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SUMMARY -

We study in some detail the field theory formulation in coordinate space of the Neveu­
-~chwarz model for the N pion amplitude and for the N pion emission from a single quark line. We 
then consider the problem of current algebra for the fermion and for the boson case. In particu­
lar for the boson case we find a class of axial currents which satisfy the local SU(2)X SU(2) alge­
bra with the isospin currents and the PCAC relation between external real states. 

1. - INTRODUCTION -

Rec ently a big deal of work has been devoted to the general features of the dual models, 
both for what concerns the construction of models(1-6) with physical trajectories and a systema­
tic study of some more formal aspects. In particula r people has been con'(..€rned with the pro­
blem of ghosts(7) in the case of unit intercept and with the study of conformal symmetry(S) rela­
ted to duality. A convenient approach to conformal symmetry is given by a field theoretical formu 
lation(9) in two dimensions. The connection between dual models and conventional field theory has 
also been investigated(10). 

Our purpose her e is to give a field theory formulation in ordinary space of the dual model 
proposed by Neveu and Schwarz, both for the purely bosonic amplitudes(3) and for the emission 
of pions from a single fermion (quark) line(5). The relevant formalism of the model is summari­
zed in Section 2. In Section 3 we shall treat the wave equations for the infinite component boson 
and fermion fields and their canonical quantization, and in Section 4 we shall find the local inter a~ 
tions for the fields from which the dual amplitudes can be obtained on the Born approximation. 
Finally in Section 5 we shall study the vector and axial currents of the field theory model. 

The Neveu-Schwarz model is in fact very appealing from this point of view. as it contains 
axial currents{ 11) even in the boson case. Without considering the difficult problem of dual cur­
rents(l2), which is related to the analytic structure of the form factors and to the duality cons­
traints, we shall only deal with local currents bilinear in the field operators. For the conserved 
vector currents we take the canonical isospin currents and we look for axial currents which obey 
current algebra and PCAC. While this problem can be easily solved for the fermion case, for the 
boson case we shall recognize that is impossible. However we shall find a class of axial currents 
which obey current algebra and PCAC in a weak sense, i. e. for the matrix elements between real 
physical states. 
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2. - THE NEVEU-SCHWARZ MODEL -

For our purpose it is useful to give a breif survey of the Neveu-Schwar z model(3, 5). 

We consider first the boson case( 3). The Fock space of the physical hadrons is generated 
by two sets of commuting operators arf+ and b~+ . Instead of these standard operators we shall 
use 

+ b = b (2. I) A = 'in a . 
n n' 

A = f2 p' o ' -m m 

(2.2) 

(2. 3 ) 

(2.4) 

These obey the following commutation and anticommutation relations: 

[A~ J A'Vl = - m g J.L'V 6 , (m,I":. ::: + 1,2: 2 , . ... ,). 
m n_ m ,-o - -

g fl.. <I , 
ro, -0 

The amplitude for N pions as in Fi g . 1 is written in the form 

I F~ ll~ I r~, _ 2. I p,,-. 

-<~:~l_---,I .... {._._, _'; __ _ 
}' '1 

FIG. 1 

where the pion is the ground state of the Fock space(13) and its squared mass i s p2 - 1/2. The 
vertex operator V(p) is given by 

(2.5) V(p) p . HV (p), 
0 

where 

00 

( 2.6 ) H = 1: b 
m' 

m=-oo 

00 A- n 00 An 
-(2p 1: n '12 p 1: n 

n=1 n=l 
(2.7) V (p) = e 

0 
e 

[L
O

(TT)-1 !2]-1 is the meson propagator, where 

(2.8) L (TT) 2 
+R 

2 
a + Rb , = _ 'Il' TT + R 

0 

00 

(2.9) R 1: A A n' a -n 
n=1 

00 

(2.10) Rb = - 1: mb 'b 
1 

-m m 
m =-

2 

We also define the operators 

(2.11) 
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00 

(2.12) Lna 
1 

1: A k ' A k:' 2 
k=- 00 

-n-

00 

(2.13) L = 
1 

1: (n+2m)b b 
nb - 4" : m -n-rn 

m =-oo 

which satisfy the Virasoro algebra 

(2.14) [ L , L ] = (n-m)L + -3
2 

n(n
2 

-1) 6 
m n m+n n,-m 

It is convenient to introduce the gauge operators 

(2.15) G 
m 

which satisfy the relations 

00 

A . b , 
n -rn-n n:::: - CD 

(2.16) { G ,G1=2L . 
m n m+n 

The physical meson states obey the mass shell condition 

(2. 17) 

and the gauge conditions 

(2.18) (m 
1 3 
2' 2' ... . ). 

