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ABSTRACT

In this paper we put the basis for the treatment of the hadron-deuteron reactions,
characterized by the break-up of the deuteron.

To begin with we consider spinless hadrons and processes without production. We study
the impulse approximation for a general form of the elementary T matrix; the phase space
integration is accomplished keeping fixed the angle of the final hadron in the C.M. system
of the hadron and the nucleon, which is chosen as participating to the reaction.

The impulse model is eventually checked on the momentum and angular distribution of

the so called "spectator" nucleon.



1. - INTRODUCTION

In the series of papers beginning with this one, we will be concerned with the

deuteron bresk-up reaction induced by a particle X
X+D » Y+N+N.

In the present paper we consider only the case in which Y belongs to the same iso-
spin multiplet, but in the following ones we will consider the case of production, i.e.
when Y is different from X, as in pion photoproduction (yD » 7 NN), or when Y represents
2 or more particles, as in pion production (KD-KrNN). When Y is the same particle as X,
with the same charge as well, the process is called "elastic incoherent"; in all the o-
ther cases, as in charge exchange or production we will refer to the process as "inela-
stic incoherent". The word "incoherent" refers to the contribution of this process to
the differential cross section because this is obtained by summing incoherently all pos-

sible states of the 2-nucleon pair (*).

Both processes, elastic and inelastic, were explored experimentally on a large
scale in the last few years ('). The main reason for doing such experiments is that they
give an information on the particle-neutron system which otherwise would not be possible
to obtain; the information is on the behaviour of the differential cross-section over
the whole angular range, of the particle neutron elastic and inelastic scattering. It
is very well known that if the energy is high enough (Plaba 1 GeV/c), the coherent ela-
gtic and inelastic process is characterized by the dominance of the double scattering
for momentum transfers -t larger than .3 (GeV/c)®; therefore the information on particle
neutron scattering, which can be extracted from the single scattering is limited to the
range of small momentum transfers (2:*). Here, on the contrary, the shadow correction is
very small even at large angles and can in principle be isolated kinematically. The pro-
blem of the shadow correction in deuteron break up reactions is very interesting and was
already studied by many authors (*). However we will leave this subject to another sepa-
rate report and we will concern ourselves here only with the impulse approximation on
the phase space. That particular problem was considered already by Stenger in his PH.D.
Thesis: his method is reported in the paper by Goldhaber et al. (5), which gives the
first analysis of the process K'D - K°pp around 1 GeV/c. The approximation, which
Stenger uses to reduce the number of integrations is not always valid, as it will be
shown in the following, but the paper (®) is still a starting point for the analysis of
that process. A more recent work was done by Jew in his Ph.D. Thesis: he uses a Lorentz
invariant formalism to calculate the phase space volume. His computer code was used to
analyze the process KD - K np and the result of this analysis is reported in the paper
by Jew and Kalmus (°).

(¥ When the symbol Y represents more than 1 particle, the scattering angle refers to the
C.M. momentum of the particles contained in Y.
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Beyond this, we will consider the distribution on the angle and the modulus of the
momentum of the "spectator". In connection with this, we guote the work by Butenschoen(?,
who considered the process D - 7 pp in the energy range between .2 and 2 GeV: he look-
ed at the problem of the asymmetry in the "spectator" angle, which is always present in
this type of reaction and he explained it as a flux factor effect. The asymmetry was explai-
ned in the same way by Hirata (®), who calls this phenomenon Doppler effect: he gives
numbers for the excess of high momentum "spectators", but he doesn't give a satisfactory
explanation for it. The most recent work on the subject is due to Dean (°), who consider-
ed the symmetrization effect on the distribution of the tranverse part of the "spectator"

monumentum.

In all these papers, as in this one, the main purpose is to establish a connection

between the experimental data and the two body parameters for the hadron-neutron system.

Tn this paper the invariant formalism (®»') is introduced from the very beginning
(Sec. 2), giving the set of Feynman rules, known from quantum electrodynamics Ca) and
two additional rules, which give the expression of the deuteron vertex and the scatter-
ing boxes. This formalism is elegant and gives the possibility of evaluating relativis-—
tic effects. Tt is besides shown in the literature ('7#'") that this formalism contains
Glauber theory as its limit at small momentum transfers and high energy. The case of a
spinless particle impinging on a deuteron is considered afterwards (Sec. 3) and a for-
mula is given for the differential cross-section for the deuteron break-up. In the same
section we give the definition of the weight factors and we compare their expression

with the results of the previous literature.

In the next section (Sec. 4) we discuss about the general behaviour of the cross-
section in fterms of the momentum of one nucleon: then we define the "spectator" and we

examine the distribution on the modulus and the angle of its momentum.

Finally (Sec. 5) we consider the behaviour of the weight factors as function of
the scattering angle, with special reference tc the comparison between the exact calcu-

lation and the Stenger (5) low energy approximation.

In the appendix A we give a practical method to determine the Feynman rule for the

deuteron vertex.

In the appendix B we write down in full detail the method to determine the kinema-
tiecs of the 3- Body final state if the scattering angle in the particle nucleon C.M. sy-

stem, and the tri-momentum of one of the two nucleons in the laboratory system are fixed.

