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1 . - INTRODUCTION 

It is well mown that provided the energy is high enough, the scattering of' a par­

ticle off a nucleus, can be described by the eikonal approximation and the hypothesis 

of additivity of phase shifts (1) . The theory should work only when the energy is so 

high that the geometrical shadow of the single nucleon in the nucleus is a good appro ­

ximation for the real diffractive shadow and the composite system can be thought as a 

set of balls fixed in space , but recent theoretical experiments have shown that the 

theory gives good results even at low energy (2) . There is some doubt about the theo­

retical basis of these applications, but one can say at least that Glauber approxima ­

tion is an order of magnitude estimate of the low energy scattering . 

I am here inter ested in the treatment of the special problem of the deuteron break 

up . This process enters in the cathegory of the incoherent elastic scattering : actually 

it is the only incoherent elastic process possible in the case of a deuteron as target 

nucleus . To begin with , let us define the following notation; the index 1 refers to the 

target deuteronj 2, 3 respectively to the incoming and the scattered particle; 4, 5 to 

the unbound nucleon pair in the final state . The hypothesis of addivityof phase shifts 

reads i n this case 

( 1 ) xC'S,s) 

where b is the impact parameter 

s is the projection of the relative coordinate on a plane 
o~~ogonal to the beam direction. 

The recipe is to insert this expression of the phase shift in the eikonal form the 

scattering amplitude 

( 2) 

where is the momentum transfer 

k the momentum of the incident particle in the laboratory 
system 

and to sandwich the scattering operator between the initial and final state. In this 

case the final state is a scattering state of the unbound pair. So in this type of 

process we have two types of corrections to the so called PWIA: one is fue double scat­

tering or shadow correction and the other is the so called final state interaction. 
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These two corrections can be represented by the two symbolic Feynmann diagrams 

/ 
/ 

/ 

For simplicity of treatment I will study separately the two corrections: that iS J 

first of all I will switch off the secondary interaction to study the double scatter­

ing corrections and afterwards I will neglect the possibility of second order primary 

interaction to study t he final state interaction. 

2. - DOUBLE SCATTERING-

In the hypothesis of no influence of the interaction in the final state, we can 

write the following formula for the break up amplitude 

(3) f,(ll)¢o Ci+2i/2)+f5(ll)¢o(q-Li/2)+ ~k J ¢o (t+q) x 

-+ -+ -+ -) (2) 
x f, (t+ll/2)f5 (_t+ll/2) d t 

where ~ ~ ~)/ q= (P,-P5 2 is the C.M . momentum of the two nucleons 

¢(p) is the deuteron wave function in the momentum space. 

There is ~ fundamental difference between the elastic and the quasi elastic scat­

tering on deuteron : while in the first case we have two bodies in the final state and 

variable is sufficient to fix the final state, in the latter one we need to specify 

4 independent quanti ties to define completely the final state . We could for instance, 

specify the relative momentum between the outgoing nucleons as for instance in the above 

formula q and the scattering angle, but any other choice is equally possible. There-

fore to have a complete idea of the situation one should be able to draw at fixed scat­

tering angle a quadri dimensional plot. But one can see quite well what is going 01 even 

wi th a simple ordinary bidimensional plot: the idea is to take for instance as variable 

the momentum of the proton Ps in the lab system and fix the azimuth and colatitude of 

such momentum with respect to the direction of the incident beam, in such a way to close 
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the triangle of conservation of momentum for the corresponding two body process on the 

nucleon of the target, supposed fixed in space and free . If ~5 = w and 85 = ae1 and 

the scattering angle is fixed, the pattern shown in Fig. 1, 2, 3 show off . 

The first peak is called the spectator peak since here the nucleon 4 is interact ­

ing with the incident particle while the nucleon 5, on whose momentum we plot the dif­

ference cross section, is assumed to assist undisturbed to the process. The second 

peak is called quasi elastic peak because is centered just on the elastic peak one 

should see, filling the target with hydrogen. 

The physical distinction between the two peaks is clearly justified only if we 

can distinguish the two nucleons (a neutron-proton pair): otherwise the two peaks will 

represent exactly the same process seen on two different variables, the spectator mo­

mentum or the recoiling nucleon momentum. 

At small momentum transfers the two peaks overlap considerably and this overlap­

ping will decrease violently with the momentum transfer. But at high momentum transfer 

the pattern will change, with the inclusion of an other peak, in the middle of the two 

representing the double scattering contribution. While the spectator peak appears for 

all angles almost with the same height, this is not true for the quasi elastic peak 

which is strongly depressed far from the {}5 of the recoil proton in the elastic ~ess. 

