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Galileo Galilet

ABSTRACT.

In this work the authors evaluate explicitly the total cross-
section for relativistic processes, with three final particles, pro-
ceeding through triangle-diagrams. It is suggested that the final
state interactions here considered may contribute in explaining(par
tially, at least) some enhancements in the effective-mass distribu-
tions as due to kinematical effects. Our general formulas are for
example applied - as proposed by Duimio and Recami(4) - to the
pn 7t system, and seem to allow reproducing the known peaking at
about 2.2 GeV/ c2 in the d T+ distribution; our model, in particular,
could give a possible justification for the appreciable deuteron sur
vival in some collisions of mesons and deuterons, event at high pro
jectile energies. The triangle-graph peaks appear highly asymme-
tric. Applications to nuclear physics are also considered, always
with the aim of evidentiating the possible anomalous behaviours in
some cross-sections produced esclusively by the pure kinematics.

(x) - On leave of absence from the Istituto di Fisica dell'Universita
di Milano.
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I. - INTRODUCTION.

Recently, triangle graphs seem to have been successful in
explaining some cross-section bumps, particularly, as kinemati~
cal effects due to final state interactions; both in elementary-parti-
cle(1) and in nuclear physics(z). In the field of elementary particle
physics it is for instance useful to identify the kinematical effects
expecially when they contribute in resonance regions, in order to be
able to '"clean'’ better the ‘experimental effective-mass distributions.
In general, expecially in the high-energy cases, previous works
were semi-quantitative or qualitatives in character.

In this paper we want, on one hand, carefully evaluate the
effect of the triangular-graph Landau(3) singularity on the cross-
section corresponding to processes (with three final particles) of
the type

(1) A+B ~>C +D + E
supposed to proceed through the rather general diagram shown in
Fig. 1. On the other hand, as an application, we want particularize

our formulas to the reaction pp —» pnx* - as suggested by Duimio
and Recami®) - whose experimental interest has been growing up

C
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FIG. 1 - The general relativistic diagram here considered,
for three-final-particle processes, with final state interac
tion of triangular type.

more and more in recent years. In that case, the triangle-graph (see
Fig. 2) is interesting because its presence (as we shall see) might ex
plain the not-negligible deuteron survival in some collisions e. g.' of
mesons and deuterons (see Fig. 3) even at high projectile-energies,
notwithstanding the negligible deuteron binding energy. It is clearthat
our aim is not to explain all reaction (1) - the major contribution to
which is coming from graphs without rescattering -, but to evaluate
effects of the kinematical singularity connected with the diagram in
Fig. 1.




FIG. 2 - A particular triangle graph. It may account for
many experimental features of reactions with a pn nt
system in the final state (for instance it may interpret
the experimental bump in the npZ effective-mass distri
bution at about 2.2 GeV/c? as a kinematical effect).

\V

FIG. 3 - An example of triangle intervention in a more ge
neral (O. P, E. ) diagram (See e. g. Buchner et al. (5)). The
triangle (Landau) singularity can give a possible explana-
tion of the appreciable deuteron survival.
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II. - OUR TRIANGLE GRAPH.

In collisions of the type pp = pn7® (see Fig. 1), near their
threshold, and of the type of Fig. 3, the following experimental fea-
tures were observed: (i) an enhancement at about 2. 2 G‘reV/c2 in the
effective-mass M (pn/Z); (ii) in our energy region, a sharp peak in
the pion energy distribution interpretable as kinematically correspon-
ding to deuteron formation or survival; (iii) at the same time A3,3
bumps in the nucleon-pion effective mass. For instance, Buchner et
al. ( ). considering the reactions

(2) K'd = Ktdn-xz*

at 3 GeV/c, found a peakmg in the M(dz*) distribution centered
around 2190 MeV/c Reaction (2) appears(5) to proceed chiefly via
pseudoscalar meson exchange between a K* vertex and a 7z*d ver
tex,- Previously, Butterworth et al. (5) (while considering the same
reaction at 2. 3 GeV/c) had already explained qualitatively the peak-
ing as a result of Ag3 production on the deuteron breakup, i.e. as
the consequence of A(1236) formation between the 7t and the pro-
ton of the deuteron, with subsequent recombination of the decay pro
ton from the A with the spectator neutron. Analogue interesting
considerations, but related to reaction:

(2') Td =» gdx-xt

(with entering positive pions) have been put forward by Vegni et algs).
Besides, Abolins et al. \Y/, analysing events of the type & ~d —»
~—s> pnx~ Y= at3.7 GeV/c, found, that a fraction of the events
proceeded via the reaction (2'), (with enetering negative pionsg), the
M(pn) distribution presenting a very evident peak at about 2180 MeV/c
These authors observed a grouping of the events in the region 2040 <
< M(dZ~) < 2280 MeV/c?, with the maximum in the 2180 -2200 re-
gion, and also an enhancement in the M(d 7%) distribution, the center
of the bump being at about 2170 (and the width & 100 MeV/cz).