2, - INVARTANT FORMAT,TSM

Before starting the actual treatment we give here the rules of the game, which are

very well known, but we find worthwhile to state at the beginning to make this report as



much as possible self consistent. We have to tell that the particles or lines, we consider
are all spinless: this makes life easier, concerning the definition of the flux factor
and the normzlization factors CJ). However, this assumption doesn't forbid to include
apin inside the scattering boxes and in the deuteron vertex. We will not give here the
correspondence for the external lines, since in the above conventions it amounts only
to a normalization factor, which appears in the definition of the S matrix, but disap-

pears in the T matrix.

Choosing the metric (1,-1,-1,-1), the rules are

internal line

o i(2r)*&(qep-a'-p')T(s,t;m*)

scattering box with one

particle off-mass shell

q
1 5
a, =0
L . (G
- i(ar)*s(a-a-a') ooz
deuteron vertex with one
1 -»> =
1 th hell G T -q'
nucleon on the mass she T B (16 W;JS)/E W (ng )

The definition of the deuteron vertex in terms of the non-relativistic wave function
of' the deuteron ¢ is very simple, as shown above, if the momentum of the deuteron is small
enough that we can neglect relativistic effects. This definition can be obtained from the
general form of the deuteron vertex in the non relativistic limit. To the interested rea-
der, we give the reference for the general invariant expression of the deuteron vertex, in
terms of the non relativistic wave functions: this is a paper by Gross (*); in this paper
the non-relativistic limit is actually done and the result is identical to ours apart from

trivial normalization errors.



The application of these rules to any diagram defines the corresponding 5 matrix,

which is connected by the following standard relation to the T matrix

Tfi

. n

1 5o M

(2.1) Bpy = BpgtilEn) 8(r,-P,)

This relation contains the normalization factor for the 2 particles in the initial
state and the n-2 particles in the final state: in the above simplifying convention N;

is the normalization factor used for the boson in the literature

(2.2) N, = J(2n) 2m,

The calculation of such factors from the Feynman diagram are not necessary, since

we shall, eventually take them out to extract the T matrix.

The normalization of the T matrix given by the relation (2.1) is such that the dif-

ferential cross section, is defined using

5l 2
£ ng &Ep, ... @py,

@ 2
Ay M

(2.3) do = (2m)*s (P;-Pp)

where & is the flux factor, defined by the Lorentz invariant

(Z'LL) 2 lF\/(Pﬂ)aJE' (m1m2)2

n

The flux factor is connected with the relative velocity between the two particles in the

initial state by the following relation
b = 4 E1E2 v

The flux factor assumes the simple expressions in the rest system of particle 1 and the

total C.M. system
(2°5) ® = L myps = Lkﬁ

where k is the C.M. momentum.

The above definition of the differential cross section (2.3) is consistent with the
following normalization of the amplitude in the forward direction, given by the optical

theorem



(2.6) Im T (0,8) = -52’— i

We will use in the foregoing section the following notation for eq. (2.3)

(n-2)
1 2 dV
(2.7) do = % ’%'Tfil T

where dV(n_z)represents the invariant volume element of the phase space of the n-2 fi-
nal particles. From the above formula it is clear that § ; |Tfi|2 is an invariant too.

We will consider now the problem of two particles, one with spin O and the other
with spin 1/2 (meson-nucleon), which scatter elastically: this example, not only elari-
fies the last few points of the discussion, but provides the background for the fore-
going section, where we limit ourselves to this case or to the isospin flip channel.
This problem as an application of the invariant formalism is really trivial, but since

we know already the answer, we learn something about the method.

The diagram is shown in Fig. 1. We indicate the meson with a dashed line and the nu-

cleon with a continuous one. The T matrix element is
(2'8) Tfi = 2m ;f (P') (A+B YQ) uj_(p)

L]
where Q = SL%gl-

The Dirac spinors are defined
(13>

5 o =D
(2% I(P) J2mn(m +3) v 0 )

(2.10) aa(p) = ug(p) v,
where

(2.14) FEE NgB =Y 0

03} _(1 G)
¥ =
Z_O o] -1

The matrix element T is written in the four dimensional spin space, but since we

i
don't consider antiparticles, we can easily think it in two dimensional space. The techni-
que is to perform all the products of the two dimensional symbolic matrices and take only

the first diagonal element (*):

0o
-t
]
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m-:f}(m+E)y;(m+E')};[A+% (wrw')] -

£1
1 B
e [ A Bew)] (P2
(m+E) Z(meEryre <
(2.12) + B(2a+E+E') 5-54% (B-E')3-E +

1 [ 42 (w0')] 5-(B x B) + 1 B(8'-E)3-(3F) +

+

1

P i% (2msB4E') o (BxQ)}is= <f |T |i>

where w. ' are the initial and final energies of the meson and E, E' are the initial

and final energies of the nucleon

and
6 o —)+—)'
e 2
> _ _pap
B o= 2
E-3-% =% -3

This expression is very clumsy, but it becomes very simple for the laboratory sys-

tem and the C.M. system, where the number of the spin flip amplitudes reduce to one. In

=y

the C.M., we obtain with the constraint of P + q = p' + q' = 0 that

(2.13) T = @, + 1 ag g-f
where
- -,
s 9% 9
o= - =2
|2 x '
and
@, =m f(Em)[A +(Ww-m)B] + (B-m) [A +(W2m)B] cos o]
Ay = -m(E-m) [-A+(W+m)B] sin o*
W= s = Etw, E, w are the energies of the nucleon and the meson in the C.M. system.

