9).

One of the arguments in favour of this assumption is that this

model has been already successful in suggesting the SU(3) x SU(3)
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equal-time algebra of charges (and, perhaps, of divergences)

As a result, introducing the operators (X _-\]':—-" (?\ '-"-xz)
.;?.L = (x ,‘)) - ( '\- - =l ) ;
W9 X - X G s P

Qa (g, = faedR e TR Ny

= (G =9, X)) () a3

A (5 ,x")= (dxdx, e A
we have at disposal the SU(3) x sSU(3) light-cone algebra 7

{QWC"L,X“')) Q\\ock‘lxﬂl Q“#«th Qc;‘\*ﬁ, X+)
| Qc\(ﬁ, x) Q,(x, x+)l 1§ . Qare, ,<+) "
[Qatx9), R G xt)= Af L Rl =)

The importance of defining the operators 1 P GQQL in Eq.(13)
stems from the fact that atq C\_L O they coincide, for
conserved currents, with the familiar SU(3) x SU(3) charges °
Q:: (d? g O(x) and therefore, “while -being appropriate to.
light-cone kinematics, they are of use in dealing with partial
conservation properties when the symmetry is broken.

The procedure, now, very similar to the previous one,
consists in saturating the simple algebraic structure (14).
The result which is derived for K1, decay is the modified '

3
version of Eq. (12):

(i+_._)ﬂom rm,r)l S(fm,-).-.

_-EE_ ik " (15)
8r 2 4,.(0) |

where -? (o) - ﬁ (fw:,.:'o] is the value of g-.- given by the

Goldberger—Trelman relatlon, exactly valid for massless pions,

S.C’“1n_l s whose explicit expression this time I omit,

represents, again, a dispersive continuum of order m
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started from a light-coéne commutator, the dispersive line'is, in

this case)the straight line, represented in Fig. 1, of equation

fmw 2,
0‘,‘1’ - : "+ m_m : \
N 1 (16)
Hyhr-tfth‘

Actually, the straight line can be obtained from the parabola,
characteristic of the equal-time method, as a degenerate case,

by taking an appropriate limit which requires, for consistency,
the convergence of form factors at infinity.The straight line,
moreover, does not touch the soft-pion point ﬂz= o} k_:'mi,.
which means that in the present methog_ye get the separation

of the result into a finite part plus g@“ﬁﬂ corrections only
after that the soft-pion limit has been imposed, in a sense,
likeé a constraint; this is why_g Co} appears in Eq. (15). Apart
from this difficulty in handling the soft-pion limit Nﬂ =0,

the fact of worklng along a straight line is really an advantage,
since the lines of singulafities are met only once (and not
twice), and this results.in a remas&gble simplification in

the set of graphs contribuﬁing to é;(qﬂm) . Looking at Fig. 1.
we ‘see that crossed mass singularities are excluded; as.a
consequénce, the pion.crOESed contribution, which I qehtioned
before, is disposed of from the begihning, and we directly

get a_prediction at a sipgle physical point without introducing
higher, model dependent commutators. Furtherﬁore, the c'ff-channel
(1ines Q?= P1: ) should be‘strongly depressed; since form factors

rare evaluated at large (timelike) momentum transfer, of order

i/%ﬂhc , while simplifications are possible in the Hftchannel
(lines k_ P12 ), where momentum transfers are C)Chﬂr). Now, to be
quantitative, we could try a comparison of Eq.(l?) with experlmental
data, neglecting, as a first approximation, the S@nw)effects and
exploiting only kinematical coefficients, corrections to the

Goldberger-Treiman relation included. The result is that the



figures (5) and (6) are pretty well reproduced since we find,

according to the alternative ‘values of CX-k t

Tl v ~0.F¢ Ny = 048
Clo)jx-06r Ny = 0034

This is not very conclusive, of course, aﬁg_the indication coming

(17)

from a simple-minded estimate is that theg(’mraeffects might be
sizeable, although not dramatic. So,let us consider the figures
(17), at least, as an encouraging indication.

‘An alternative and interesting light-cone approach to

(10)

KlS decay has been proposed by Brandt and Preparata s who

find, among other things : :
flxo034 ; Y -a+> e

In their method light-cone commutators are used in coﬁnection

with appropriate finite-energy sum rules in the "mass" variable

Cvz and play, essentially, a role_analogoué to that of

Regge poles in conveﬁtional dispersion relations. The dispersive

lines are, in this case, referring to Fig. 1, the vertical .

lines k2‘= 'm:—: and kz"'-"- ’mt It is very difficult to establish

connections (if any) with ou; appéoachz We think that our method

is more economical and invoives, in practice; very little of

the light-cone approach, since the simple '"charge-charge" algebfa

(14) is taken as the stérting.point..Brandt and Preparata, on

the other hand, use higher, model dependent commutators, which they

. abstract from the simple model of Gell-Mann; Oakes and Renner (11);

in their treatment, therefore, the bilocal operators appear
to play the fundamental role, and more results are obtained;

as a test of more assumptions.
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Figure captions

Fig. 1 =:=.— equal-time parabola
= light-cone path Eq. (16)"
: ] 4 | 2 :,2 2
“'w = = Jlines of singularities q = Mﬁ’ k = Mm.
=t+ =is= lines of Ref. (10)

Fig: 2 . The divergence form factor f(kz).
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