Istituto Nazionale di Fisica Nucleare Sezione di Napoli

 $\frac{\text{INFN}/\text{AE}-71/2}{10 \text{ Febbraio } 1971}$

C. Bernardini: CONTINUOUS CONTRIBUTION FROM RADIATIVE PRODUCTION OF VECTOR MESONS IN e^+e^- REACTIONS. -

1. - The cross section for

(1)
$$e^+e^- \rightarrow V + \mathcal{X}$$

where V is a $J^{PL} = 1^{--}$ vector (like $g^{\circ}, \omega, \emptyset$) can be computed in the peaking approximation when the total energy $2E \equiv \sqrt{S}$ of the e^+e^- pair is larger than the central mass m_{v} :

(2)
$$S - m_V^2 \gg \Gamma_V^2$$

Here $\Gamma_{\rm V}$ is the width of the V line.

Here we shall show that cross sections in the range 10^{-33} - -10^{-32} cm² behaving like 1/S are obtained for the best known mesons. Also, some peculiarities of the angular distribution of the decay products of the V will be illustrated.

2.- The probability of emission of a photon having energy k is

$$P(k) dk = 2 \times \frac{2 \swarrow}{\pi} L(k, E) \frac{dk}{k}$$

where an extra factor 2 accounts for the possibility that either the e^+ or the e^- radiate before annihilation. The factor L is

$$L(k, E) = \frac{E^2 + (E-k)^2}{2E^2} \ln \frac{E}{m_e}$$

When k satisfies the kinematic relation

$$k = E - \frac{m^2}{4E}$$

a vector meson having the mass m can be produced by annihilation of the surviving pair. The total cross section for

$$e^+e^- \rightarrow V$$

at mass m can be written (near the peak)

$$\mathcal{G}_{V}(m^{2}) = \mathcal{G}_{V}(m_{V}^{2}) \frac{m_{V}^{2} \Gamma_{V}^{2}}{(m^{2} - m_{V}^{2})^{2} + m_{V}^{2} \Gamma_{V}^{2}}$$

where $6_V^{}(m_V^2)$ is the peak cross section. Therefore, the cross section for reaction (1) at a given mass will be

(3)
$$d \mathfrak{s}_{\chi V}(m^2) = \mathfrak{s}_{V}(m^2) P[k(m^2)] \frac{dk}{dm^2} dm^2$$

We will now integrate over the peak assuming that (2) is valid and thus computing the slow varying P(k) at $k = k_V \equiv k(m_V^2)$ (clearly no serious problem is associated with the infrared catastrophe). Integration gives:

$$\mathcal{G}_{\gamma V} = 4 \alpha \frac{m_V \Gamma_V}{S} \mathcal{G}_V(m_V^2) \frac{L(k_V, E)}{1 - \frac{m_V^2}{S}}$$

When E ranges from .7 to 2.0 GeV the factor L/ $1-(m_V^2/S)$ varies from 5.5 to 4.5 for the most unfavourable case of the 9 meson. We shall fix this factor at 5 since we do not pretend a better than 10% approximation for this naive calculation.

Also, the cross section at peak $f_V(m_V^2)$ is usually written

$$\mathcal{G}_{V}(m_{V}^{2}) = \frac{12\pi}{m_{V}^{2}} \frac{\Gamma_{V} \rightarrow e^{+}e^{-}}{\Gamma_{V}}$$

corresponding to a definition of the width $\Gamma_{V \rightarrow e^+e^-}$ for lepton-decay of the V. Therefore

2.

or, by introducing the usual $\ensuremath{\mathfrak{I}}$ -V coupling constants g_V (to avoid confusion, use

3.

$$\Gamma_{V \rightarrow e^+e^{-=\frac{4\pi\alpha^2}{3}}\frac{m_V}{\frac{g_V}{g_V}}),$$

the $\delta_{\chi V}$ can be written

$$\Im_{\chi V} \cong 320 \frac{\pi^2 \varkappa^3}{\mathrm{S}} \frac{1}{\frac{2}{\mathrm{g}_V}}$$

or, for numerical use:

$$\sigma_{\gamma V} = \frac{4\pi}{g_V^2} \frac{1}{E_{GeV}^2} 10^{-32} \text{ cm}^2$$

This formula shows the 1/S dependence of \Im_V and, by using the Orsay results⁽¹⁾, values in the range $10^{-33} \div 10^{-32}$ are found at E = 1 GeV for the \Im° , ω , \emptyset cases. Detailed results are summarized in Table I.

Note that $G_{\gamma V}$ is nearly independent on V's parameters other than the coupling constant g_V and that the total hadronic cross section via radiative vector meson production is ~ $\Sigma_V 1/g_V^2$.