The previous considerations are visualized in the Fig. 1, 2, 3. In the first three 

figures the spectator and the quasi cluatic peak arc ohown at the momentum trannfera 

-.1, -.6, - 1.1 for the quasi elastic scattering of 1f from deuterium at 9 Gev/c. 

As it is possible to see from formula (2) the double scattering is strongly depen­

dent on the local properties of the wave function, because the argument of the wave 

function inside the integral contains the external variable q. One can see immediately 

that if q is not lying in the plane orthogonal to the incident beam, the argument of 

the wave function can never be zero; therefore the double scattering integral is strong­

ly suppressed unless the longitudinal part of the relative momentum is reduced to zero. 

These are the specific prediction of the theory which give the possibility to 

extract the differential cross section of various particles on neutron targets, taking 

in proper account the double scattering correction. There is in the literature one 

specific case in which the prediction of the theory have been checked: 

scattering of protons of 19.2 Gev/c on deuteron (5). 
that is the 

In this experiment the proton is detected at various laboratory angles (40+65 mr) 

and its energy spectrum is measured with a spectrometer. This spectrum shows two peaks: 

the one at lower energies corresponds to the sum of the spectator and ihe quasi elastic 

peak integrated an all variables except the energy, the other at higher energies cor­

responds to the dcuble scattering. 

This spectrum has been calculated for the angle by Straumann and Wilkin (6) using 

the analytical expression for the double differential cross section ~~dad which is 
UltJ S45 

obtained using the one gaussian parametrization of the wave function. The result is re-
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ported in Fig. 4 and the discrepancy in the normalization is probably due to the 

uncertainty in the experimental determination of the absolute value of the cross 

section. 

The same spectrum at all the available angles was calculated by R. J. Glauber, 

Kofoed Hansen and Margolis (7) using the saddle point method of integration and again 

the one gaussian approximation of the wave f unction . The calculation which consist of 

the integration of the theoretical cross section times the resolution function, shows 

reasonable agreement with the experimental data. The sensitivity of the theoretical 

results to the various parameters has been examine~d: the main results are ; the double 

scattering peak shows high sensitivity to the parameter of the wave function and the 

minimwn between the two peaks is sensitive to the d-wave percent age and to the r eal 

part of the amplitude (Fig . 5). 

3. - FINAL STATE INTERACTION 

The so called final state interaction has a long and venerable history in the ~ 

of low energy nuclear physics . It is very well known, for instance, that if the re­

lative energy between the two nuclevn is very low, the cross section of the process 

is enhanced, due to the so called energy resonance in the singlet S state. There is 

some enhancement due to the low binding energy of the deuteron and therefore to the 

nearness of the deuteron pole to the physical region. The selection rules for the 

break up proce~s will determine which one of the two is dominant. The first type of 

enhancement car. be described by the simple formula due to Watson (6) 

(4) da 

where a is the scattering length of the interacting system. This formula is valid if 

the cross section of the volume of the primary interaction is small with respect to the 

cross section of the secondary interaction . This is true even for the deuteron, which 

is quite large (4F), when a is much larger. This enhancement was found experimentally 

for instance in electron scattering (9) (Fig . 6) and has been used in neutron deuteron 

scattering CO) at low energy to measure the scattering length of the neutron - neutron 

system . But for high energy scattering (above 1 GeV/c) the energy resolution is such 

that the final state interaction peak is completely distorted by the energy spread and 

will appear only at very low momentum transfer {for instance for 1(-mesons of 9 GeV/c at 

-.1 (GeV/c)2). For higher momentum transfer the final state interaction will playas 

slowly varying background which has to be subtracted to have a real information on the 

cross section on neutron . I will recall here the traditional method to take in account 

this interaction and I will report some results for electron scattering: the case of 

electron scattering is not substantially different. The cross section will be certain~ 
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lower of five order of magnitudes and the spin structure of the amplitu~e will be dif­

ferent but the main features of the final state interaction effect are the same as in 

hadron scattering. 

