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1. - INTRODUCTION

It is well known that provided the energy is high enough, the scattering of a par-
ticle off a nucleus, can be deseribed by the eikonal approximation and the hypothesis
of additivity of phase shifts ('). The theory should work only when the energy is so
high that the geometrical shadow of the single nucleon in the nucleus is a good appro-
ximation for the real diffractive shadow and the composite system can be thought as a
set of balls fixed in space, but recent theoretical experiments have shown that the
theory gives good results even at low energy (®). There is some doubt about the theo-
retical basis of these applications, but one can say at least that Glauber approxima-

tion is an order of magnitude estimate of the low energy scattering.

I am here interested in the treatment of the special problem of the deuteron break
up. This process enters in the cathegory of the incoherent elastic scattering: actually
it is the only incoherent elastic process possible in the case of a deuteron as target
nucleus. To begin with, let us define the following notation; the index 1 refers to the
target deuteron; 2, 3 respectively to the incoming and the scattered particle; 4, 5 to
the unbound nucleon pair in the final state. The hypothesis of addivity of phase shifts

reads in this case
(1) x(8,8) = xa (8-8/2) + xs (b+3/2)

where b is the impact parameter

s 1is the projection of the relative coordinate on a plane
orthogonal to the beam direction.

The recipe is to insert this expression of the phase shift in the eikonal form the

scattering amplitude
(2) r@) = %[eiﬁﬁ[eix(b,s)_” L2z

where Z is the momentum transfer

% the momentum of the incident particle in the laboratory
system

and to sandwich the scattering operator between the initial and final state. In this
case the final state is a scattering state of the unbound pair. So in this type of
process we have two types of corrections to the so called PWIA: one is the double scat-

tering or shadow correction and the other is the so called final state interaction.
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These two corrections can be represented by the two symbolic Feynmann diagrams

P, P4

For simplicity of treatment I will study separately the two corrections: that is,
first of all I will switeh off the secondary interaction to study the double scatter-
ing corrections and afterwards I will neglect the possibility of second order primary

interaction to study the final state interaction.

2. - DOUBLE SCATTERING

In the hypothesis of no influence of the interaction in the final state, we can

write the following formula for the break up amplitude
(3) <Al Fldo> = a(B)o (38/2)+22 ()0 (3-8/2)+ [ o (3+3)
- = - -A) (2)
x Fa (t+0/2)Fs (E+0/2) a* 7't

where E.z (fu—gs)/Z is the C.M. momentum of the two nucleons

¢(p) is the deuteron wave function in the momentum space.

There is a fundamental difference between the elastic and the quasi elastic scat-
tering on deuteron: while in the first case we have two bodies in the final state and
1 variable is sufficient to fix the final state, in the latter one we need to specify
L independent quantities to define completely the final state. We could for instance,
specify the relative momentum between the outgoing nucleons as for instance in the zbove
formula g and the scattering angle, but any other choice is equally possible. There-
fore to have a complete idea of the situation one should be able to draw at fixed scat-
tering angle a quadridimensional plot. But one can see quite well what is going am even
with a simple ordinary bidimensional plot: the idea is to take for instance as variable
the momentum of the proton ps in the lab system and fix the azimuth and colatitude of

such momentum with respect to the direction of the incident beam, in such away to close



the triangle of conservation of momentum for the corresponding two body process on the
nucleon of the target, supposed fixed in space and free. If ¢s =7 and s = 661 and

the scattering angle is fixed, the pattern shown in Fig. 1, 2, 3 show off.

The first peak is called the spectator peak since here the nucleon L is interact-
ing with the incident particle while the nucleon 5, on whose momentum we plot the dif-
ference cross section, is assumed to assist undisturbed to the process. The second
peak is called quasi elastic peak because is centered just on the elastic peak one

should see, filling the target with hydrogen.

The physical distinection between the two peaks is clearly justified only if we
can distinguish the two nucleons (a neutron-proton pair): otherwise the two peaks will
represent exactly the same process seen on two different variables, the spectator mo-

mentum or the recoiling nucleon momentum.

At small momentum transfers the two peaks overlap considerably and this overlap-
ping will decrease violently with the momentum transfer. But at high momentum transfer
the pattern will change, with the inclusion of an other peak, in the middle of the two
representing the double scattering contribution. While the spectator peak appears for
all angles almost with the same height, this is not true for the quasi elastic peak
which is strongly depressed far from the 9s of the recoil proton in the elastic process.

