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ABSTRACT. -

The implications of TCP invariance are critically examined when 
more than one interaction is responsible for the process under consider~ 
tion. In particular possible implications of this analysis in CP violating 
processes and in K-decays are analyzed. 

1. - INTRODUCTION. -

It is known that the usual parametrization of the KL - 27l: decay 
and of the charge asymmetry in KL -.>- 1C:!:. t::;).J decays(l J, just to me~ 
tion two well-known examples, is made with neglect of final state e. m. 
interactions. 

It is reasonable to assume a critical attitude towards this proc"," 
dure for two reasons. First, it might be possible that CP violation due 
to H-o would modify the usual results. Second, independently from that, 
the same might happen due to an incorrect use of TCP since in this case 
TCP invariance should be valid only to order 0( with respect to HW' i. e. 
the very order of magnitude of the other quantities in play in these decays. 

Both possibilities have been exhaustively examined for the above 
mentioned decays in a previous article(2) and have proved to give a small 
contribution. 

(x) - Scuola Normale Superiore, Pisa, Italy. 
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2. 

The purpose of this note , along the previous line, is two-fold. 
We want, first of all to examine critically what is meant by TCP invaria!!. 
ce and to which accuracy one is justified in neglecting final state e. m. 
interactions. Second, by taking the other K decays, forbidded to the lo­
west order in G by some selection rule, we try to set out whether these 
final state e. m. effects affect the processes to order, say, 0< G or to or­
dero<. times the effective coupling constant. It is clear, that in the first 
case a relevant contribution, so far neglected, might be expected. 

Paragraphs 2 and 3 will be devoted, respectively, to TCP invariance 
and its tests and to an explicit evaluation of final state e. m. effects, whe 
reas in par. 4 we will discuss briefly the decays K:!:. _JL:!:.7[o, KS~-

o - , 
->37r: , KS,L--..ee and the tJ.S=- tJ.Qrule. 

2. - TCP INVARIANCE AND PHYSICAL IMPLICATIONS.-

The transformation TCP", Q is simply defined as the product of 
T, C and P. Therefore it shares the antiunitary character of T: i. e. it 
relates a given process with that obtained applying CP, but running back­
ward in time. 

More precisely, denoting by Mi -+ f the transition amplitude from 

the state I i) to the state I f) , one has that TCP invariance implies the 
following equality 

(2. 1) 

Here Q i and Q f are the TCP transformed of the states i and f. The inva 
riance of the theory under TCP implies therefore that the T-matrix tran 
sforms in the following way 

Direct tests of TCP invariance, through a check of eq. (2 . 1) are 
almost impossible to realize for the difficulties connected with the comp~ 
rison of reversed processes i -'> f, Q f -'> Q i. For example, phase space 
reasons and/or additional interactions acting in the final state usually 
prevent the possibility of reproducing the reversed process of a given one. 
In particular one cannot hope to reverse a decay process or a reaction i!!. 
duced by weak interactions . Quite generally, when strong interactions act 
in the final states it is very difficult to compare the direct process i....", f 
and the TCP-reversed one Q f -"" Q i, because in the former the final states 
have definite phase relations which is almost impossible to reproduc e in 
the reversed process. 
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Clearly, the only hope to get some information about TCP invaria!:!. 
ce lies in the possibility of comparing two direct processes differing by 
the exchange of particles and antiparticles. In this case one has to analyse 
which restrictions are imposed by TCP invariance on the differential cross 
sections. 

The simplest case to discuss is when the T-matrix is Hermitian. 
This situation is realized when the T-matrix may be approximated by an 
effective Hamiltonian (first order processes) 

(2.3) 

This is the case, for example, when only electromagnetic or weak inte­
ractions are separately responsible for the process i _ f. The approxim~ 
tion (2.3) amounts then to neglect second order electromagnetic or weak 
effects. 

Statement 1. - If the T-matrix is hermitian, TCP invariance implie s 
the following equality 

(2.4 ) I Mg i _ gfl
2 

Proof. One has in fact 

and eq. (2.1) reduces to eq. (2.4). 