Neglecting as said before the double scattering contribution we find for the 

break-up amplitude 

,1,/ ~ 
"/2.r (~) e i./Jo r 

where ¢r if the scattering wave function of the nucleon pair and the particle 

nucleon amplitudes are 

( 6) r, ar+brT oTl . .., +i(a+b :;.1-.)c;. fi 
1 g g 1 1 

and the matrix element for the singlet and the triplet state for the final nucleon pair 

are 

1) for the spin singlet state 

(7.a) 

e=o 
10

00
", i 0) (qr) je (8 r/L) u(r) dr 

( ) I I 
1 1 I~ ~ I , ) 7.b <T, 0 T U 0> = q 0uo i bg 'iTJ2 SZT; T, T, TZ 0> L (2t+1 

e 

[1+ (- )e]p e( cos q '8) ! 00 ",io) (qr) je (8J'2)u(r)dr 
, 0 

2) for the spin triplet state 

(7. c) = 2..[8\ (_i)ei e'[1+(-)e'j Y"(q) y*~'(~) 'Cd (JM;m'u'~ 
q ~ eeL oS 

e tl JM 
m m' 

Ces(JM;ffiU ') <u"lar +io4z agl v> 1000"'~e,(qr)je(8'l2)u(r)dr 

(l.d) <T z u'ITlu 0> = ~J8 SzT;lrr,ITzO> L(-i)eie'[1-(-)e'lY';'(q)y:~(~) 
e e' 
m m' L Ce ' s (Jl\!;m' u")c es (JM;ffiU' )<v" I br +io4z tgl u> 10 ~ "'~e' ( qr) 

JII 
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is the z-component of the isotopic spin of the nucleon pair, T 
Z 

T' are the 
z 

same for the ir.cident and the scattered particle respectively, and v, Vi are the z-coro-

panent of the initial and final spin of the nucleon pair. 

When the final state is a spin singlet and isospin triplet the Watson theorem can 

be derived for low energies . 

Infact for low energies 

proximat i on given by 

( 8) 

1 
q:t­

a 
a 

f o ( -q) 

15 F the s -wave Jost function is in good ap-

therefore the rratrix element becomes in the approximation of neglecting all other waves 

e > 0 

( 9) 

since qR « 1 where R is the radius of the deuteron (4F~<po (qr) can be reasonably ap­

proximated by the asymptotic behaviour at qr = 0 in all the range of integration 

(10 ) 

which detennines the proportionality constant of' Watson theorem. 

When the C.M. momentum is between 100 and 500 MeV/c the form of the scattering 

wave functions for e,e!~6 is requested for calculating the effect of final state in­

teraction. 

This program has been carried out by various authors in the past for electron 

scattering. To give an idea of the results of this effort I have drawn in Fig . 7 the 

percentage difference between plane wave and distorted wave calculation for the double 

differential cross-section dE ~do I on the top of the quasi elastic peak for various 

values of the momentwn transfei. D~rand C1
) and Breitenlohner C2) approximated the fi­

nal state wave function with the solution of the Schrodinger equation with a square 

well potential, such to fit t he scattering phase shifts. The coupling between different 

angular momenta has been neglected . Kramer (13) , and Nuttal (14) solved numerically the 

Schrodinger equation for the Hamada Johnston and Gammel and Thaler potentials respecti­

velYi they both considered the coupling between angular momenta. Although this method 

is the most reliable one it is tedious and it has the drawback that it cannot be ex­

tended to a relativistic framework. In the literature an other method is reported, the 

so called dispersive method C5
): this is based on the very simple observation that the 

break up amplitude in any partial wave has the same phase of the nucleon-nucleon scat­

tering, a part of an overall phase of the scattering amplitude which is assumed inde­

pendent of the C.M . momentum of the two nucleons. If one assumes that the amplitude is 

a nalytic every where in the relative energy plane and subtracts the behaviour at infi­

nity, one can write a dispersion relation and solve such relation by means of the Omnes 

20· 
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method . Unfortunately this method is not precise enough, since the hypothesis of ana­

lyticity is not justified: one can infact show for an exponential potential (~) and for 

a general super position of Yukawa potentials (Bosco (7)) that the amplitude has toge­

ther vlith the uni tari ty cut and possible poles representing bound states, cuts in the 

complex plane, which represent anorralous thesholds in the crossed chamel of the 

diagram 

Therefore this method suffers of the presence of a free parameter which has to be 

determined Vii th the expe riment C 8) . 

When the momentwn transfer is higher (from .8 to 6 GeV/c) the C.M. energy of the 

nucleon pair is too high to allow the determination of phase shifts and the potential 

concept is no longer appropriate, the nucleon-nucleon interaction is becoming at these 

energies absorptive and the differential croon oection presents a diffraction peak . 

For the case of pp, for instance this happens quite abruptly at ~1 GeV/c . 

At these energies the effect of final state interaction has been calculated by 

Mc Gee C9
), using the strong absorption model 

v 2 -= ·e(e+1) 
Se ~ 1 - Y e q 

where y is .6t1 . and v
2

:::; 2irylaT . The percentage effect is reported in Fig . 7 . 