The previous considerations are visualized in the Fig. 1, 2, 3. In the first three
figures the spectator and the quasi clastic pcak arc shown at the momentum transfers

-.1, -.6, = 1.1 for the quasi elastic scattering of 7 from deuterium at 9 GeV/c.

As it is possible to see from formula (2) the double scattering is strongly depen-
dent on the local properties of the wave function, because the argument of the wave
function inside the integral contains the external variable g. One can see immediately
that if a is not lying in the plane orthogonal to the incident beam, the argument of
the wave function can never be zero; therefore the double scattering integral is strong-

ly suppressed unless the longitudinal part of the relative momentum is reduced to zero.

These are the specific prediction of the theory which give the possibility to
extract the differential cross section of various particles on neutron targets, taking
in proper account the double scattering correction. There 1is in the literature one
specific case in which the prediction of the theory have been checked: that is the
scattering of protons of 19.2 GeV/c on deuteron ().

In this experiment the proton is detected at various laboratory angles (40465 mr)
and its energy spectrum is measured with a spectrometer. This spectrum shows two peaks:
the one at lower energies corresponds to the sum of the spectator and the quasi elastic
peak integrated an all variables except the energy, the other at higher energies cor-

responds to the dcuble scattering.

This spectrum has been calculated for the angle by Straumann and Wilkin (°®) using

the analytical expression for the double differential cross section which is

dog
d0sds,s
obtained using the one gaussian parametrization of the wave function. The result is re-
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ported in Fig. 4 and the discrepancy in the normalization is probebly due to the
uncertainty in the experimental determination of the absolute value of the cross

section.

The same spectrum at all the available angles was calculated by R.J. Glauber,
Kofoed Hansen and Margolis (7) using the saddle point method of integration and again
the one gaussien approximation of the wave funetion. The calculation which consist of
the integration of the theoretical cross section times the resolution function, shows
reasonable agreement with the experimental data. The sensitivity of +the theoretical
results to the various parameters has been examine.d: the main results are: the double
scattering peak shows high sensitivity to the parameter of the wave function and the
minimum between the two peaks is sensitive to the d-wave percentage and to the real

part of the amplitude (Fig. 5).

3« — FINAL STATE INTERACTION

The so called final state interaction has a long and venerable history in the fisld
of low energy nuclear physies. It is very well known, for instance, that if the re-
lative energy between the two nucleon is very low, the cross section of +the process
is enhanced, due to the so called energy resonance in the singlet S5 state. There is
some enhancement due to the low binding energy of the deuteron and therefore to the
nearness of the deuteron pole to the physical region. The selection rules for the
break up process will determine which one of the two is dominant. The first +type of

enhancement car be described by the simple formula due to Watson (%)

2
(L) do ~ L%

where a 1is the scattering length of the interacting system. This formula is valid if
the cross section of the volume of the primary interaction is small with respect to the
cross section of the secondary interaction. This is true even for the deuteron, which
is quite large (LF), when a is much larger. This enhancement was found experimentally
for instance in electron scattering (°) (Fig. 6) and has been used in neutron deuteron
scattering C”) at low energy to measure the scattering length of the neutron - neutron
system. But for high energy scattering (above 1 GeV/c) the energy resolution is such
that the final state interaction peak is completely distorted by the energy spread and
will appear only at very low momentum transfer (for instance for m-mesons of 9 GeV/c at
-.1 (GeV/c)?). For higher momentum transfer the final state interaction will play as
slowly varying background which has to be subtracted to have a real information on the
cross section on neutron. I will recall here the traditional method to take in account
this interaction and I will report some results for electron scattering: the case of

¢lectron scattering is not substantially different. The cross section will be certainly
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lower of five order of magnitudes and the spin structure of the amplitude will be dif-
ferent but the main features of the final state interaction effect are the same as in

hadron scattering.

Neglecting as said before the double scattering contribution we find for the
break-up amplitude

iy < Ry
(5) T = £4(2) ff/ff(?) ot /B ) a?r»fs(ﬁ)f be(F) e/

where e if the scattering wave function of the nucleon pair and the particle

nucleon amplitudes are

S =3 . = = - -
(6) P, =By + b TeT 4 1(ag+bg T Ti) g, + A

and the matrix element for the singlet and the triplet state for the final nucleon pair

are
1) for the spin singlet state

(7.a) <0 o|7|v 05= 3-1 biol a, # Z(zmﬂh-(-)‘”’]lﬂa(coa q A)
. £=0
[ 47 @) 5,070 e

1 . > >
(7.p) <75 o|T|v 05 = 7 ®vo 1 bg#i < lTiTalT, Os 2(2&-1)