2 
They have masses m :::: Ra + Rb - 1/2, G parity and charge conjugation given by 

(2.19) 

00 

1: 
G = (_I)m=I/2 

b b + 1 
-m m 

(2.20) 

1 l-G 
R +R +----

C = (-1) a b 2 4 

Therefore states with m 2 :::: - (1/2)+2n or m 2 :::: 2n must be isovector whereas states with m 2 

= (l/2) + 2n or m 2 = 2n + 1 must be isoscalar . 

3. 

For the fermion case we define the harmonic oscillator operators dri. ct!n :::: dri+ J where n 
is an integer, and db - - (i/V2) 1'5 -yj-1 satisfying the anticommutation relations 

(2.21) { dfl d
V

} 
m' n 

flV 
- g 6 , 

m,-n 

We also define the operators 

(2.22) 
1 L = . 

nd - 4" . 
rn =-00 

(n+2m)d 
m 

(m, n = 0, :: 1, :: 2, .... ). 

d 
-n-ro 

analogous to Lnb of Eq. (2.13) and satisfying the Virasoro algebra. The total generators for the 
fermion case are Ln = Lna + Lnd and the gauge operators are 
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(2.23) 

with the anticommutation relations 

(2.24) 

00 

F =i'Y I 
n 5 

m=-oo 
A . d 

m -n-m' 

{ F F 1 = -2L . 
m' nf m+n 

The amplitude for the emission of N pions from the fermion (quark) line as in Fig . 2 is writ 
ten in the form 

(2.25) 

where 

(2.26) 

00 

I d 'd 
-n n 

A = (_I)n=t 

FIG. 2 

and m i s the mass of the quark ground state. The physical quark states satisfy th e wave equation 

(2.27) 

and the sub!i'idiary conditions 

(2. 28) F -n I'" > = 0, (n = 1,2, ... ). 

The amplitude (2.25) has the property that if we make a duality transformation leading to 
the quark-antiquark channel and we factorize on the first pole, we obtain for the meson sector the 
same amplitude of Eq. (2.4). provided that we have for the quark mass m 2 = -1/2. 

3. - LAGRANGIAN FORMULATION -

We want to derive the N-pion amplitude (2.4) and the quark-pion amplitude (2.25) from a 
standard field theory model in Born approximation and we shall follow the procedure by Klei­
nert(IO). 

We first observe that the vertex operator V(p) in Eq. (2.4) has an exponential dependence 
on the external pion momentum and therefore is not sui table to be derived from a local interac­
tion. By a heuristic procedure we can factorize each vertex as 

(3.1) 

(3.2) A = d'2 I 
nfO 

i IT" A 
e 

with, rr' - IT = p, and then transform the .. propagators into 
x e- 1 TT·A. The amplitude (2,4) would then take the form 
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(3.3) 
-iPI·A 1 

e p . H ::-,-----''-----;--1 P 3 . H 
2 L(n)--

o 1 2 

ip . A 

· I1 e N 10) 

which is suitable for field theoretical treatment. 

However the unitary transformation we have introduced 

(3.4) T(p) = eip · A 

is singular and can only be defined through a suitable limiting procedure. A conveni ent definition 
is 

(3 . 5) T(p) = lim 

' .... 1 

Inl 
-Yzp I -'- A 

nfO n n 
e = lim 

00 n 00 

2 Yzp I -;- A_n -(2pI 
2 -p n=l n=1 

(1- ,) e e 

the limit € -+ 1 to be taken at the end of calculations. 

