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C. Bernardini: ON THE PARAMETRIZATION OF THE ANGULAR DISTRIBTL 
TIONS OF HADRONS PRODUCED VIA THE ONE-PHOTON ANNIHILATION 
CHANNEL IN e+e- REACTIONS. -

1. - Most of the peculiarities of the angular distribution of hadrons 
from e+e- annihilations in the center of mass are determined by the simple 
structure of the one photon channel. In an attempt to find model-indepen
dent parametrizations of the angular distribution of few observed charged 
tracks in events containing pseudoscalars with any multiplicity we got a sim 
pIe answcr for thc single-track case, namely a + b cos 28p where a and b -
are energy-dependent parameters and 8p is the track angle with the beam II 
ne. Also, the two-track distribution has been studied and some simple prQ 
perty shown; in particular, the possibility to describe final state dynamics 
in terms of only one angle variable. We will sketch in the following the phy
sics and the mathematical techniques for the one - and two-track cases. 
We did not study cases with more than two tracks. 

2. - Cabibbo and Gatto (1) have shown that, to lowest e. m. order 
the space part J'(n) of the matrix element 

<. a \ Jf'-I n '> =- J)"- (n) 

of the hadronic current operator in 

(any hadronic state) 

-is distributed according to a sin28 law, 8 being the angle of J (n) with the 
beam line (C. M. description is unde rstood), because of it's coupling with 
the lepton current. 

We will limit the analys is t o the case in which n contains only 
spin-zero particles. 

Also it 1V0uld not be diff i c ult to account for a possible polarization 



2. 

of the beam electrons, but we will study th e no - polarization case. 

A reference s ystem using the beam line as polar axis will be cal 
l ed "scanner system" (S. S. ); the "current system" (C . S. ) will have 1(n} 
as polar axis. 

~ 

We do not know anything in general on how J (n) is formed out of 
the particle 3 -momenta in n. But we can say that, given a state n (descri 
bed by the nature and 3-momenta of each particle in n) the cross section 
for e+e- - n will be invariant under the following operations: 

..,. 
i Rigid rotations around J (n) 

-. -0> 

ii - Inversion J (n) -loo - J (n) -iii - Rotations with J (n) at 8 = constant, around the beam line. 

The more, keeping th e particle configuration fixed in C. S., any 
change of the j (n) direction in th e S. S. will be accounted for by the sin2 8 
law. 

The single-track case corresponds to integration over all but one 
particle momenta. The two-track case concerns integrations over all but 
two particle momenta. Since usually the triggers require at l east two tracks, 
the single-track analysis might be somewhat academic; nevertheless it illu 
strates well the power of the symmetries involved. 

3. - We first consider the Single-track cas e. Assume that a c har
ged particle wi th momentum p is observe d a nd no other particle is dete cted. 
Let us call 8p , lfp the polar angles of the track"in the S. S.; also, p = \ P \. 
Ass ume for a moment that the direction of J for that event is known. Then. 
call 8, <f the polar angles of J in the S. S. and b.,. X th e polar angles of t h e 
track in th e C. S. (s ee Flg. I). The symmetrles wlll be explOlted by saymg 

FIG. 1 



.... 
that, should we know J, the probability of the event would be of the form 

-83 
W (LI,p) sin..0. d~ dX sin

3
e de dlf 

7[ 

3 . 

where W is a function of /:; normalized over the sphere. Because of ii, § 2: 

W (/::.) = W (7C -/::.) 

Therefore W(.t::., p) can be expanded in the form 

W (/:::., p) = w 0 (p) + w 2 (p) P 2 (cos /:::..) + .... 

where P u is a Legendre polynomial (even indexes only). Because of the nor
malization, wo(p) is known and equals 1/47r. 

Actually, we do measure 8p ' tfp so that integration over the remai 
ning angles must be performed. By using 

cos!:;. = cos8 cose + sine sin8 ' cos( <f 'fp) 
p p 

and the composition formula for Legendre polynomials, the following distri 
bution is found after integration over e, If' for the track-angles in the S. S. : 

(1) d..!l.p { 47(" 
-- 1 - - w (p) P 

47C 5 2 2 

Therefore, the following theorem holds: 

Single-track theorem. - Any state produced via the one-photon cha~ 
nel in e+e- _ (spin zero hadrons) will give a single track distribution in sca~ 
ner - space of the form (1). 