£

[14(-)*12 (o0m @'8)[ () (ar) 3, 072D u(e)ar

2) for the spin triplet state

4 1 - .2 8! 2 *m! " M
(7+0) vty 0 =18 (0% (%1 @) D ) o0
2 e T

' N . = J -
Gy < lagrioy alvs [ 4, (a0 sy (@Pu(z)ax

o

1 s AL 8 b4 son it
(7.4) <, vi|olv 0 = % B <TZT;|TT4|‘TZ Os 7(-1) i [=(=) 1 (T, 0 8 )
2 £,
mom -
PR ey ) - " . J
Ezjcg,s(JM,m v )CZS(JM,mv’)<u |bf+1auzhg|v> [ ¢86,(qr)
o
J U
Jg(872)u(r)dr
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where Tz is the z-component of the isotopic spin of the nucleon pair, o T; are the
same for the incident and the scattered particle respectively, and v, v'are the z-com-

ponent of the initial and final spin of the nucleon pair.

When the final state is a spin singlet and isospin triplet the Watson theorem can

be derived for low energies.

Infact for low energies q £ g a =15 F +the s-wave Jost funection is in good ap-

proximation given by
(8) fo(-a) = q - /a

therefore the matrix element becomes in the approximation of neglecting all other waves

£ >0

(9) Ty = 100 g By [ (@)% (0T wer

since gR << 1 where R is the radius of the deuteron (AFLQO(QT) can be reasonably ap-

proximated by the asymptotic behaviour at gr = 0 in all the range of integration

L = =
(10) n,, ~ 1) F Sl l g f 30(8%/2) u(r)r ar
Q

which determines the proportionality constant of Watson theorem.

When the C.M. momentum is between 100 and 500 MeV/c the form of +the scattering
wave functions for £,£'<6 is requested for calculating the effect of final state in-

teraction.

This program has been carried out by various authors in the past for electron
scattering. To give an idea of the results of this effort I have drawn in Fig. 7  the
percentage difference between plane wave and distorted wave calculation for the double
differential cross-section - on the top of the quasi elastic peak for various
values of the momentum transfe§: D%;and CT) and Breitenlohner Ca) approximated the fi-
nal state wave function with the solution of the Schr&dinger equation with a square
well potential, such to fit the scattering phase shifts. The coupling between different
angular momenta has been neglected. Kramer (”), and Nuttal (u) solved numerically the
Schrddinger egquation for the Hamada Johnston and Gammel and Thaler potentials respecti-
vely; they both considered the coupling between angular momenta. Although this method
is the most reliable one it is tedious and it has the drawback that it cannot be ex-
tended to a relativistic framework. In the literature an other method is reported, the
so called dispersive method ('°): this is based on the very simple obssrvation that the
break up amplitude in any partial wave has the same phase of the nucleon-nucleon scat-
tering, a part of an overall phase of the scattering amplitude which is assumed inde-
pendent of the C.M. momentum of the two nucleons. If one assumes that the amplitude is
analytic every where in the relative energy plane and subtracts the behaviour at infi-

nity, one can write a dispersion relation and solve such relation by means of the Omés



method. Unfortunately this method is not precise enough, since the hypothesis of ana-
lyticity is not justified: one can infact show for an exponential potential (%)andfbr
a general super position of Yukawa potentials (Bosco ('')) that the amplitude has toge-
ther with the unitarity cut and possible poles representing bound states, cuts in the
complex plane, which represent anomalous thesholds in the crossed channel of the

diagram

Therefore this method suffers of the presence of a free parameter which has to be

determined with the experiment ('%).

When the momentum transfer is higher (from .8 to & GeV/c) the C.M. energy of the
nucleon pair is too high to allow the determination of phase shifts and the potential
concept is no longer appropriate, the nucleon-nucleon interaction is becoming at these
energies absorptive and the differcntial cross section presents a diffraction peak.

TFor the case of pp, for instance this happens quite abruptly at ~1 GeV/c.

At these energies the effect of final state interaction has been calculated by
Mc Gee (™), using the strong absorption model

v2
- = £(L+1)
Sg =1 =we q

where y is .641. and v°= 2ry/oq. The percentage effect is reported in Fig. 7.

An other possible treatment has been suggested by R. Smith and C. Wilkin 63: in

this paper the final state wave function is expressed through its eikonal approximation

& z
+iger - ﬁ%.[ v(b,z)dz
(11) ¢f(r) =e e

and the "anti-Watson" theorem is postulated

o>

- A
oiar e215(b)13

(12) po(x) = (-2) + 9(z)

where =z 1is the relative coordinate along the direction of the C.M. momentum: in words
if the two nucleons are meeting on their optical path, there is scattering otherwise

not. The idea was applied to electron scattering and the results are included in Fig. 7.