(3.6) 

where 

(3.7) 

~ 

The transformed hamiltonian operator La is 

'" -1 2 
L (p) = T(p) L (p) T (p) = L (p) - p. r - (c-I)p , 
000 

r {2 I A, 
n f 0 n 

n , 
n 

and c is a n infinite constant which in terms of the parameter E 
2 2 

is c=(l+' )/ (1-'). 

A 
n 

A different limiting procedure would be to consider only n finite number N of oscillator m~ 
des and letting N ~ co at the end. In this case we have c = 1 +2N. 

We have to observe , howev~r. that the 'f transformation, in the way we want to use it, is 
not always free of ambiguities. For instance we may have problems when we transform operators 
like Ln and we want to use them i n an amplitude like (3.3). The reason of the ambiguity is that in 
passing from (2.4) to (3.3) we want to identify Vo(p) with T(-p), apart from a multiplicative dive~ 
gent con stant, according to (3.5). Now this identification is i n general not allowed since, ~Q(p) and 
T(-p) belong to different representations of the conformal group, Vo(p) having spin Ja = _p:t (8) and 
T(p) having J = O. apart from the contribution of the zero mode. Thus, for example. for the ope 

a -
rators Wn = Lo - Ln we have 

(3. 8) 

while, as is well known 

(3.9) 
-I 2 

V (-p)W (p)V (-p) = W (0) - np . 
o non 

Therefore we see that we have ambiguities in the limit e .....-.. 1 of (3.5) when we transform 
o perators which are sensitive to the representation to which the transformation belongs. This 
was not the case of Lo and t herefore no such problem arises for the amplitudes. Concerning the 
case of operators like Wn • it may be useful to consider the combinations 

(3.10) M = W - nW . 
n n I' 

+ 
M = M 

-n n' 
(n > 1) 

which commute with a tensor operator of any spin. 

The excited meson states in the rest frame are given by the basic vectors 1 a ~ > of the 
Fock space, where a and ~ stand for the occupation numbers of the an and b n oscillators. The 
states with momentum p will be obtained from the states at rest by a boost transform~ioh and 1/ 2 
are indicated by I p, a p> . Of course on the mass shell the ener gy is given by Po = (p 2+R-(J /2)) . 
Furthermore the meson states undergo the T transformation and become 

... 5 .. 
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(3.11) I p , a /i > = T(p) I p, a /i> . 

The whole boson system can be described by an infinite component local field, whose com­
panents cJ> ap(x) can be labelled by the quantum numbers of the basic Fock space. 

The lagrangian for the free field is taken of the form 

(3 .12) 
+ .... -"'J.1 i ++j..l 1 of (x) = </> (x) (c a a + - r a - R + - ) </> (x) 

fL 2 fL . 2 ' 

from which we obtain the wave equation 

(3.13) [Lo (i a) - n </>(x) = o. 

The subsiduary conditions of Eq. (2.18) will be interpreted as conditions on the state vec ­
tors rather than conditions for th e fi e ld, in analogy with the Gupta-Beuler procedure for the elec­
tromagnetic field. We then have for any physical s tat e 11jJ > 

(3. 14) 
- Er) 
G (ia)</>\x)I",> = 0 , 

-m 

(3.15) G (i a) = G (0) + Yzi H 
-m - m 

Therefore the components of the fi eld are linearly independent and, on the other hand, the vectors 
of the Hilber t space can be divided into real and spurio us states according to whether they satisfy 
or not Eq. (3. 14) . 

From (3.12) the canonical momentum of the field i s 

(3.16) 
+ ~ i 

.. (x) = </> (x) (c a
o 

+ '2 r 0) ' 

and we postulate the canonical commutation relations 

(3. 17) 

(3. 18) o. 

The field 4> (x) can be expanded in plane waves as 

-ipx 
a ' /i') e a+(p, a '/i ' ) + ua/i(-p,a'/i') x 

(3. 19) 

ipx + ] x e . a -'p, a' ~ ,) , 

wher e the "spinors" uap{P. a ' PI) are defined by 

(3.20) ua/i(p,a ' /i') = <a/i l p,a ' ~'>' 

and satisfy the equation 

(3.21) [- 1J 2 1 Lo(p) - '2 u(p,a/i) =. (-cp -p·r+ R - '2)u(p, a/i) = O. 