Under the assumptions of Statement lone may easily prove the 
equarJjY of mean lives of particles and antiparticles in TCP-conjugate cha!:!. 
nels . We would like to stress, however; that even for pure weak or 
electromagnetic processes the T-matrix can be replaced by an hermitian 
Hamiltonian only to order G and 0( respectively 

1 
T=H+H E-H +iC H+ .•••• 

o 
H + ..•. 

Moreover, in the general case the non-hermiticity of the T-matrix may 
arise not only from second order effects but also because an additional 
interaction is acting in the outcoming channel. For example, in weak pr~ 
cesses electromagnetic interactions may be effective in the final state. 
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On the other hand in electromagnetic proc esses, like electro and phot~ 
production, strong interactions are present in the final states. 

These effects have been extensively studied in the literature in 
the case of strong interactions (4 ). The case of final state electromagnetic 
effects will be discussed in sect. 4. 

A simplification of the problem occurs when a sum is made over 
the final states. 

Statement 2. - Equation (2.4) remains true also in the presence 
of final state strong interactions provided a sum is performed over the 
final states f so to get a subspace ',\{,' invariant under TCP and closed 
under strong interactions: 

'\' 1M 12= L. i -,>f 
f~ }I.' 

+ , + 
where g1{, I = '!. I and l\. -:- '10 I = 'It , ..n. - being the M~ller operators for 

~ st ~ st 
strong interactions. 

Proof. As a matter of fact when, i> is a decaying state, or a 
scattering state below threshold, stable with respect to strong interac­
tions' (by assumption strong interactions are effective only <in the final 
state) one may get 

J1.+ Ii') =Ii) 
st 

with a suitable redefinition of phases. Renc e 

The conditions of the above Statement are obviously satisfied when 
tt' consists of a single eigenstate of the strong interactions. In this c~ 
se TCP invariance implies the usual relation between matrix elements 

(2. 5) 
2" d <. i \ T If') = <. gil T I g f') elf 
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where 6
f 

is the strong interaction scattering phase for the state f. 

The above remarks cannot be applied straightforwardly when ele<::. 
tromagnetic interactions act as final state interactions. 

For example, in the case of a process induced by HW in the presence 
of e. m. interactions, T = Sl..~t HW J:L-+;" and, formally, one could repeat 
the arguments used above for ...Q st in order to relate \ Q f) with \ f) 
0. e. closure of the subspace etc.). However the equation .Q; Ii> = Ii> 
can no longer be obtained due to the massless character of the photon (the 
threshold starts at zero energy). Since the emission of as many soft ph£ 
tons as possible may take place one carll10t any longer find the eigenstates 
of H'l( . So, for instance, charged particles are stable, in the presence of 
SLo' only to order 1cJ,. (bremsstrahlung). 

Thus, final state electromagnetic effects make the T-matrix non 
hermitian and the above equations (2.4), (2.5) do no longer hold in general. 
Clearly the non-hermiticity of T, due to electromagnetic effects, is of order 
J.. the hermitian part of T and in most cases can be neglected. These 
effects might however come into play in the analysis of CP-violating pr~ 
cesses, which are in fact of the order "'G. For these reasons it seems 
worthwhile to evaluate the non hermitian contribution due to H-y expeciaUy 
in K-decays (sect. 4)(x). 

To this purpose we need an expression for the T matrix when two 
interactions are present in the final state. For concreteness, we will di­
scuss the case of a weak process in the presence of strong and electroma 
gnetic final state interactions: 

(2. 6) H = H + H + H.,. + H 
o st 0 W 

According to the formal theory of scattering one has 

(2. 7) 
-t + 

T =-0.. t (H..,.+HW)..n.. t W+ T t s 0 s +em+ s 

+ where ..Q- are the M¢ller operators and T st is the T matrix due to strong 
interactions. By expanding T with respect to HW one easily gets 

(2.8) 

(x) - For KL - > 2 It and KL ~ TC e l.) decays see ref. 2. 
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where 