Finally, Neganov et al. (6) and other authors(®) measured the
£t energy distribution in the reaction

(3) pp = pn 7"

( including also the deuteron-production cases) utilizing protons
of 660 MeV, kinetic energy almost equivalent to a total energy of
about 2200 MeV. They found a sharp peak at a pion kinetic c. m.
energy of about 150 MeV, corresponding to production of couples p-n
near their threshold (see Fig. 4). In reactions of the type (3), in our
energy region, also A 33 resonance intervention has been extensively
evidenced (see for instance Fickinger et al. (8)). On the other hand,
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FIG. 4 - Spectrum, at various angles, of the c. m. s. kinetic
energy for 7t coming from pp = pn#Z reaction with pro-
ton beam-energy of 660 MeV (just corresponding to a total
energy of about 2. 2 GeV). The peaks at 150 MeV correspond
to production of couples p-n near their threshold. Thisg plot
is taken from Meshkovsky et al.(6),
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Meshcheryachov et al.{7) and Neganov et al.(7) while measuring the
total cross-section for the particular reaction

(4) ' pp — d7itt

for total er1ergies8 ranging in the interval 2, 0-2.4 GeV, found a
pronounced peak( ) at about 2. 2 GeV.

Many theoretical attempts to interpret . those. results are
known. To confine ourselves, for shortness'sake, to the non-relati-
vistic approaches, let us first recall Mandelstam's 9 model, accor
ding to which a great contribution should come from the production
of resonant A states, A" being one of the deuteron nucleons.
Secondly, Watson(10) and Woodruffﬁo) noticed the important role of
final state interactions at low energies, especially near threshold.
References to previous relativistic approaches can be found e. g. in
ref. (11).

All the above mentioned experimental observations and theo
retical suggestions may be concretly realized and depicted(4) by
Feynmann diagram containing our (relativistic) triangle graph of
Fig. 2. Relativistic triangle graphséof interest here) have been theo
retically studied by many authors( 12 13). both in the framework of
Landau's theory and of dispersion relations. Following Month(14) we
emphasize that: (i) the Landau singularity(3) of the triangle graph(X)
contained in Fig. 5, that can approach(lz?the physical region, does

FIG. 5 - Our relativistic model (see the text). We use the
same symbols to indicate particle masses and particle
themselves. The My is a rescnance decaying into Mg+ms.

(x) - We use the same symbols to indicate particles and their rest-
masses.
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indeed approach close to it only if particles m1 and mg are at thres

hold(14) (i. e. if their relative energy is negligible). This singularity
is purely kinematical in origin and thus does not depend on the parti
cular vertex structures; (ii)the '‘nearby singularity' of the triangle
graph (see Fig. 5) is expected to )[i&ld a three particle peak - in the

case of simple rescattering - at(14)

Mo, & 9 3

- T 2 2 2
5] M = +Da+ ~ V r .
(5) V(Pl P2tP3)" = MR m2+_—1(MR+m1 m3) .

besides the threshold enhancement in M(m{mg). At the peak in our
model the internal masses are on the mass~-shell, as we shall see in
the following; (iii) In the peak regionparticles m; and mg are expected
toform again a '"state’’having the same mass of the resonance Mg. In
general, formula (5) results to give the peak position within a few per
cent (with respect tothe incomingtotal kinetic energy).

