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C. Bernardini: ON THE PARAMETRIZATION OF THE ANGULAR DISTRIBU
TIONS OF HADRONS PRODUCED VIA THE ONE-PHOTON ANNIHILATION
CHANNEL IN e"e~ REACTIONS. -

1. - Most of the peculiarities of the angular distribution of hadrons
from e%e~ annihilations in the center of mass are determined by the simple
structure of the one photon channel. In an attempt to find model-indepen-
dent parametrizations of the angular distribution of few observed charged
tracks in events containing pseudoscalars with any multiplicity we gota sim
ple answer for the single-track case, namely a+b 00529p where a and b
are energy-dependent parameters and Gp is the track angle with the beam li
ne. Also, the two-track distribution has been studied and some simple pro
perty shown; in particular, the possibility to describe final state dynamics
in terms of only one angle variable. We will sketch in the following the phy
sics and the mathematical techniques for the one - and two-track cases.
We did not study cases with more than two tracks,

2. - Cabibbo and Gatto(l) have shown that, to lowest e, m. order
the space part f(n) of the matrix element

<0 lJ,,Jn) = J/A,(n)
of the hadronic current operator in
ete- ~» n (any hadronic state)

is distributed according to a sin20 law, O being the angle of -f(n) with the
beam line (C. M. description is understood), because of it's coupling with
the lepton current.

We will limit the analysis to the case in which n contains only
spin-zero particles.

Also it would not be difficult to account for a possible polarization
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of the beam electrons, but we will study the no-polarization case.

A reference system using the beam line as polar axis will b_s:_ cal-
led "scanner system' (S. S.); the "current system' (C. S.) will have J (n)
as polar axis.

We do not know anything in general on how '.-I,(n) is formed out of
the particle 3-momenta in n, But we can say that, given a state n (descri
bed by the nature and 3-momenta of each particle in n) the cross section

for ete- =—» n will be invariant under the following operations:
—

i - Rigid rotations around J (n)
— -
ii - Inversion J(n) — - J(n)
—_—
iil1 - Rotations with J (n) at 8 = constant, around the beam line,

The more, keeping the particle configuration fixed in C. S., any
change of the -.T(n) direction in the S. S. will be accounted for by the sin2@
law,

The single-track case corresponds to integration over all but one
particle momenta, The two-track case concerns integrations over all but
two particle momenta. Since usually the triggers require at least two tracks,
the single-track analysis might be somewhat academic; nevertheless it illu-
strates well the power of the symmetries involved.

3. - We first consider the single-track case. Assume that a char-
ged particle with momentum ?3' is observed and no other particle is detected.
Let us call 64, ‘-P the polar angles of the frack in the S5, S.; also, p = \ 3 l

p p -

Assume for a moment that the direction of J for that event is known. Then.
call 6, the polar angles of J in the S.S. and A, X the polar angles of the

track in the C.S. (see Fig. 1). The symmetries will be exploited by saying




that, should we know ? the probability of the event would be of the form

3 . .3
BT W (A,p) sinA dA dX sin 6 d6 dy

where W is a function of A normalized over the sphere, Because of ii, 8 2:
W(A)=W(m-4)
Therefore W(A,p) can be expanded in the form

W (A, p) =W (p)-|~w2 (p) P2 (cosA) +...

where Py, is a Legendre polynomial {even indexes only). Because of the nor-
malization, w_(p) is known and equals 1/47 .

Actually, we do measure 0_, lfp so that integration over the remai

ning angles must be performed. By using

cos A = cosH cosep + sin® sin@}‘) cos( ¥ - kﬂp)

and the composition formula for Legendre polynomials, the following distri-
bution is found after integration over 0, 'Y for the track-angles in the S. S, :

dLn
(1) p 4T
Ty {1 =g wz(p) P2 (cosep)}

Therefore, the following theorem holds:

Single-track theorem., - Any state produced via the one-photon chan
nel in ete- —» (spin zero hadrons) will give a single track distribution in scan
ner-space of the form (1).

The known cases of ete => TT2~ (K'K™) and ete” —> mtn-no cor
respond to W~ 8(1 - cos2A)and Wn 5((:05 A ) respectively. For them,
w2 = 5/4T and wy = - 5/87T ., In general

47
-2 £ Twz(p) % 1

because of positivity requirement on (1).

When no information on the multiplicity is known, wz(p) must be
understood as the sum over all possible hadronic states (we can safely as-
sume that such states contain only 7 and K).

The cross section for the single track will be written in general
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de { Arm }
dpd.ﬂ.p A(p) 1 = : wz(p) PZ(COSQP)

Integration over p gives

Ef = G—- Vo ! 1 ]
4 dp A(p) Total’ the total cross section., Define

W, =47 [dp w (0) A ()62,

then, when the momentum p is not measured

d& i} 6-Tota1 1 41T _ P_ (cosh )}
2 4T N T

Note that, performing these integrations over the kinematical
limits for p, the lower limit could be less than the threshold for an actual
apparatus and, the worst, the threshold could be angle-dependent. There
fore, a word of warning must be said concerning the comparison with data.