(2. 9) 
+ -1 

Q-,- =(E-H -H -H +it.) H'Y +1 
-0 0 st 'if - u 

Thus, due to electromagnetic final state interactions the weak Hamiltonian 
is replaced by a non-hermitian effective Hamiltonian 

(2.10) 

To summarize, we recall that whenever a process happens to the 
second order, which may be due either to an interplay of two different 
Hamiltonians or even to one Hamiltonian alone, the T matrix is no lon­
ger hermitian. Then, in the presence of H(( or H

W
' it is necessary to es~ 

mate the neglected nonhermitian part, before drawing conclusions from 
TCP invariance of the single Hamiltonians. 

3. - EVALUATION OF FINAL STATE e. m. EFFECTS.-

In order to evaluate final state electromagnetic effects we define 

(3. 1) 

and split Heff into its TCP even and odd parts 

with 

HfVH+O(r::J..). 
+ W 

H _ ':e. O( 0( ) 

Then we evaluate H_ by means of a unitarity sum rule. Below threshold 
..n.. ~t are unitary operators and the S matrix may be written in the follo­

wing form 

(3. 3) 

S=1+iT=1+iT +.n:T.n.+ ...n..+t?;J)..+ =S +S n..+t?;JL+ = 
st st st st st st st st st 

+t + 
= S st5l.st (1+'&) ll-st 

3 · ... 11 • 
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The unitarity of S, implies that of 1 + b. One gets immediately 

(3.4) 

Now, from eq. (3.1) one has 

(3. 5) 

and finallY 

(3.6) iH ~ L 'bIn) ~\(n) <.nl?;t 
n 

where it has been explicitely exhibited the dependence of H. on the pha 
se space of the intermediate states. 

In the preceding sum rule; the largest contributions, provided the 
matrix elements have the same strenght. will come of course from the i!!. 
termediate states with the lowest phase space. 

It is known, for instance, that the phase·space of 2 tr'd' (soft -r ) 
is practically the same as the 27i: and that the ratio of the adimensional 
phase space(5) of 371:" to 271: is 0(10. 3 ). By means of the previous para· 
metrization, the asymmetry of particle antiparticle in CPT conjugate cha!!. 
nels can be easily found to be 

(3. 7) 

where 

= r (A -'l> f) . r (.A ~ fi 
r (A -)0 f) + r ur -'> f ) 

Now, the first interesting point which can be easily derived from 
(3.6) is that for a process whatsoever 

So, if A_f can proceed via H+ to the first order without being suppre~ 
sed by some selecti on rules, CPT invariance can be safely tested to 
10.4• without worrying for final state e. m. effects. 

3 . ( Ifl 
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Second, for processes forbidden in H+ to the lowest order, one 
might expeot an appreciable contribution from ImH_ (if, as reasonable, 
it is of the same order as H _). 

That is what we will examine in the following paragraph. 

4. - K DECAYS AND FINAL STATE ELECTROMAGNETIC EFFECTS.-

We now apply the previous formalism to some cases where, on 
the basis of the above argument;;, the anti-hermitian part might give a ~ 
zable contribution to the asymmetry. For the discussion of KL --'>- 2!r. and 
KL ~ 11: ~ U dec ays we refer to (2). 

When T = Tt, TCP really forbids any total decay rate asymmetry 
and no sign of CP non-invariance can appear. As a matter of fact TCP 
invarianc e implies 

(4. 1 ) 

whereas CP invariance gives 

(4. 2) 

Thus, one cannot test eq. (4.2) if eq. (4.1) has to hold. However when 
T 1 Tt, the two equations are independent. An asymmetry of the order A_I 
IA+ is then allowed by TCP invariance, so that its presence is a direct 
test of eq. (4.2) . 

+ + 0 -
We will examine the K- -> 7r: - 1[ , KS - 3 7[0, K

L
, S ~ £. e 

decays and the Ll.s = - /). Q rule. 

i) We take as a first example K~-l>I[~ 11:
0

, which is the only 
K~ decay interesting for our purpose since it is depressed by the \ Do I' = 
= 1/2 selection rule. 