These linear relations can be inverted and A and B can be expressed in terms of the

C.M. =zmplitudes
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b=
|

Wim [+m W-my %
Eem ¢t (g+m e ﬁ*4-E— ) sin ﬂ{]
(2.14)

B:-L[1—a . (cos g*_

E+m T E+m E—m ) sin &*

The same reduction is done in the laboratory system and we find

(2.15) T= a,+1i 2, ok k=n
where
g B m 2 12
gy s 20 ARl TAyvg (06)] ~ 2 i
(2.16)
m res e
8 Ry BlA X ql
where

€, €' are the initial and final energies of the meson in the laboratory system.
If we substitute here to A, B the expressions (2.14) in terms of PP ag, we obtain a
linear relation between the 1lab amplitudes and the C.M. amplitudes, which defines the

Lorentz transformation

(2.17)

where

-

C..==mA-the (Fm, 1 el 34 ..
£ W Fh (E+m 2 E:m LW 1-t/4m® E+m

=4 4 Wm -m _ 1 gse’ -
Cfg = { m Jrit/am [: E*m § E¢ cos % 4 (g-m S e j]

= -q' cos O% il N
(2.18) W - t/hm2 ( E +m E—m/} 31nﬁ*
. I 1 x.=
Cor = 2 J1-t/hm 15 | T+m

02
=}
c“\



- 12 -

cos 9% 1 ) 1

sin g%

1 1 = =
Cog = ~ 2W J1-%/0a° |&<al ( Tem E-

The intuitive reason, why in general the spin amplitudes mix in the transformation
from the C.M. to the laboratory system, is that the spin doesn't transform as a vector

in a Lorentz transformation, but as a second rank tensor like the electromagnetic field.
2

The distintive feature of this treatment is the relativistic invariance of g&lei[:
this property can be verifield directly starting from (2.8) and calculating the tr(T T°),
by means of the projector operator technique (**). This invariance fixes the properties of

the transformation of the amplitudes: that is

2 2 _
[egel® + lo gl =1
2 2 -~
(2.19) |Cfg| + |cgg1 =1
Cff Cfg +Cgf ng =0

which are the conditions for the invariance property
2 2 4 2 2
(2.20) lagl*+la |® = lagl®+]a,]
This can be written in terms of the conventional spin amplitudes in the C.M. System, as
(2.21)  6hrts (l£l%l6l?) = lagl®ela|?

*
The factor 64 m°s is the simple expression of E%%g? @(2), where the index (2)means

that we are considering a two body process.

The relations (2,19) are direct consequences of the invariance property (2.20): how-

ever they can be checked directly, for instance in the forward direction. If we use the

relations
g+ EEE

2w

we realize very soon from (2.16) that for §* = 0, Cff =1 and Cf = 0, For small angles
g

A~f-t ~ q 9%, then ng =1 and Cgf = 0

"-i Y 3
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3. - WEIGHT FACTCRS

We pursue here the aim to give a formula, which comnects as directly as possible the
data of deuteron break up reaction, induced by a spinless particle and the two body am-
plitudes for the scattering of this particle on nucleon. This connection is established
through the "weight factors" for the spin matrix elements or even more directly for the
square modulus of the spin amplitudes in the C.M. system, which take in account the com-
plex structure of the deuteron. These factors, which should be constant for the scatter-
ing on a pure neutron target, weight differently in different angular regions the various

spin matrix elements.

For the moment this calculation is performed in the approximation that in the time
lapse, needed to cross the target region, only one of the two nucleon interact with the
incoming object, while the other one is unperturbed in the process (impulse approximation).
This approximation is valid if the De Broglie wave length of' the incoming object is smal-
ler than the average distance between the two nucleons. At low incident momentum we have
to consider three-body effects, but for about 600 MeV/c the wave length of the incident
particle is about .3 F which is small compared with the m.r. of the deuteron 2.3 F, and there-
fore the interaction with the nucleons will be completely independent. We will neglect for
the moment corrections due to successive scattering of the fast incident particle with the
two nucleons and to rescattering of the nucleons in the final state, which are delayed to

the already announced report.

The calculation is done in the rest system of the deuteron: this system has the ad-
vantage of allowing the straightforward use of the nonrelativistic wave function of the
deuteron, but the drawback of requiring a Lorentz transformation of the amplitude. On the
other hand, if we work in the C.M. frame of the particle nucleon system, the complication

of the Lorentz transformation are shifted from the amplitude to the deuteron vertex.

The impulse approximation is equivalent to assume that the Feynman graphs of Fig. 2
describe the process. The application of the rules of the previous section gives for the

T matrix the following expression in the rest system of the deuteron:
3 1/2 2 = ->
(3.1) T = (16 7°m)"® [Ta(s,t;0%°) ¢ (-ps) + Ts(s't;mF) ¥ (-pa)]