In our case (see Fig. 2), for instance, we canfirst deduce and
observe, on a qualitative or semi-quantitative ground: (i) The contri-
bution of the triangle graph of Fig. 2 to high energy reaction scatter-
ing of the type 7Zd and Ktd (see Fig. 3) could explain why, in a not
negligible part of these collisions, the final proton and neutron ap-
pear to form again a deuteron (deuteron survival) despite its negligi
ble binding energy. Our model can explain as well the (sharp) enhan
cement (at the peak energy, see eq. (6)) in the o energy distribu-
tionobserved(6) in reaction (3) and reproduced in Fig. 4, which kine-
matically corresponds (as already mentioned) to deuteron production
or to production of couples p-n near their threshold(X); (ii) The ex-
pected three particle peak will be at:

(6) M(pn tt) # Vz(,rz + A%S) - 2 x 2191 MeV/c2,

in agreement with the experimental data(9-8) for reaction pp = d 7C+,
as already partially reported. Here 4" is the nucleon mass and A33
the mass of the wellknown A(1236) resonance(©), In particular this
fact can account for the well-observed bump in the total cross-section
for reaction (4) at an enterin§ total energy”- 11,15) of about 2.2 GeV,
and for the inverse reaction(19) d x+—> pp; (iii) Our model explains
why, in the reactions and regions here considered, the pion of the
(pn) T+ final system seems to '‘resonate'’ with each nucleon, without
"deuteron breaking'’.

(x) - In any case, we can neglect the small deuteron binding energy,
and not distinguish between a deuteron and a p-n couple at thres-
hold.

(o) - A similar peak has been, obviously, observed in the pp7r
system. See e. g. Reay et al.(8),
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III. - GENERAL RELATIVISTIC FORMULATION.

On the basis of our previous considerations, it was tempting
to perform detailed relativistic(X) calculations for the general case
of reactions, with two initial and three final(spin-zero)particles:

1
(1) Ay o rmy himy Fmy

proceeding through the diagram depicted in Fig. 5. For simplicity,
we neglect for the moment spin considerations. Afterwards, we will
apply our formulas to the case (3)-@). Subsequently, we will list other
possible applications, which will be considered in further papers,
The three internal masses are named Vi = MR' Mz, M3 (in a clock
wise sense). Particle MRy is a resonance, with halfwidth U, decay-
ing into Mg + 4. Then Mg rescatters with My. Quantities

Eq By Eg

are the final particle total energies.

In the overall c.m.s,and in natural units, the differential
cross-section for the global process of Fig. 5 may be written

2 2
_ w“(g18283) . 2 9289 2 2 |-1/2
¥ THEmE ndth an ) ol

x J4(P1—Pf)|,/j(,(s,z)

e e A
dp1 dp2 dp3

where : s is the square total energy, quantities F;, P, are the total
initial and final four-momenta respectively, P.(j=1,2,3) are the
final three-momenta, and z = (p; +py)“. To write (7) we factorized
the triangle and vertex contribution, by supposing the vertex inva-
riant amplitudes g., (j=1,2,3), to be almost constant in the energy

region of interest(¥6). Quantity is esentially the triangle contri
bution(0) :
d4q d4q d4q
4 % 1 2 3
FHE S E e ) et x

D b
- 4 A 4
x 9 (k,+ky=0;+d,) 3 (Pg*d;=q3) 3 (Py+Py*ag=a,)

(x) - Also in our energy regions (''near threshold'’) a non-relativistic
evaluation would be lacking in correct meaning: e. g. in reaction (4)
the pion c. m. kinetic energy equale about its rest-energy, -

(o) - We use the metric (+---).
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kl' k2 being the initial four-momenta. So that :
1 dot, det dolsg(l-ze{ )
'Zt =1
(Jg‘ o(MJ) o( 3/'- -b-ll 98~ 20(32

The total cross-section Lorentz-invariant expression, as function of
the total energy s, is:

e(s)—N(s)jdcose /\}E -m dE /J(\f_- Z:E) X

(10)
bt 2
VEi'/“z dEB lﬂgs,zll A
Vs-E1 B3 | B, = -7, -3,
-1/2
where N(s)= 277 (g, g,85)%|(s- /:.1-/'-2) —4p /‘zl . and where,

in performing angular 1ntegrat10ns we related p1 to a frame joint
with p3, for every fixed p3 ~direction (whlle p3 refers to an arbitra

ry fixed frame). Precisely: cosg & p1 - P3, and: z=2z(E;,Eg, coss).