It is known that it occurs to order I/oi: G. 
The contribution to A_ from the intermediate states with the lowest 

phase spac e (i. e. lr n:, Jr.'"}" lr 1'( l[ ) are of the following order 

<K +1Z,11[ + 1[ 0d') <g (2 7r:'d') <1C + rr o '.rl 'bt I 1[+ n;o> ':::: 
(4.4) 

z. v:I" G S (2 tr:. "( ) VC; 

3 ;, {' 
-.1 v 



The above estimations easily follow from % = Heff + t y' where Heff 

nas to the lowest order the same selection rules as H+. 
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Then A_, and consequently its imaginary part, is at most, of the 
order 01.. G ~ (2 try). Although these order of magnitude estimations are 
very crude, since no energy dependence of the matrix elements is taken 
into account, they indicate that the ratio A /A+ cannot be greater than 
0(10- 3 ). -

Hence CP violation effects in A can at most be of order 01.. with re 
spect to the effective Hamiltonian. 

In this connection it is per\1aps interesting to remark that if 
[Ha-, CP] =0, then ImA_ =0 to O(.,(E ). 

(4. 6) 

As a matter of fact 

iA_ = (K+\HJ 7L+7C O
) =(K+lcp- 1 CPH_Cp- 1 Cpl1t+n: 0

) = 

=iAx+O(o/.,.c) 

ii) Next we consider the K -'> 3 71: 0 decay, which is forbidden to 
order (;;, since the 3 7r 0 are in a ~p = -1 state. In this case the contribu­
tion of < KS 1 H _I 3 tr 0>, in order to be signific ant should be greater than 

6 < K~ IH+13Tt: 0) i.e. ~G since this decay should be detected against 
the predominant KS-> 2 Tr mode. 

Now 

(4.7) <KslH-'37r°>!::«K~IH-'3tr°>=L<K~\b\n)3(n)(n\%t\31t°> 
n 

The only significant contribution is due to the 2 n:: state, so that 

(4.8) 

IV G S (27i:) e.( 

We note that in the evaluation of the above matrix element an explicit CP 
violation has been attributed to H;r, for instanc e through a diagram of 
the type (see Fig. 1). 

Nevertheless the contribution of the antihermitian part of Heff 
except for same dinamical enhancement, is smaller than the mixing of CP 
eigenstates in the KS. 

A fortiori, this contribution is negligible for all KL decays, which 
are not hindered by selection rules. 

35\ 
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p - - --- - ~ -- -.-
7/:' .--

FIG. 1 - A possible diagram for CP 
violation through electromagnetic int~ 
raction. 

iii} Finally, the application of this technique shows at oncejhat a 
possible simulation of TCP non-invariance may arise in KSL-'>££ (7). 

As a matter of fact the parameters a and b appearing in the inva­
riant amplitude M = U (~ ) r a + ib 'Y '5 J v( t} are relatively real, if one 
takes into acc aunt only H+ (S). 

Their imaginary parts are compactly evaluated by means of our 
unitarity sum rule for H_. 

Im(~}= <K~IH-' .t~ ,:1:.1 = L<K~I'lln> g (n) <n\ .~t\ t~, :I:.)~ 
(4. 9) 

n 

where 1:1:.> are the CP eigenstates of the .tl pair. 
However nothing definite can be said about their relative phases 

(and therefore about a pseudo TCP violation). 

iv} Last, a word about the b. S = - l:J. Q rule. 
The K -'> TL.e LJ decays, in which CP violation and the 6S = - 6Q 

rule may be simultaneously analized, are us ually discussed by introducing 
the following parameters 

x=-A-= 
f 

Xl = 
<rc t -1-l1 H1Ko) 

<rc rp \ H\i<:> 
a 

Now, with H replaced by T, it is no longer true that x, =xx. 
They differ, however, only for terms of 0(0<), so that the usual 

formulae are, at present, completely justified. 
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