We see from Eq . (3. 22) that the negativ e ene r gy s olutions u(-p, a ~ ) can be related to t he 
positive energy solutions through 
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(3.22) 

<Xl 

I 
n = } 

u(-p, a ~ )=(-1) 

l. A . A 
n -n n 

u(p,a ~ ), 

corresponding to a PT transformation. 

(3.23) 

(3.24) 

(3.24') 

They also satisfy the orthogonality and completeness relations (14) 

+~ G ' ] ~ u (p,p ,a~) c(p +p)+ r u(p,p',a'~') 
o 0 0 0 0 

2p 
o = -- 6 ,6 00, 

m aa PI-' 
a~ 

I 
a ~.' = :!: 

1 + "2 crna~ u(, p, a ~ )u ( 'P, a ~ ) = I, 

+ 
u(,p,a~)u (,p,a~) =0. 

7 . 

For the creation and destruction operators we then obtain the standard commutation rela-
tions 

(3 .25) [a:!:(p,a~), a~(p',a'~'~ = 6(p- P')claa,6~~. 

(3.26) [a :!:(p, a ~), a :!:(p', a ' ~ ')] = [a ~(p, a ~), a ~(p " a ' ~'~ = 0, 

(3. 2 7) [a:!: (p, a ~ ), ..; (p', a ' ~')] =[a :!:(p, a ~), a+( p', a ' ~ '~ = [a ~(p, a ~ ), a~(p" a ' ~')] = o. 

The Feynman propagator results to be 

(3.28) s ( ) - 1 J d4 -ip(x-y ) ---'------:-F x-y - --4 P e ;:;; 1 
(2,,) Lo(p) - "2 

A similar procedure can be used to quantilZe the quark field 'lJ1 (x). We start from the la ­
grangian density 

(3.29) .,t (x) = 1P (x)(i)' d ~ 
~ 

where 

(3.30) 

(3.31) 

{2 2: d, 
n f 0 n 

N = 2: A 
n 

n f 0 

from which we obtain the wave equation 

(3.32) 

(3.33) 

(3 34) 

[F 0 (i (j) - mJ 1p (x) = 0, 

F (i (j ) = F (i iJ )- l' .II . a . 
o 0 5 

The canonical momentum is 

,,(x) = + 
1p (x ) (i - )' 1'5.11 ), 

o 0 
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with the standard anticummutation relations with the field. The field 1p ..t (x), where t' labels 
1:, a u 

the Dirac components. has the momentum expansion 

[U~,ao (ps, a ' .I') e-
ipx 

x 

(3.35) 

ipx + ] x b(ps, a' .I ') + V ,(ps, a' .I ') e d (ps, a' 0 ') , 
17, a u 

where band d+ are the quark destruction and creation operators satisfying the standard anticom­
mutation relations and the spin~rs U and V are solutions of the wave equations 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

[FO(p)-mJ U(ps,ao) = (p-m+i Y5N+i Y
5
P'LI)U(ps,a<l) = 0, 

['Fo(-p)-m] V( ps,ao) = (-p-m+i y
5

N-i Y
5

P'LI)V(ps, a .I ) = o. 

The spinors U and V can be factorized in the form 

V~lao (ps,a'<l') =v~(ps, ma 'o,)u a<l(-p,a 'o'), 

where u,,(ps, mid ,) and v-r (ps, m I «5') are the usual Dirac spinors for a particle of mass ma'd' 
and the quantitie: U a IS (p, a I (j I) are, 1ike for the boson case: 

(3.40) 

The spinors U and V satisfy the orthogonality and completeness conditions 

(3.41 ) + -U (p s, a 0 )( J+i-y 'Y5 LI )U ( p s', a' 0 ') 
o 0 IS 5S ' (j aa' 15 dd' 