At sufficiently high energy >1 GeV/c there is an other approximate method which
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can provide an useful guide for more refined treatments: the closure method. It can be
shown that the differential cross section at high energy which is obtained integrating

on all other variables except the scattering angle is f')
do
(13) o =[|<¢f|ﬁ'|%>|2d3q

where the integral is extended in the whole momentum space. Far lower energies we should
use an Jacobian and we should have a limit on the region of integration given by con-
servation of energy. For high energies and small angles in the laborzstory system  the
Jacobian can be shown to be in very good approximation 1 and the whole important region

of integration is contained in the kinematically allowed zone.

The integration can be formally written in the following way (*)

(1) L2 Y ol# |y <thplFlie>

If the final state is a n-p systenm

ZW@ Aol =1 = loo> <ol
2

therefore

d
(15) )

+
= <¢OIF Flﬁl’o) —|<¢'OIF|"/JU>I2
3
the first term in the so called plane-wave approximaticn and the second term is the
elastic differential cross-section and represent the final state interaction. We can

therefore see that

do dog dog
(16) (154 =Ly 2 =5 :
@ g5, b lpy, 1,
therefore we can write the percentage difference
dg,
dQ
J-J 2lg1
Ay - =2 = -
(17) J < T
& P.W.

In the case of a spin and i-spin independent amplitude we can write:

d_ 2
ig ]P.w. = 2|e@a)|2(1+5(a))
S A2

PR
>
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where 3(4) = ‘/‘eiﬁ';lgb(r)lzd3

therefore the percentage difference is

8% (A/2
(18) A7 = -2 ﬁ'(é)'L

If the final state is a pure T = 1 state (pp, nn), the completeness relation is:

(19) lefqufl =1 )
£

and therefore

(20) % " :QL 5
sy s, *lp.w.

These are the predictions of the closure approximation and we can compare them with
the "exzct" calculation in the case of n-p in the final state. We see in fact that the

main features of the AJ are the same as AI, that is:

1) it is very large for A ~ 0

2) is always negative.

There is, on the other hand, one difference, that is while AJ - 0 already at .2
GeV/c)?, AT is constant and around -2% and then increases again in absolute value with

the momentum transfer. It is thought that at high momentum transfer, while the maximum
do

dEs ds

is constant and equal to the aerea without final state interaction.

of the peak in is lowering, its width is increasing such that the aerea

As in the low energy scattering from nuclei, the Glauber theory is applied with
success and provides an order of magnitude estimate, the high energy closure approxi-
mation can be used even at low energy to have an explanation of the general trends and

a guide for the elaborate calculations.
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FIGURE CAPTIONS

Fig. 1 - The predicted differential cross section EE;T%%;EE; for inelastic scattering

of 7 on deuterium at 9 GeV/c, against proton momentum p. for fixed momentum
transfer and fixed proton angle and azimuth ds = 9,4, ¢s =7, whers the (xz)
plane is defined to be the pion scattering plane. The momentum transfer is
-.1 (GeV/c)®. The dashed and solid line correspond respectively to the calcu-

lation without and with D-state for the deuteron.

Fig. 2 - The same where t = -.6 (GeV/c)z. The double scattering enhancement is appear-

ing.
Fig. 3 - The same where t = -1.2 (GeV/c)z.

Fig. 4 - Spectrum of protons scattered from deuterium (incident momentum p = 18.29 GeV/c,
t = -1.2 (GeV/c)?). The dashed curve joining the experimental points is meant
only to guide the eye. The solid curve is the theoretical prediction neglecting

experimental resolution and meson production (6).

Fig. 5 - The same as Fig. /4 (incident momentum p = 19. GeV/c). The theoretical curve is
the calculation of (lauber, Kofoed Hansen and Margolis (7) using as final state
wave functions, the solution of Schr&dinger equation for an harmonic oscillator

potential.

Fig. 6 - Energy distribution of electrons scattered elastically and inelastically from the

deuteron for an incident energy of 146.9 MeV and a scattering angle of 135° (°).

Fig. 7 - Review of the calculations for the percentage effect of final state interaction
on the double differential cross section Eﬁégﬁ' for the electron-deuteron in-
elastic scattering, on the top of the guasi Slastic peak.

The solid line is the percentage effect on %% , predicted by closure for a
neutron proton pair in the final state and a s%ructureless elementary ampli-

tude (for instance scalar),
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