The dependence of the amplitude on the virtual mass of the nucleon is formal: din
practice we will neglect this dependence and therefore we will go on thinking it as on-
mass-shell amplitude. While the definition of the momentum transfer is unambiguous, there

is a double possibility for the energy

(3'2'3) B (P!*PA)E = (E2+m1“E5)2 = (Ee—ﬁs)z

t = (pe-ps)®

(3.2.1) 8 = (Bz+Es)® - (P2 -ps)?
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and analogously for the second diagram. For the first definition of energy, the interact-
ing nucleon is thought off-mass-shell, as it should be if we want to conserve the energy
in the vertex; in the second case it has been forced to have the real mass: the reason
is that, as stated before, in the analysis the amplitude is thought on the mass shell and
therefore we might prefer to define the energy using the real mass of the nucleon. As we
shall see in the following this ambiguity is not important, if the amplitude is slowly
energy dependent, but becomes important in the region of resonances. As a first approxi-
mation we will take the second definition and fix ps = 0. This approximation is based on
the observation that the wave function is very peaked around small values of its argument
and the amplitude is usually slowly varying with energy. The same assumption will be done
concerning the spin structure: in this way we will avoid the complication due to the moving
target (see formula 2.12). Therefore the invariant amplitude is expressed in the two di-

mensional spin space
(3.3) T, (5,514 = ap+ b, 7.7, +i(ag+ by T.5.) o,.4

where is the isotopic spin operator of the scattered particle

is the isotopic spin operator of the i-nucleon

Q) H ¢
[E N

is the spin operator of the i-nucleon

i is the versor orthogonal to the scattering plane.

The spin amplitudes an

variant amplitudes and the C.M. amplitudes. The same can be done for the bf, bg, i.e. the

5 ag are defined in the previous section in terms of the in-

i- spin flip amplitudes. We are not performing this transformation now, but we will do

it at the level of the differential cross section, were we can use invariance properties.

Before starting to use the above amplitudes, we want to underline that no assumptions
at all are done on the isospin of the incident particle, nor on the normalization of the
spin and isospin operators. 3o, although the following treatment is used only for isospin
1/2 particles like K, K, we could check the procedure for the very well known isospin 1

objects, the r-mesons.

Let us now calculate the matrix elements of the above operator on the spin and iso-
spin state of the two nucleons and the isospin state of the particle, which are necessa-
ry ingredients for the caleculation of the cross section. The isospin third component of
the particle is determined by the total isospin conservation and it is not written in
the following. Since the deuteron is broken in the final state, we have to consider tri-
plet states as well as singlet states for the nucleon pair. We choose the polarization

axis along the direction of f.

The matrix elements are listed here with the convention that the first two numbers
in the ket represent the isospin and the isospin third component of the nucleon pair and

the second two, the spin and its third component.

They are:
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a) for the singlet state of the nucleon pair

(3.4) <0 0;0 07| 00; 1w> = SU’D T ag ke [¢(Ps)-4(-Pa)]

(3.5) <1 TZ;OOITI 00; 1 v :av,oibg<NN| 7.7 D> x

K [¢("Es)+ ¢(_§4)]

x

b) for the triplet

(3.6) <0 03 1w |T| 00; 1V =< v'laf+i Oap ag|v > %
x K [¢(-ps )+ ¢ (~Ba)]
(3.7) AT 1 |7 00510 = N[F.F|D > x

X

<v"bf+ igy, bg]v'> X

K¢ (~Ps)~4(-Ba) ]

XK

where X = (16 72 m1)y; and the isospin reduced matrix element on the right hand side
<NNI;.;4\D> = &l TZ; T Tél ;.;4|O,O;T Ty>5 in the latter T T; represent the iso-
spin third component in the initial and final state of the meson. Here we have negle-
cted the D-state of the deuteron; but the above formula can easily be generalized to

include it.

The differential cross section for the three body process as function of the an-

gle of particle 3 in the center of mass of the particles 3 and 4, or 3 and 5 is (*)

a d av(?)
(5.8) = 3 38 lel® o
or if we assume
(3.9) Tos = Tpg % [9(-85) * ¢(3.)]

we obtain, integrating on all variables except O%

o
q

(3.10) -z = % % )

5

(*) We call this angle Q%, from now onwards

€
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where

4 2 (3)
o = & [luto)un0l* Hm

The ambiguity in the definition of the System where n: is defined is easily found
to be only apparent: the weight factor mt can be expressed in the following way, using
the symmetry of the invariant phase space volume for the exchange of psy with ps

+ (s) (s
(3.11) w = %Ulw(ps)[* S :]w(m)w(ps) {%’;—j

The second term has an integrand function, still symmetriec for the interchange of
ps with ps: therefore the ambiguity is completely eliminated. We can choose for instance
the C.M.S. of the particles 3 and 4 to calculate 0O*. To complete our task, to express
the differential cross-section (3.10) in terms of the C.M. amplitudes, we perform the Lo-
rentz transformation (2.17} of the amplitudes. For this purpose we calculate separately

the charge exchange and the quasi-elastic scattering.

a o e b2 2 ol
(5.12) B | - lalzzdml* [L6 o oo oyl o]
2
(3.13) %%k - = LE%L_ w + (]aflz+ % Iag|2)w+ + | <] 7.7 D5 |2 x

(27 5+ (ingtss &) o]

We will go through all steps, only for the charge exchange cross section, while
for the quasi elastic scattering we give later on, the final result, in order to avoid
useless repetitions. We substitute now, to the laboratory amplitudes, the expression

in terms of the C.M. amplitudes, taking in account the invariance property (2.20)

- Janl? 7uloo12 [6l 0t o (Ll Bl oo o |

(3.14) g
am CEX

where

2_ b 2
(3.15) ¢ = el - ol [~ o)
3

C 1is the relativistic correction to the traditional formula (*). This correction
seems to be important only near thezforward direction, because for high momentum trans-
. i s 3 b = oK
fer is negligible since w ~ w ~2 =5 . But around the forward direction as from (2.16),

By~ hf, therefore the correction is very small and will be neglected for the moment.