An other possible treatment has been suggested by R. Smit h and C. Wilkin (2) : in 

this paper the final state wave function is expressed through i t s eikonal approxi mation 

( 11 ) 

. 1 z - n~ _ooV (b,Z)dZ 

and the "anti-Watson" theorem is postulated 

( 1 2) 

where z is the relative coordinate along the direction of the C.M. momentum: in words 

if the two nucleons are meeting on their optical path, there is scattering otherwise 

not. The idea was applied to electron scattering and the results are included in Fig. 7. 

At sufficiently high energy >1 GeV/e there is an other approximate method whieh 
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can provide an useful guide for more refined treatments : the closure method . It can be 

snown that the differential cros s section at high energy which is obtained integrating 

on all other vari ables except the scattering angle is ~) 

( 1 3) 

where the integral is extended in the whole momentum space. For lower energies we should 

use an Jacobian and we should have a l imit on the r egi on of integr a tion g iven by con­

servat i on of energy . For high energies and small angles in the laborato ry system the 

Jacobian can be shown to be in very good approximation 1 and the whole important region 

of integration is contained in th e kinematically allowed zone . 

The integration can be formally written in the following vlay (') 

do 
ail, 

If the final state is a n-p system 

1 - Iif!o > <if!o I 

therefor e 

( 15) 

the first t erm in the so called plane-wave approximation and the second term is the 

elas tic differential cross - section and represent the final sta te interaction . We can 

therefore see t hat 

( 16) do I 
ail, F .S. 

d a I 
ail, P.w.-

therefore we can write t he percentage differ ence 

( 17) 

dol 
ail, 1 e 

In the case of a spin and i-spin independent amplitude we can write : 

do 
ail, 

do 
em, 

I p .W. 

20\. 
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therefore the percentage difference is 

( 18) - 2 

If the final state is a pure T ~ 1 state ( pp, nn) , the completeness r elation is : 

( 19) 

and therefore 

(20) du I ~ 
an, F.S . 

du I 
dO, P.W . 

These are the predictions of the closure approximation and we can compare them with 

the "exact rr calculation in the case of n- p in the final state . We see in fact that the 

main features of the b.J are the same as ilr, that is: 

1) it is very large for II - 0 

2) is a lways negative. 

There is, on the other hand, one difference , that is while fiJ ~ 0 already at . 2 

GeV/C) 2 
, fir i s constant and around -~ and then increases again in absolute value with 

the momentum transfer. It is thought that at high momentum transfer, while the maximum 

of the peak in dE:a 
dO:l is lowering, its width is increasing such that the aerea 

is constant and equal to the aerea without final state interaction. 

As in the low energy scattering from nuclei, the Glauber theory is applied with 

success and provides an order of magnitude estimate, the higp energy closure approxi­

mation can be used even at low energy to have an explanation of the general trends and 

a guide for the elaborate calculations. 
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FIGURE CAPTIONS 

dP5 dD 3 <ill5 

de for inelastic scattering Fig. 1 - The predicted differential cross section 

of 1T on deuterium at 9 GeV/e, against proton momentum P5 for fixed momentum 

transfer and fixed proton angle and azimuth as = 0el' ~5 = rr, where the (XZ) 

plane is defined to be the pion scattering plane. The momentum transfer is 

-.1 (GeV/C)2. The dashed and solid line correspond respectively to the calcu­

lation without and with D-state for the deuteron. 

Fig. 2 - The same where t 

ing. 

-. 6 (GeV/c)2. The double scattering enhancement is appear-

Fig. 3 - The same where t -1.2 (GeV/C), • 

Fig. 4 - Spectrum of protons scattered from deuterium (incident momentum p = 18.29 GeV/e, 

t = -1.2 (GeV/c)2). The dashed curve joining the experimental points is meant 

only to guide the eye . The solid curve is the theoretical prediction neglecting 

experimental resolution and meson production (6) . 

Fig. 5 - The same as Fig. 4 (incident momentum p = 19. GeV/c). The theoretical curve is 

the calculation of Glauber, Kofoed Hansen and Margolis (7) using as final state 

wave functions, the solution of Schrodinger equation for an harmonic oscillator 

potential. 

Fig. 6 - Energy distribution of electrons scattered elastically and inelastically from the 

deuteron for an incident energy of 146.9 MeV and a scattering angle of 1350 (9) . 

Fig. 7 - Review of the calculations for the percentage effect of final state interaction 

on the double differential cross section dE ~ for the electron- deuteron in­

elastic scattering, on the top of the quasi ~la~tic peak. 
da . The solid line is the percentage effect on dO' predlcted by closure for a 

e 
neutron proton pair in the final state and a structureless elementary ampli-

tude (for instance scalar). 
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