(3.42) 
+ Po 

V (ps ,ao )(J+i 'Y 'Y5L1 )V(ps',a'<l') =-- .I ,.I ,.I", 
o 0 m a ~ 55 a a u u 

(3.43) 

x(l+i'Y 'Y5L1 )=1. 
o 0 

Finally the quark propagator is 

(3.44) S ( ) - 1 Jd4 -ip(x-y) -,---=1 __ 
F x-y - ---4 P e f'.,J 

(21T) F (p)-m 
o 

4. - INTERACTIONS -

In order to derive the Neveu-Schwan', amplitude for N pions, we consider the interaction la 
grangian 
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(4.1) 

where cp (x) is the infinite component boson field and p (x) is the pseudoscalar field corresponding 
to the external pions. The asymmetry(15) existing in Eq. (4.1) between internal and external par­
ticles reflects an analogous asymmetry which is already present in the dual models. where the 
internal line states behave like the states of a bound system while the external states behave like 
elementary particles. On the other hand. if we want to describe the symmetric three-reggeon 
vertex by means of a lagrangian trilinear and symmetric in the field (P, we will have a non local 
i nt eraction, as visualized by the Harari-Rosner duality diagrams. 

Considering now the amplitude corresponding to the Feynman graph of Fig. 1 we have es­
sentially 

(4.2) 

(4.3) 

N 2 -
AN = g - < 0 I P2 . H -:~---=:-----:-I P3 

L (" )--
o 1 2 

. H .. . . 

Performing now the unitary transformation T(p) we obtain, by use of (3. 51, (2.7) and (2.5): 

__ =-I --c
1 

V(PN_I) \ 0 > 
Lo( "N-3)-"2 

where 1-'2 = pi is the external pion mass. In order to identify (4.3) with the Neveu-Schwarz ampli 
tude (2.4) we must have g = (c/2)- I-' 2, where c is the diver gent constant introduced in Section 3. 
Therefore we would have g ~ 0 for J.L 2> 0, while we have g ~ co for the actual model where dua­
lity requires I'- 2 = - 1/2. 

For t.he fermion case we consider the interaction lagrangian 

(4.4) of. r(x) = i g Vi (x) Y5 A 1jJ (x) <p(x) 

For the amplitude of Fig. 2 we now have 

(4.5) 
I 

and after operating with the transform ation T we obtain 

(4 . 6) 

2 
-I'-

Again this amplitude coincides with (2.25) provided that g = (c / 2) like for the boson case. 

5. - CURRENTS AND CURRENT ALGEBRA -

In this Section we want to study the vector and axial currents of the field theory model we 
have consider so far, and we shall be particularly interested in current algebra and PCAC. 

We consider first the Simpler case of fermions. We shall assume isospin symmetry, each 
quark state belonging to an isospin doublet. From (3.29) we have for the isospin canonical vector 
currents 

(5. 1) VI'-(x) = Vi (x) F I'-
a, 

<a 
1jJ(xl, 

2 

where 

259 
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(S.2) FI' 

satisfy the anticommutation r elations 

(5 .3 ) 

We can easily calculate the equal time commutators (ETC) of the current components by making 
use of the anticommutation relations 

(S.4) { 1jJ (x ), ;p (x') 1 _, 
Xo - x 0 

...... ~ 1 0 
= d(x - x')cF , 

and we obtain results quite analogous to the ordinary Dirac theory. Specifically we get 

(S . S) [ V~(xl. VI'(x '~ = i" V l'( x ) d( it - ;') 
b x =x' abc c . 

° ° 
[ v!.(xl. V~(X ')J , = 6 ex -"i')[i " b 6 . . Vo(x ) + 

xo=xo ae 1J C 

(5.6) 
1 - . k5 ~ +"2 6 ab "ijk 1jJ (x)IF F 1jJ (x ~ , 

where we have set 

(5. 7) 

There are different kinds of axial currents in this model. Writing in general 

(5. 8) 
It !-' or a 

Aa (x) = iF (x) F 5 -2- 1jJ (x) , 

we can classify the covariants Ff in two elas .sea according to the behaviour of the current under 
the char ge conjugation operator 

(S. 9) 

where Cn is the usual Dirac charge conjugation matrix. We have for exam ple the following types 
of covariants Ft', apart from terms containing derivatives: 

C = +1: 

(5.10) 

Current algebra for the time components requires 

(S.l1) 

and we see that none of the covariants of the second class (C = -1) listed in (5. 10) can satisfy 
(5.11L while all the covariants of the first class, with appropriate combinations of the d's and 
normalization constants. can sati sfy. 