TABLE I

v	$ g_V^2/4\pi$	$G_{\gamma_V}(E = 1 \text{ GeV})$
S°.	2.0 ± 0.1	$5 \times 10^{-33} \text{ cm}^2$
ω	14.8+2.8	$7 \mathrm{x} 10^{-34} \mathrm{cm}^2$
ø	11.0+1.6	$1 \times 10^{-33} \mathrm{cm}^2$
$g^{O} + \omega + \phi$		$6.7 \times 10^{-33} \mathrm{cm}^2$

3.- The most important final states from the decay of known V mesons will be

$$\begin{array}{l} \mathcal{S}^{\circ} \rightarrow \pi^{+}\pi^{-} \\ \mathcal{W} \rightarrow \pi^{+}\pi^{-}\pi^{\circ}, \pi^{\circ}\mathcal{F} \\ \phi \rightarrow \mathrm{K}^{+}\mathrm{K}^{-}, \mathrm{K}^{\circ}_{1}\mathrm{K}^{\circ}_{2}, \pi^{+}\pi^{-}\pi^{\circ} \end{array}$$

Using the known branching ratios (2) we compute the cross sections

$$\begin{split} & \tilde{\gamma}_{\pi} + \pi^{-} &= \tilde{\gamma}_{\gamma} \\ & \tilde{\gamma}_{\pi} + \pi^{-} \pi^{0} &= 0.9 \, \tilde{\gamma}_{\omega} + 0.2 \, \tilde{\gamma}_{\gamma} \\ & \tilde{\gamma}_{\pi} - \pi^{0} &= 0.1 \, \tilde{\gamma}_{\omega} \\ & \tilde{\gamma}_{\pi} &= 0.1 \, \tilde{\gamma}_{\omega} \\ & \tilde{\gamma}_{\kappa} \times K^{0}_{\tau} &= 0.3 \, \tilde{\gamma}_{\gamma} \phi \\ & \tilde{\gamma}_{\kappa} \times K^{0}_{\tau} \times K^{0}_{\tau} = 0.3 \, \tilde{\gamma}_{\tau} \phi \\ & \tilde{\gamma}_{\kappa} \times K^{0}_{\tau} \times K^{0}_{\tau} = 0.3 \, \tilde{\gamma}_{\tau} \phi \\ \end{split}$$

The detection efficiency problem depends very much on the apparatus and we will only consider now the simple case of the two body decay

$$V \rightarrow P + P$$

where P is a charged pseudoscalar. Since V moves along the beams with velocity

$$\beta (m^2) = \frac{S - m^2}{S + m^2}$$

the two P-particles will be coplanar with the beams but non-collinear. The angular distribution in the V center of mass is $\sim \sin^2 \theta_{\rm CM}$ where $\theta_{\rm CM}$ is the angle from the e⁺e⁻ line.

The general formula for relating θ_i , the angle of one of the P in the lab with respect to the e⁺e⁻ line, to θ_{CM} , the V mass m and S is

$$tg \theta_{i} = \frac{2m \sqrt{S} \lambda \sin \theta_{CM}}{\frac{+}{2}\lambda (S+m^{2}) \cos \theta_{CM} + (S-m^{2})}$$

with

$$\lambda = (1 - \frac{4m^2}{m^2})^{1/2}$$

4.

$$tg \theta_{i} \approx \frac{2m}{\sqrt{S}} \begin{cases} tg \theta/2 \\ + \cot g \theta/2 \end{cases} \qquad (\theta \text{ for } \theta_{CM})$$

On the other hand, when $\lambda \rightarrow 0$ (like in the $\emptyset \rightarrow K^+K^-$ case)

$$\operatorname{tg}_{i} \approx \frac{2 \operatorname{m} \sqrt{S} \lambda}{S - \operatorname{m}^{2}} \sin \theta_{CM}$$

The efficiency of the apparatus has to be computed for a given mass m. Call it $\gamma(m^2)$, then the effective measured cross section will be

$$\mathcal{G}_{\gamma PP} = \int \gamma (m^2) d\mathcal{G}_{\gamma PP}(m^2)$$

where

$$d \delta_{\gamma PP} (m^2) = d \delta_{\gamma V} (m^2) \frac{\Gamma_V \Rightarrow PP}{\Gamma_V}$$

and $d \mathfrak{F}_{\chi V}$ is given by formula (3).

Also, threshold problems for particle detection could be important and the angle dependence of the P's momenta can be learned from

$$\left| \overrightarrow{P}_{i} \right| = \frac{m\lambda\sin\theta}{2\sin\theta_{i}}$$

Eventually, the problem of detecting a forward or backward \mathscr{V} in coincidence should be considered. This problem is presumably difficult be cause of beam-gas or beam-beam bremsstrahlung but the requirement that the \mathscr{V} energy should be around

$$k_{V} = E - \frac{m_{V}^{2}}{4E}$$

should help.

I warmly thank the experimental groups at Adone and Bruno Touschek for many stimulating conversations.

REFERENCES AND FOOTNOTES. -

- (1) See for example the recollection by J. Haissinski, Production of V-mesons in e⁺e⁻ colliding beams, Argonne Conference May 1969. Any other Orsay data recollection will do.
- (2) Particle Data Group, Phys. Letters 33 B, (1970).
- (3) The minimum angle Δ between the two charged tracks is readily obtained corresponding to $\theta_{\rm CM} = \pi/2$. In the approximation for the g case

$$tg\frac{\Delta}{2} \approx \frac{2m}{\sqrt{S}} = \frac{m}{E}$$

and, at $E = 1 \text{ GeV}, \Delta \approx 75^{\circ}$. In general

$$tg\frac{\Delta}{2} = \frac{2m\sqrt{S}\lambda}{S-m^2}$$

The case $\emptyset \rightarrow K^+K^-$ corresponds to small angle K pairs, hardly detectable with large angle telescopes.