<y 8
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The last step is to change the normalization of the C.M. amplitudes, such as to con-
nect the usual formalism of the phase shift analysis

g i AR Je,-CEXIa CEX|2, 2 | CEX|2\ 4=
(3.16) ol (W Py ) EX A PN [ %+ £ ™| )W
CEX| 2
dg | e ol [lﬁ W (IfGEX 2 2 I CEX)2 —]
= +* + 3 |8 | w
a* ey 2 3 | 3 | )
where
P 15 [ £4=£5] for i-spin 1/2
and

for i-spin 1

f‘CEX %—E [f3-14]

and analogously for the spin flip amplitude.

(5.17) wte @y ele) gt

The factor 1/2 is the squared ratio between the isospin matrix element for the
deuterium and for the nucleon; that is

«PP|7.74|Ds = j% < P|T TulNs

where

1]

<P|7.7|N>=<T r131/2 1/2 |7. 7|7 T, 1/21/2 >

the above relation in general and holds for K, K and 7.

The relation between the conventional amplitudes fCEX CEX ana the amplitudes ﬁf’ﬂg

- = dV CEX
ﬁf<PIT1T4IN> —(—)

Going through the same steps, we find for the charge preserving scattering

o . L&l (1o 2 1ge) v

(3.18)
- 2
" 153—L W <|f"|2+ Ze " |2) W

where for isospin 1/2

(.8"
- <
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1
= 7 (G f+ 1)
= 1
o= Z(f. - fy)
and for isospin 1
£ o= %(2f3+f1)
= 1
f = = (fz - ¢
3(3 1)

The connection with the o and B amplitudes is

£ dv(z) I o]
- Ak @tzj T
= avi2 1 iy
% T A & (2) ﬁf <N|T1T4|N>

In the charge preserving differential cross section, there are no factors coming from

the isospin matrix elements because the matrix elements for the bound nucleon are equal to

the ones for free nucleon

1

<NP 1;.1";ID>: 5 (< Pl;-FalP > =< NlF.F4]N> ) = <P |'F.'F4|P >

The W are the weight factors calculated by Stenger et al. (°). He uses certain approx:i-

3
mations to calculate the kinematics and the factor §%é;l ; which will be examined in detail
later on. The result of Glauber and Franco (4) is found by noticing that the three body inva-

riant phase space volume element contains the two body phase space volume element

d’ps

(3.21) dV(3) = dv(z) s e

This volume element is calculated with the exact kinematiecs with p; £ 0: however it
is easy to convince oneself that it is a slowly varying function of ps, compared with the
wave function, and can be calculated for ns = 0, taken out of the integration symbol and
cancelled (*): then

(3.22) W - %—2-) g%g;—)-; U ¥ (ps) d—;f"‘ : f #(pa)¢(ps) %‘E’f:l

(*) This implies that the definition of O* is given in the situation p, =0: as shown by
Stenger (®) this makes a very small di“ference.
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As J
‘I’\z) =4 Pz Is
@ = L ppmy
Es ~ ms
(3.23) W~ 2[:/‘!’2(135)@-3135 t‘/ﬁb(Pd)(ff(Ps)d]Ps] =2 [1 £8(A)] (closure)
if E = B, - Ps

where 3 is the deuteron form factor

= [ ¥ BBy, - [ I E pimits

The result of Jew (°) is obtained taking irto account the Fermi motion in the factor

*
639 @(2), that is considering this kinematical factor for an inelastic scattering of the
incident particle on a light nucleon (m*® > m® - 2 p3).

In the interference term there are choice problems: we assume that the scattering oc-
curs on the particle k4 like in the first diagram of Fig. 1; this is not a bad approximation,

as the overlapping between the two diagrams is important when ps and ps have similar values.

In this way the cancellation occurs inside the integral and we obtain

+ (2) 3 2) 3
(3.24) W= 2 m{:[ ¥ (ps) Z5— ggfi % f‘¢(94)¢(P5) éé éffi

Here the first definition of the energy (3.2a) was implicitly chosen and the flux

factor is

(3.25) o) - b f(pep*)®~(mem*)® = L /pl (w*®+pE)+ pips +2Bay/m**+pipapsz

As seen from the above formula the factor is strongly dependent on the angle of ps with
the beam direction. This variation is actually seen in the experimental data ('), as it
will be discussed in the next section. Since only this definition of the weight factors
has this asymmetry built in, we believe that this is a good reason to prefer this last

one respect to others.

The same procedure can be followed in the C.M. system of the particle 3 and 4: if
we neglect the relativistic correction of the deuteron, or in other words we mantain the
rule for the deuteron vertex, given in Sec. 2, we arrive to the same formula for the dif-
ferential cross-section (3.14), with the difference that C is rigorously zero. However
the main difference is that we don't need to make the approximation that nucleon 5 is at
rest in the laboratory system, to simplify the spin structure of the amplitude: this is

very simple and uniquely defined in the C.M. system.
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4. - NUCLEON MOMENTUM DISTRIBUTIONS

Before actually doing the integration on the phase space and to discuss the behaviour
of the weight factors with the scattering angle, we study here the features of the integrand

function

() E" = |¢(pa) * ¢(ps)?

that we call extraction factor. We will think for the moment that particles 4 and 5 are phy-
sically distinguishable, as it actually occurs for a charge preserving process, where we
have a neutron and a proton in the final state. In this case we can keep the form (Le1) for
the extraction factor and study its behaviour, as function of ps = (ps,fs,¢s): Fig. 3 and L
represent the perspective of the funetion E+-dv(3)/d03 dps d0s for g5 = 7, cos 5 = 0 and
cos 9% = .9 in the process KD - K°pp at .6 GeV/c. In both drawings we see a moraine and a
peak: the first is the region where the particle 5 has small momentum and therefore is cal-
led spectator, the second is characterized by large momenta of particle 5, which is recoil-
ing after having interacted with the incident particle. While the first is characterized by
2 negligible depencence on #s, the second is highly dependent on the angle. The top of the peak
(socalled "quasi-elastic peak") is moving with the scattering angle and its coordinates ps, s
represents the recoil momentum of the corresponding two body process: in other words, with

a hydrogen target we would obtain a peak, much thinner, exactly in the same positiomn.