In order to restrict the choice we further requir e PCAC in the form 

(5.12) 

J' 
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where the right-hand side is the pseudoscalar current which couples to the pion, according to (4.4) . 
We then remain with the covariant 

(5.13) 

which satisfies both (5.11) and (5. 12). In fact using the wave equation (3.32) we obtain 

(5. 14) 

We can easily calculate the ETC of current algebra and we find 

(5 .15) 

(5. 16) 

(5.17) 

We now consider the boson case. I-Jere the Fock space is the sum of two subspaces corre­
sponding to the I = 0 and I = 1 states; correspondingly the field cPo (x) will be labelled with an i­
sospin index 0 with 0 = 0 for the I = 0 component and 0 = 1, 2,3 for the I = 1 components. The 
isovector field has an expansion like (3.19) where the sum is restricted to the states a I , ~ I 

with R a ' I = 20 (odd G states) and R al I = 20 + 1/ 2 (even G s tates) and the isoscalar fiel d has a s.,!. 
milar exgansion over the other states .PThe commutation relat ion (3.17) will be replaced by 

(5.18 ) 
[ <l> (x), :r; (x ')~ , = i 6(x - x') 0 PI' o t' x = x ot' 

o 0 

where PI = 1/2 [1+( _1)1 CG] is the projector on the subspace of isospin I and is explicitly given 
by 

(5.19) 
I + 

1: '2 cma p u( < p, ap)u « p, a p) PI' 

( a p )1' < =:!: 

which replaces the completeness relation (3.24). The canonical vector current of isospin obtained 
from (3.12) is 

(5.20) 
p. +.... p. 

V (x) = < b <l> (x) ( -c a I' + if ) <l>b(x). 
a a c c 

From this we can easily obtain the following ETC: 

(5.21) 

(5.22 ) 

(5.23) Vi (X')-J =0. 
b x =x ' 

o 0 
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The vector curr ent (5.20) when inserted in a dual graph gives rise, after the T tra nsforroa 
tian, to the curr ent vertex 

(5.24) 

ro A 
I~ 

n=1 n 

where q = n' - n is the momentum of the current and nand n r are the momenta of the adjacent 
meson lines. The factor (c!2)q 2 is a divergent form factor and repres e nt s the obvious exte nsion 
of the factor (c /2 )r- 2 for the pion vertex in (4 .3). Once again the presence of t his divergence is a 
consequence(16) of the infinite numbe r of oscillator modes in the dual models. To eliminate such 
a divergence one has the unpleasant choice of inserting a factor (c /2 )_q2 in the interaction. 

For the axial current the situation is much more complicated . PCAC would suggest, from 
the pion interaction (4.1), an axial current of the form CP +H I-'-CP , but this would give vanishing 
ETC. Since we are interested i n current algebra we shall take for the time component 

(5.25) o O~ [ + + + j A (x) = -iT " (x)G <1i (x) - <1io (x)G ,,~(x) , 
a a a ~ 

where T are hermitian 4 x 4 matrices and G is a pseudoscalar , odd G parity operator. The only 
a 

operators having these properties are of the type A. b, apart from terms containing derivatives 
which would give Schwinger terms in the ETC. It then follows that G i s non dia gonal in t h e energy 
representation and will in general connect I = 0 to I = 1 states. 

The current algebra relations for the time components 

(5.26) [ V~(x), A~(X')J x =x ' = i 

o __ 

• b A (x) 0 (x - x'), 
a c c 

o 0 

(5.27) [ A~(xl. A~(X')J x =x ' = i • b VO(x) 0(;; - "i'l. 
a c c 

o 0 

r e quire the following conditions: 

(5.28) 

(5. 29 ) 

where Ia are the isospin matrices for the reducible representation with I = 0 ,1. We can immedia­
tely see that (5. 28) ~nd (5.29) cannot be identically satisfied in operator form . In fact the left­
hand side of (5.29) has non diagonal matrix elements, while the right-hand side is diagonal. 