The known cases of e+e- ~ 7[ + It - (K+K-) and e+e- -> 7[+ It- ito cor 
respond to W"v cS (1 - cos2 t::.) and W'" d(cos b ) respectively. For them, 
w2 = 5/4 7[ and w 2 = - 5/8 7[. In general 

because of positivity requirement on (1). 

When no information on the multiplicity is known, w2(P) must be 
understood as the sum over all possible hadronic states (we can safely as
sume that such states contain only 7[ and K). 

The cross section for the single track will be written in general 
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db 
dpdJl 

P 

\ 4 ~ 
= A(p)·p - 5 

Integration over p gives 

4 7C! dp A(p) = b-Total' the total cross section. Define 

w2 = 47r:jdP w2 (p) A (P)/S"Total 

then, when the momentum p is no t measured 

db'" = STatal S 1 _ 4Jr - P (COS8
p
)} 

d.Q 4n. 1. 5 w2 2 
P 

Note that, p e rforming these integrations over the kinematical 
l imits for p, the low e r limit could be less than the threshold for an ac tual 
apparatus and, the worst, the threshold could be a ngle-dependen t. Ther~ 
fore , a word of warning must be said concerning the comparison with data. 

4. - Let us consider now the two-tra<:k case. Labeling the pa
rameters of the two particles by th e index 1 and 2, we will call 8 i , Y i th e 
polar angles in the S. S. and LI i' X i those in the C. S., shown in Fig. 2. 
AsIa , S12 is the angle between the two tracks. To lighten the notations, put 

z. = cos D, . 
1 1 

z = cosS x = coss. 
i 1 

FIG. 2 
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... 
Assuming again the direction of J to be known (e,tp) then, becau 

se of the symmetries we would write for the probability of the PI' P2' j
configuration 

where W is a normalized function having the property ii), § 2 

The analogous procedure to the single-track case would be to integrate over 
z, 'f keeping ei , 'fi fixed for both particles: 

+1 

L 
d.!l i being the solid angle for track i in the S. S. 

That this would hardly produce simple results is seen in the cir 
cumstance that, while 

is a simple relation, the formula 

is exceedingly complicate, Therefore, the most natural expansion 

cannot be exploited in a simple way(2). 

We shall therefore consider a different parametrization in which 
the particle having momentum P1 is analyzed in the S. S. whereas particle 
2 (P2) is analyzed with respect to the polar axis P1 ' as shown in Fig. 3. 
We introduce now the angles: 

0(, between the (P1' J) plane and the plane containing Ii\ and 
the beam line 
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0(. 2' 
~ - -.. between the ( PI' P2) plane and the plane of PI and the 

beam-line. 

FIG. 3 

Thus, c( and'" 2 describe rotations around the PI axis. A configuration 
is fully determined, for this two-track case, by giving zl, zl2, cI... - 0( 2; 
that is, the dynamics will be contained in a fu:!.ction W (zl' zl2, ex. - 0(.2; 
PI P2) and the average over the directions of J will be performed by inte
grating over z I and eX • 

It follows that the probability to find PI in the solid angle d.fl.. 1 
and P2 in the solid angle dJ1.12(= dZ12dO(2) from track I is 

Since 

2'1:" 

_3_ dJl d..!2 J 
8ir I 12 

o 

z = 

+1 

de( J dZ 1 
-1 

+ ~ 2 1 - x 
1 

we proceed again to expand W: 
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~l - z~ cos t>Z 



Then, by integration 

+1 

where gr= [1 ~l -Z~ P r (zl) dz 1· 

The explicit form of gr is: 

g = 2 
r 

2 ?Cr 
cos (-2-) 

2 
(1-r)(3+r) 

with gl = 0 (by the definition formula). Therefore, gr = 0 for r odd and 

2 2 
g = 

2 15 
g = 

4 105 

showing that only the first few terms in the sum (W~ and W§) contribute 
appreciably. 

Also, by using the spherical harmonics 

m 
Y (S,!O)=cosmif P (cosS) 

mn T n 

the general formula can be rewritten: 

(2 ) 

7. 

From this general formula we can deduce simpler formulas for 
special cases: 

5& 
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a) Which is the probability that, given a track (track 1, say, poin 
ting in the 9 1, '-PI direction) we find another (track 2) making an angle 9 12 
with PI, irrespective of the orientation of the plane CPI' P2)? (remember 
z I2 = cos 9 12 ). 

This is simply obtained by integrating over 0( 2: 

(3 ) 

a formula that reminds of the single track theorem. 