It is seen from the drawing at large angles that there is no overlapping between the two
bumps: in experimental terms at large angles, we know that the slower nucleon is the spectator.
However at small angles there is overlapping or, in other words, the wave character of the phe-
nomenon shows off: therefore it is not possible to make the choice of the spectator, in the
same way as in the two slits experiment it is not possible to determine the slit crossed by the
particle. The range of angles, where this difficulty occurs, is obviously energy dependent: it

tends to become more and more limited with raising energy.

One can ask oneself: why the choice of the spectator is necessary? The answer is that
we want to determine the energy and the (.M. angle of the two body process for any event.
This can be done, only if' we assume a spectator model and know the momentum of the spectator.
In the forward region, it is therefore not possible to define the kinematics of the two body
process, and the analysis has to be done in terms of the external variables, as for instance

the invariant momentum transfer.

However, if we are interested in the whole angular distribution, we can forget about
this problem and define the "spectator": the procedure is to give a definition for it and
to check afterwards its momentum and angle distribution. We define it as the nucleon which
has lower energy. If we consider the distribution of events on the momentum of the nucleon
satisfying this condition, as shown of Fig. 5 for the case K+D--Kppp at .98 GeV/c, we realize
that up to 250 MeV/c, the experimental spectrum is reproduced by the simple function depend-

ing only on the deuteron wave function and the kinematics
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(2) 2 *
(4.2) % ~E %(?) I *)

The region of high momentum (so called "tail") is however showing the still unex-

plained disagreement.

In the same way we can study the distribution in the spectator angle with the same
model, for various momentum region. We consider to gain statistic, the forward-backward
asymmetry for different momentum regions, that is the difference between the number of
events with 0<cos #s<1 and -1<cos #s50, normalized with the sum of all events in the con-
sidered momentum bin, As shown in Table I, for .98 GeV/c the agreement between theory and
experiment is satisfactory between 0. and .2 GeV/c, but surprisingly the agreement is
broken in the .2 + .3 GeV/c bin. On the "tail" region the agreement is restored, but it
is not very significant because of the disagreement in the momentum distribution. If we
g0 to higher energies, the simple function (4.2) tends to be not sufficient to explain
the angular behaviour. The reason is that at 1.13 and 1.5 GeV/c the total charge exchange
cross section is rapidly decreasing with energy and the energy of the K'n system is very
gensitive to the spectator angle

(L-}) s = mi + mf + 2E;Es + 2pa2psz

This fact is an indication that the analysis of these data should take in account of the

Fermi motion.

TABLE I

The forward backward asymmetry as function of the momentum (in percentage) .

ps GeV/c p: = .98 GeV/c P2 = 1413 pe = 1.5
Exp Th Fap Th Exp Th
0+ .1 10.0% 4.3 9.1 3.2+ 1.8 8.9 0.0% 7.3 8.9
A+ L2 16,7+ 9.8  19.1 4.3 9.5  13.9 8.4413.0 i %
2+ .3 2. 131355 2n.7 23.4114.2 22.3 0.0220.4 12.8
3t .6 L4e7110.7  60.0 28.6+ 9.7  51.7 42.9+15,3 43.2

(*) We choose E because we assume that the process oceurs through a charge exchange
without spin-flip (see (3.4),(3.7). It is reasonable to assume that the amplitudes
contribute in this distribution only as a normalization factor.

] 8"
« o
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5. - COMPARATIVE DISCUSSION AND RESULTS

The present section is devoted to the analysis of the Stenger (°) procedure and to
the comparison of his and our results. Eventually, we consider the weight factors of' Jew

(°) and compare it with ours.

The procedure of Stenger is very similar to ours: the main difference is in the norma

lization of the scattering amplitude, which doesn't affect the result for the cross-section:

T
s fi
(5-1) tfi e FSEBEAES r\,‘E1E2
Therefore the kinematical factor is in our notation

2
u(kll 6E'f K dk

dp aor 8(2) av(z)
oyl 2 = 2
(5.2) K Gk ok © 3B - aw(h o aF -
where T = 5 3 Ef = E;+FE4+Es and k', Ef are the corresponding quantities for the two body
-
process on the nucleon at rest in the laboratory system, and P = —E%:Ei

His approximation is to take out of the integration symbol in k and the phase

P.’
space volume element and the flux factor for the two body process, but mantaining the de-
pendence of the integration varisbles in the three body phase space volume element. The

value of P is calculated for any value of k and QP using energy conservation

(544) lip = M+Bp= Bx+Ee+Es = Exhy/m +Q +P 42 BoGn/m?+Q2+P? -2 Bg

2> >

where a = ££%21 .

0 is thought fixed in the integration and determined with the twc body lkinematics on

the nucleon at rest, from the C.M. scattering angle.