In spite of this difficulty we shall find that the current algebra relations (5.26) and (5 .27) 
and also PCAC can be sati sfied between physical states, by making use of the gauge conditions. 

A simple sol ution of Equations (5.28) and (5.29) is to take the T matrices satisfying 

(5.30) 

(5.31) 

a nd the operator G such that 

(5.32) 



where ~ means that the two sides are equal between physical states. A solution for (5.30) and 
(5 . ~ 1) is the following 

(5.33) T rs 
= {S = i E ; 

a a rae 

(5. 34 ) 

For G we shall take an expression of the form 

M 

(5 . 35 ) G= l: 
m=-M 

13. 

where M is an arbitrary half integer and Om = Gm(i a) are the gauge operators . The independence 
of G on the derivatives requires for (3. 15) 

(5. 36) 
M 
l: a = O. 

m =-M m 

For G
2 

we obtain. from (2.16): 

(5.37) 

where 

(5.38) 

Since 

(5.39) 

.. e = ( l: a )2 = 0 we have: ...:. n m ' 
n m 

l: e W 
n n 

n 

2M 

l: 
n=2 

2M - ~ ~ 

(e M +e M )- WI l: 
n n -n -n 

n=l 
ne - W 

n -1 

2M 
l: 

n=1 
ne • 

-n 

where Mn = Mn(O) are the operators defined in (3.10). Since r = i [LOlA] transforms under the 
Vira8oro algebra like a J = -1 representation (apart from the zero mode contribution) it comm u-

~ 

tes with Mn and we have for physical states 

(5.40) 

Therefore we can satisfy (S. 32) provided that 

(5.41 ) 
2M 
I 

n=1 
ne = Q. 

n • e = 2. 
o 

From (5.36) and (5.41 ) it also follows 
2M 
l: ne = O. 

- n 
n=l 

We can easily realize that G cannot be taken hermitian, i. e. with a 
we have 

(5.42) 
2M 
! 

n=l 
ne =­

n 

M 2M 
I l: 

m=-M k=O 

this expression could not vanish except for all ~ = o. 

-m 
:I: = a 
m 

The axial current which results from the preceding discussion is of the form 
QtJ 

In fact since 



14. 

(5.43) A (x) = -iT <P (x) (c 01'+ - r )G - G (c 0 r - - r ) f4 at' + ~ ~ i Ii- + ~ II. i f' ] 
a a (J 2 2 

to which corresponds the dual vertex 

(5.44 ) 

<p(x), 
~ 

where G(,,) = 1; amGm (,,) and the other notations are the same as in. Eq . . (5. 24). 
m . 

Expression (5.43) simplifies greatly between phy sical states in virtue of (3.14) and redu­
ces to the form required by PCAC. ptovided that we have for the am the further condition 

(5 45) 
M 
;S a = O. 

1 m 
m="2 

In fact in this case we obtain 
M 

(5 .4<l) 
1 

~2 
1; 1 m (am + a") Ta~(/ (x)H I' <p (x). 

m a f1 t' 
m =2" 

Since (5. 33 ) and (5.3:'1) can also be expressed in the form 

(5 . 4 .7) 

with t' = I, (5 .46) gives the axial current suggested by PCAC with the cor rect isospin factor of 
t he Cha~l-Paton( 17) form. 

In conclusion, we have found a class of axial c urrents for bosons of the form (5.43), which 
s atisfy the local SU(2)xSU(2) current algebra without Sc hwinger term s , but only in a weak sense, 
i. e. between external real states. PCAC is also satisfied in the weak sense. To this purpose we 
want to remark that since the r educ ed form (5.46) for the axial current would give zero ETC, the 
spurious states playa crucial role in the s aturation of the current algebra commutators. 

We finally observe that the operator G, resulting from (5.35) , (5 . 36), (5. 41) and (5.45). 
d epends for any given M, on 2M - 3 a rbitrary complex parameters. It turns out that a consistent 
solution for G, leading also to a non zero PCAC constant in (5.46), exists only for M ~ 5/2. 

One of us (J. G.) acknowledges G. 1. F. T. for financial s upport . 
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