It is also evident that 

(4) 

is the probability to find a second track at an angle 9 12 with the first. 

b) The general formula shows that the probability to find a track
-pair whos e CPI' beam) and CiJ\. P2) planes form an angle <><'2 (integrate 
over xl, f1' z12) is: 

(5 ) d,,(2 r 1 
-- L 1 + A cos"z + B cos 2 eo( 

2 2 2 

where 

31t 1 

A = L. gr L dz WI 
4 12 r 

+1 

B = _ ~ Jr2 f dZ 12 
[ W2 _ 1:. w21 

3 052 
-1 

a) and b) are just examples of what can be done to analyze events; here we 
want to emphasize that the main result expressed by the general formula 
for d4Q is: 

Two-track theorem. - The distribution in space of two-tracks from any 
e+e -~ (spin zero hadrons) annihilation process depends on four unknown 
functions of the single variable 812, the angle between the two tracks. The 
dependence on the other 3 angle variables is completely determined and IQ. 
v en by the general formula (2). 
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Eventually as a check and example, it is easily verified that for 
e+e- -~ 21C (2K), since 

one has W~ = 0 if m ., 0; W~ = 0 if r odd. For even r 

W
o = 2 r + 1 (( 1 + ) 

2 v z12 
r an 

whence d
4

Q ~d.n.d.ll12 sin
2

9 l $0 +z12)' 

Also, for e+e+ --.3 7t (2K + 7t), write 

whence: 

so that 

wm 
=0 for m> 0 

r 

W
o 

=0 for odd r 
r 

2r+l 
=---H(z 'p p )P (0) a 1<2 12' 1 2 r 

5. - A full exploitation of the two-track theorem is made difficult 
by the presence of the momentum variables PI and P2 and by the fact that 
one has to reconstruct unknown functions (the Wm ) rather than to deter

r 
mine numerical values of parameters. 

When momentum analysis is not done, the W's must be integra
ted over the momentum spectrum for the two particles. This integration 
will generally require knowledge of the z12 dependence of the kinematical 
limits for P2' given Pl' Nevertheless.!., integration over the momentum 
spectrum will give average functions W~ (z12) of the single variable z12 
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such that d4 Q, constructed by replacing W~ (z12; PI P2) with W~(z12) 
in (2), is related to the two track cross section by: 

Now, it is a better procedure than to reconstruct unknown func 
tions in d4 Q to introduce empirical functions depending on few parameters 
in order to get fits. 

one has 

We choose the following kind of empirical functions: 

Note that when r = m = 0, because of (4) and the meaning of W
O 

o 

o 0 
b =3(l-a ) 

o 0 

Also, from (3) we get after integration over z12 

that is a relation with the parameter appearing in the single-track formu
la (1). 

- 1 
Since the coefficients Wr (z\2) appear in the general formula (2) 

as a linear combination: 

we only need the parameters 

a =L.g a
1 

1 r r 
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Also, the sum w! -1/5 W~ appears in the last term of 2, so that only 

have a role in the fit. 

In conclusion, we propose to represent the two-track data by 
a formula containing 7 parameters: 

In particular, formula (5) contains the parameters 

371:" 1 
A = - - (a +- b ) 

32 1 3 1 

1 1 
B=--(a+-b) 

3 2 3 2 

and formula (3) shows that, when integrating over ex 2' the distribution i Q 

is given by a 3 parameter (a~, a~, b~) formula. 

Positivity requirements impose some inequalities whose model 
independent form is of the following type: 

and so on. 

B ~ 1, 

-0 
W (z 2)~O, 

o 1 

A~ I+B (from (5)) 

When we use the empirical formula, these inequalities become 
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a 

a 

and so on. 

0 1 0 
if 

0 
~ a

2 
a 

0 10 2 

0 1 0 0 

0"" 5" a 2 
if a 

2 

1 
a+-b'>-3 
232 

is negative 

is positive 

In conclusion, because of solid angle limitations in the experimen 
tal set-ups the reconstruction of the total cross section for hadronic anni
hilation events will require a knowledge of the geometrical efficiency and 
of the angular distribution of the produced particles, We have shown here 
how to proceed when one or two tracks are detected; the aim of the present 
work is therefore to help to judge of the sensitivity of an apparatus and, pe!:. 
haps, to optimize it's performances. 

I want to thank Bruno Bartoli, Giorgio Capon and Mario Greco for 
comments. 
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