Squaring twice the relation (5.3), one obtains

2 2
| 2 A - I B
: R T
(5-4) P L (1-L402 /A7)
where A = m+Ea-E5
Bzz I]12+O_2

C = Q eos P*Q
The main approximation of Stenger consists in neglecting the term 40°/A% with respect
to 1 and obtaining therefore for P the simple relation

A% - L4B?

(5.5) g% = "

This approximation allows the immediate integration on the angle 0 . He claims to ob-
tain this relation simply expanding the square roots in (5.3) in terms of 2PQ cos PAQ/(m2+
+P2+Qz); but this expansion is possible only if the scattering angle is sufficiently small:
in the backward direction P ~ é . 34/2 = E%Z 52 (where E, w are energies of the meson and
the nucleon in their C.M. system) therefore ?'Q > P?; the above expansion parameter becomes
oP® /(m?+2P%), which is very small only if m°>>2 P?,

(A
“
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This condition is obviously violated for high energy and we expect this procedure
to fail in this region. To point out the dependence on the angle P"Q of the value of p?
we have inserted in the Stenger calculation the exact determination of P® in terms of

various fixed values of cos (PQ) (Fig. 4).

As shown on the Fig. 6 the Stenger calculation corresponding to cos P*Q = 0 (dot-
dashed curve) at .98 GeV/c for KfD - K°pp 1is very low in the backward direction. If we
give to cos P*Q values .5 and 1, (dashed and full curve respectively), the behaviour
in the backward direction changes considerably and it tends to the exactly calculated
curve (see TFig. 7). This last calculation is done using the same method of Stenger,

that is
< ; 5 dox 2
1) taking out of the integration the term —EETET_ 8(*)
2) determining the 3 body kinematics in terms of cos #*, using the approximation Ps = O.

but no approximation is done to reduce the number of integrations and a numerical method
is used to calculate the three-fold integral on the volume element d*ps= pid psd gsd cOS fke

On Fig. 7 we show the results for W at the different momenta of the K .65 (- - -)
and 1.51 GeV/e (

characterized by Wos 1, is rapidly decreasing with energy.

). From that figure we see that the overlapping region which is

On Fig., 8 we show the behaviour with energy of' the W in the "closure" approximation
(3.23). The main difference with the exact calculation is in the backward direction, where
the closure result is, for ps = .65 GeV/c, 10% higher than the "exact" result. This is due
either to the cut of the spectator momentum ps € 250 MeV/c either to the exclusion from

the integration region of the kinematically impossible values of 55.

In Fig. 9 we show the behaviour of W with the momentum cut at pz = 1.51 (- - = - ;
ps S 100 MeV/c; =+-v=r=+= ps £ 150 MeV/e; ——— ps < 250 MeV/c).

Eventually in Fig. 10 we compare the results of W obtained by the method, described
above, (dashed lines) with the results of the calculation without making any approximation

(continuous line), that is
*

e e . : dQ 2
1) keeping inside the integration Tv(z) &
*
2) determining the 3 body kinematics in terms of cos #; taking in account the Fermi motion

of the nucleon.

The result for the weight factors is very simple (3.24): however, we have to say that
in the second term of formula (3.24) we cannot in principle determine the three body lkine-
matics because, as from appendix B, we have to know the energy of the two body scattering
which in this case has to be chosen between 85, and s;s. However we make the choice 834
and calculate it, remembering that the overlapping term is large only around the forward

direction and in this region ss4 ~ Sss5.

The results for the two different procedure look gquite similar, a part from the back-

ward region, which is influenced by the different approximations for the phase space volume

Fig., 10, 11).
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APPENDIX A

A practical method to determine the constant in the relation between the deuteron
vertex and the non relativistic function is given in this appendix. The method consists
in the calculation of the pole diagram and the comparison of its expression with the T

matrix with one pole in potential scattering. The diagram is

a1 ai

gz az

2 ! '

_ s 4 . G a* . il 4 8(p-g!-
(A1) < daf-Nlae) = 1 () *s(are-r) 1 For Gy Y7 §y owwe

2
. " roy ._....‘...._,.1
T (27;') 6(q1+q2—q1‘c.{2>(‘) pE_Mz Ni1Nz2 NyNz

1

where M is the mass of the deuteron.

Let us now consider this expression the C.M. system and the non relativistic limit:
then

(1.2) 2 .
\[
bt o= (A ) = Wt SR~ MR sy

2
where m is the mass of the nucleon, ﬁr is the binding energy of the deuteron.

Extracting from the above expression the invariant T matrix, we obtain

G‘2

(4.3) Wi = g

let us now calculate the scattering amplitude in potential scattering, assuming that it

is simply a pole term in g® plane

1 £ - fo 1 1
A Fhs: et = = = —r—r
( LI-) fU _q NZ q +X

where

W = [ e v
L o]

and f,(q), f,(a,r) are respectively the Jost function and the irregular solution of the

radial Schroedinger equation-

J ]

| e L 4
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The relation between the invariant T matrix and the scattering amplitude in the C.M.

system is

(4.5) T=8w,fs

The comparison between the two results gives the relation between & and N

2

(4.6) ¢ = 647 E N
where E is the energy of the nucleon.