4. - Let us consider now the two-track case, Labeling the pa-
rameters of the two particles by the index 1 and 2, we will call 8, Lf’i the
polar angles in the S.S. and Aj, X; those in the C.S., shown in Fig. 2.
Aslo, 815 is the angle between the two tracks. To lighten the notations, put

z. = cos O . " z = cos® s X = cos8,
i i i i




and I=Z-}t’, 212=xx - \Il—xz \'l—xz 005(901—502)

Assuming again the direction of T to be known (8,4 ) then becau
se of the symmetries we would write for the probability of the pl, pz, 7
configuration

2
. 7 ) _
3T w ( 2,')5 ,plpz)dzldlldzdez(l z”) dzd\p

where W is a normalized function having the property ii),§ 2

W(—z1 —Z.X Plp) Wiz, .,z..Xs5p )

9 1* %3 1P

The analogous procedure to the single-track case would be to integrate over
z, P keeping 6;, ¥; fixed for both particles:

27 #1
3 f [ 2
e -_— &
g 44, d&, | dy 1(1 z')dz W (2, 2,, X ; Py P,)

dfl; being the solid angle for track i in the S.S.

That this would hardly produce simple results is seen in the cir
cumstance that, while

2 2
P + = a \o_
2y =2, Ul Z \Jl X cos (¢ \/’i)
is a simple relation, the formula

%12 T %1%

Vrl z. \{1—2

is exceedingly complicate, Therefore, the most natural expansion

cos X =

\ (21.22, r A plpz Z.W (Pl Pz) P (Zl) PS (zz)- cos m X

cannot be exploited in a simple way(z).

We shall therefore conslder a different parametrization in which
the partlcle having momentum p is analyzed in the 5. S. whereas particle
2 (pz) is analyzed with respect to the polar axis pl , as shown in Fig, 3,
We introduce now the angles:

o , between the (-51, TIP) plane and the plane containing 31 and
the beam line

r

-
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A

between the ( _51, —52) plane and the plane of _51 and the
beam -line,

21

sf \,:; ot Lot

o,

FIG. 3

Thus, K and ™, describe rotations around the -ﬁl axis. A configuration
is fully determined, for this two-track case, by giving zq, 212, ol- 0(2;
that is, the dynamics will be contained in a fur_l’ction W (21, 212, & - otz;
Pl pz) and the average over the directions of J will be performed by inte-
grating over zj and &,

It follows that the probability to find p; in the solid angle df. 4
and pg in the solid angle dfL12(= dzygdelg) from track 1 is

T +1

2
2 _an a0 i o) W (e By o = S ) =
87 12 - PgeBage N T Nep Pyl ®

0 1

- 14 -
B d Q (xla kfl: 2‘12: Dd\z)

Since

= \f 2 V 2
= + o =
z lel 1 x1 1 Zl cos ™,
we proceed again to expand W:

" m
W(Zlazlza & b dzsplpz) - ZWI‘ (Z

219 pl pz) Pr(zl)cos m(X - &2)



Then, by integration
4 0 1 .0 2
= - + — ; - -
d'Q=df,d,, {Wo (2195 Py Py) + 75 Wy (293P Py)(1-3x,)
3 1 V 2 1 [ 2
o2 : . = |lw : -
g |28 W, (212’p1p2ﬂ. 1-x] cosoh, - o | W, (2155 P Py)

1 2 2
-3 W2 (zlz,plpz)] cos 20{2 (1-x1)}

+1
where g, = ‘[1 Jl-zi Pr (zl) dzl.

The explicit form of g, is:

cosz(%)
gr "2 2
(1=2") {(3+r)

with gy = 0 (by the definition formula). Therefore, g, =0 for r odd and

2 = —
8073 = 87715 By 105

showing that only the first few terms in the sum (W(lJ and Wzl)) contribute
appreciably.

Also, by using the spherical harmonics
Y (8,9)= P™ (cos )
v, WP kp cos m Y , (cos
the general formula can be rewritten:
a*Q=dn_de 'WO Y. (8.,%,)
Q 17712 0 00 1" 2"

1 0 3 1
(2) e Wy T 1B, ) - 5ilEg W T

2 702 1 (el’d‘z) B

1

TS S T
"5 Wy -5 W) Yy, (61":’"‘2)}

From this general formula we can deduce simpler formulas for
special cases:



a) Which is the probability that, given a track (track 1, say, poin
ting in the 81, ¥y direction) we find another (track 2) maklng an angle 049
—
with p1, irrespective of the orientation of the plane (pl p2 )? (remember
212 = COs 912)

This is simply obtained by integrating over & 9
3

— 0 -
d'Q(x), Yy.25) =27 dR,  dz ), {Wo (z19iPyPy) +

(3)
1

0 2 0 1.0 2 }
4+ — . - = _ﬂ - —
0V, (212, plpz)(l 3x1)} 27 d 1 dle{WO s W, B, (xl)

a formula that reminds of the single track theorem.