Let us now consider the deuteron vertex,

P1
(1,0)

Pz

and assume that pz in on the mass shell. The expression of this vertex, apart from the

delta function in energy and momentum and factors, is

G
(A'T) P12 pg—_ = (_2)(q2+x2)

I
2

The asymptotic wave function in momentum space is

(A.8) ¥(a) = - ;-ﬁgnﬁ 5?%;5

which compared with (A.7), gives the following relation

4
(.9) S = (27 D)%y (o)

where E is the energy of the on-mass-shell particle.

We want to stress here that although this relation seems to be valid only for an
asymptotic wave function, it turns out to be true even for a general deuteron wave func-

tion, as shown more rigorously by Gross C‘). In this case G is thought as a function of g.
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APPENDIX B

In this appendix we consider in detail the procedure of calculating the full kine-

matics of the 3-body final state once 4 variables are fixed.

The method is based on the kinematical relation between the invariant quantities built

with the energies and momenta of the 5 particles involved in the process

45

These relations are easily derived if' we consider two of the 5 particles as a single
one and reduce therefore the 3-body to a normal 2 body process; the relations are of the
following type:

(B.1) S42 & baz # Hyz = Bys 4+ 05 4 mwE 4 05

This is the usual relation between the Mandelstan variables for the two body case.

The definition of the invariants is the usual one:

&t g
(B.2)

By = (Pi—pj)

Obviously we can consider as one body any pair from the 5 different particles and
obtain therefore 10 different relations, relative to the 10 possible pairs of "incident"

particles.

In the analysis of the experimental data and the successive phase shift analysis,
the best choice of the independent variables is given by the three-momentum of one of the

outgoing nucleons and the C.M. angle of the incident particle-nucleon process.

The definition of Bs and the complete knowledge of the initial state fixes the in-
variants s12, ti1s and tzs ; the ensrgy and momentum conservation fixes 534:(p2+p1—p5)2.
*
The knowledge of #; gives the possibility of determining the squared four momentum
transfer t2s, once the energy of the two body process is known. There are now two diffe-

rent ways of choosing this energy:

1) taking the internzl line off-mass—shell and keeping energy conservation on the upper
vertex of diagram
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(B.3) 8 = 834

2) taking the internal line on the mass shell and violating energy conservation

2 i 2
(Buk4) s = (Jps+mz + Jfpi+md ) - (P2—Ps)

Onece t,; is determined through ane of these two methods, the procedure follows without

further ambiguities.

The first step is the determination of t,, using equation (B.3) and the one of the

same kind obtained considering as one body particles 1 and 3.
(B.5) toa+8as + tas = tas+mi+m;+md

Summing these two relations it follows.
(B.6) tes = ~taz—tas-syz+nf+205+mi+mf+md

The second step is the derivation of linear equation for the invariants sss and tis;

considering the two Mandelstan relations

trattaa+siz = sastnf +md+ o
2 2
tis+b1a+834 = tostmi +m3 +nd
it follows
2
(BT) 8as= tosttos+812-834-t13+ms -m3

The invariant sss can be also expressed using (B.2)

(B.8) S35 = m5 +m + 2BsEs - 2 B3P
where
BEs = {!Il% + o5 ~t13)/2m
(B.9) P, = (tes-mo-m3+2E,E;)/2p,
1
biy = (EjemS-pl,)”

By substitution of (B.9) in(3.8) we obtain another relation between sss, t13 and tz3.
Subtracting (B.8) from (B.7) we find a quadratic relation for t4s. The solution for tis

suffers for a sign ambiguity, which is solved comparing with the two body kinematics.

The knowledge of tyzallows the complete derivation of 53 and momentum conservation

. -»>
gives then p4 .
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FIGURE CAPTIONS

Fig. 1

Fig. 2 -

Pig. 3 -

Figa 4 =

Fig. 5 -

Fig. 6 -

Fig. 7 -

Figs B8 =

Fig. 9 -

Fig.10 -

Fig. 11-

Two-body scattering diagram. The dashed lines correspond to mesons and the full

lines to nucleons.

Feynman graphs describing the deuteron break-up in the impulse approximation.
1 is the deuteron, 2 and 3 are the incoming and outgoing mesons, 4 and 5 are

the two nue_eons in the final state.

Perspective representation of the function E+dv(3)/dﬂjdp5dﬂs for ¢s = 7 and
cos 9% = 0. The quasi elastic peak and the spectator moraine are apparent.

As Fig. 3 with cos 8% = 0.9. In this case the overlapping of the quasi elastic

peak and the spectator moraine clearly shows off.

Momentum distribution of the spectator nucleon for the K+i -+ K°pp process at
0.98 GeV/c. Thick line refers to the experimental data and the thin line to the
simplified nodel described in the text.

W versus cos o% for the K'd » K°pp process at 0.98 GeV/c, as calculated in
ref.(®) for:

cos P'Q = 0.0 dot-dashed

cos P"Q = 0.5 dashed and

cos P Q = 1.0 full line.

W versus cos §* for the K d - K°pp process at 0.65 (dashed curve) and 1.51
GeV/c (full line), calculating the three-fold integral on the volume element
3

d ps exactly.

As Fig. 7 but in closure approximation.

+
W wversus cos ¢* for the K+d -+ K°pp process at 1.51 GeV/c for three different
cuts on ps : < 0.100 GeV/c dashed, < 0.150 dot-dashed and < 0.250 full line.

Comparison of W' versus cos §* for the ¥ d » K°pp process at 0.65 GeV/c with
ps < 0.100 GeV/c. The two curves are computed with the two different proce-

dures explained in the text.

As Fig. 10 with ps < 0.250 GeV/c.
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