It is also evident that

2 <)
E .
(4) 8 WO (zlz,plpz) dz

12
is the probability to find a second track at an angle 8;, with the first.

b) The general formula shows that the probability to find a track-
-pair whose {pl, beam) and (pl p2) planes form an angle ™, (integrate
over xi, ‘Fl, z12) is:

d«

(5) 2 ']
—= + +
> 1 Acosb(z Bcoszf""\2
where
3T ; 1
A= = v Z_gr ‘[1 dzlzwr

us]
i
w|oo
~
™o
—
o
N
o
R
=
I
=
| I |

a) and b) are just examples of what can be done to analyze events; here we
want to emphasize that the main result expressed by the general formula
for d4 Q is:

Two-track theorem. - The distribution in space of two-tracks from any
ete” -—> (spin zero hadrons) annihilation process depends on four unknown
functions of the single variable 819, the angle between the two tracks. The
dependence on the other 3 angle variables is completely determined and gi
ven by the general formula (2).
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Eventually as a check and example, it is easily verified that for
ete-— 27 (2K), since

1
W = 8—“—2" 8(1+zlz) [5(1+z1)+ 5(1 -zl)]

one has W;n =0 if m »0; Wi =0if r odd. For even r

+
W?‘:z_r_l 5(1+z )

87l2 12

whence 4@ ~dfda, sinzﬁl Strew. .

12
Also, for ete™ =3 M (2K +T), write

i
W=—-—=d(z,)H(z,,p, P,)
4”:2 1 12* %1 72
whence:
Wi_n=0 for m»0
(8]
Wr =0 for odd r
o 2r+l
W =——-H(z_ _.;p.p.)P (0)
2
r g 1212 r
so that
fon~dn. dn. Hiz. . ; ) (1+cos0. )
1 Bgp FVEgg Py PediaTeRs 1y

- A full exploitation of the two-track theorem is made difficult
by the presence of the momentum variables p; and Py and by the fact that
one has to reconstruct unknown functions (the Wi‘n) rather than to deter-
mine numerical values of parameters,

When momentum analysis is not done, the W's must be integra-
ted over the momentum spectrum for the two particles, This integration
will generally require knowledge of the z;59 dependence of the kinematical
limits for py, given p;. Nevertheless, 1ntegration over the momentum
spectrum will give average functions W (z1p) of the single variable z,9
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10.

such that d46, constructed by replacing ‘i?VrITl(zlz;p1 pz) with W;n(zlz)

in (2), is related to the two track cross section by:

4 4=
de . d Q

d.ﬁ.l d.!?.lz Total d.ﬁ.ld_ﬂ.l2

Now, it is a better procedure than to reconstruct unknown func
tions in d* @ to introduce empirical functions depending on few parameters
in order to get fits,

We choose the following kind of empirical functions:

v‘vff‘(z - m+bmz2 )

12 16752 12

Note that when r=m =0, because of (4) and the meaning of Wz
one has

b° =3(1-a°)
(@] (@]

Also, from (3) we get after integration over Z19

that is a relation with the parameter appearing in the single-track formu-
la (1),

Since the coefficients Wl ) appear in the general formula (2)
as a linear combination:

we only need the parameters



By A

Also, the sum Wi— 1/5 Wg appears in the last term of 2, so that only

2 1 2 0 2 1 2
=g% . — =b -—%
25 7% 5 ot by =b -5 by

have a role in the fit,

In conclusion, we propose to represent the two-track data by
a formula containing 7 parameters:

37T 1

= _ — .'__.
A=-5p (8 %5 b))

1 1

= ———— +-_-.-__
= PRACPRAPELY)

and formula (3) shows that, when integrating over &, the distribution dsa

o
2

Positivity requirements impose some inequalities whose model
independent form is of the following type:

ZJ

is given by a 3 parameter (ag, = e bg) formula,

-
W (z__,)=0, any 2.9

and so on,

When we use the empirical formula, these inequalities become

3
DXn & —
aLo 2



12,

ao> s ao if ao is negative
o™ 10 2 2

ao>- = aD if ao is positive
o~ 5 o2 g R

and so on,

In conclusion, because of solid angle limitations in the experimen
tal set-ups the reconstruction of the total cross section for hadronic anni-
hilation events will require a knowledge of the geometrical efficiency and
of the angular distribution of the produced particles, We have shown here
how to proceed when one or two tracks are detected; the aim of the present
work is therefore to help to judge of the sensitivity of an apparatus and, per
haps, to optimize it's performances,

I want to thank Bruno Bartoli, Giorgio Capon and Mario Greco for
comments,
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