Some kinematical details are given in Appendix A. By taking
in due account the phase-space boundaries, we get:

6 (s) =N(s){ [ dcos® _m C‘El\lE( )2 4
my
/a-(s E ,E( ) 0 0 b(cos8)
] 1073 <:0)S )l + /dcosg VEf—m? dE,  x
(11) o 21 a
-2 y
Vel | (s, B, coso |
* +
fo (=)
Vs-E, - E;
Wt ) (+) 2
Sy .l\/u(S.El.ES .cose)l
(+) ’
s -E, - E
where(x):

(x) - Sometimes the dependence on s is understood.
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1.0,

(5 -)" + m} - m,
S aVE-p)

b = b(cos8) = 1/2
(12) \fE(c-Z/kz)-{s(c-Z/A2)2—(s—-/ﬁ'~zsin29)[02-4/*2(s+m?00329)}}
} 2(s- Ac Sin29)
¢ B 8Fim. = mz + ,l*-z ;
and where :
e VD |
3 2 o
A" -B
— 2 2
(13) AzZ(Vs-El); _BEZVEl-ml cos 8 ; Cis+R-2E1\r§-;

&2 « 2l =B,

)
ul

The explicit expression of J% is given in Appendix B, following Va-
luev(16), In Appendix C we forward also a formula yielding the /-
particle energy distribution in the particular case m; =my (i. e., for
example, the pion energy distribution in the reaction (3)). The Landau
singularity associated with the triang%e diagram here_considered can
appear on the "physical’ sheet whenl16) quantities y% (see B(2)) are
either all greater or all smaller than +1. Our triangfe graph (Fig. 5)
satisfies that condition, provided that the intermediate particles Mg,
My can go on the mass-shell. In fact, its structure requires neces-
sarily : VA e I P 1 y3 < -I(X), the former two inequalities be-
ing always fulfilled and the latter one only implying Y& > Mp + M.
Therefore our formulas are intended to be considered for \§ > MR+
+ My, and the expression of Mo has been evaluated in that region.

IV. - REACTION pp — pnZT.

Ag an application, let us consider reaction (3), in which case:
/“1 = M5 = mq 7 my are the nucleon mass and mg =/ is the pion
one. The intermediate resonance is the A(1236). The mass values
are taken from ref. (18). The numerical computations - somewhat
lengthy in the "programming'’ phase - were performed by using a

(x) = This third inequality is necessary only when singularity appea-
rance is required to be possible.
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Our model, if it is active, contributes - in the singularity
region - by producing essencially p-n couples at threshold (deuteron
production). So that in our phylosophy the model(®) should reproduce
(in the 2. 2 GeV/c2 region) the observed peaking in the pp —> d7 "
reaction total cross-section. In Fig. 6 we forward our theoretical
curve as function of the total energy (together with the Lorentz-inva
riant pn & '‘phase-space'’ behaviour). The existing data have uncer
tainties too large for our purposes, and are a little obsolete : no re-
cent data are available for a satisfactory comparison in our anoma:-
lous singularity region. The normahzatlon constant ¢ ‘hﬁ( gl gggg)
has the physical dimensions rIVI L T 10]; its value resulted about:
(g1g2g3)2 ~ 3x1077, in MeV and natural units.

Our formulas really satisfy the conditions pointed out in Sec.
III in the infinite range: {s > Mp + m. But, as we considered the
g1. 82, &3 to be approximately constant, we must limit any comparison
with experience in small energy ranges( ). And obviously, our mecha
nism will not be the only one contributing to the complete reactlon(S)‘
In Fig. 7 we show only the (Lorentz-invariant) '"‘phase-space'' behaviour
for reaction pp -% pn T ina larger total-energy range.

The actual peak position does not result where expected from
(5), but at an energy less than 1% higher. The theoretical enhance-
ment appears to be highly asymmetric, as it seems usual in the high
energy field, at least according to other analogous triangle-diagram
calculations in progress. Spin consideration seems.to have no damping
effec(tl,)but it could (slightly) enlarge the shape of the theoretical
peak

To obtain angular distributions, one had to take into account
the correct dependences of the gy (j=1,2,3), on the proper kinema-
tical variables.

Our model a}%?ears to make the hypothesis of existence of a
di-proton resonance an unnecessary one.

V. - OTHER POSSIBLE APPLICA TIONS.

Other possible applications have been already proposed, e.g.,
by Month(14) who suggested to explain the ' mesomc resonance'(18)
E(1420) by means of the graph of Flg 1 with R= K% (89@); C =K;
D=K; E=7, andthe "mesonic' peak(18,19) K3/2(1175) with

(o) - As our model is purely kinematical, the aim was not to obtain a
theoretical curve perfectly comparable with the experimental data.
(x) - In fact, e. g., the quantity g, (of course related to the elastic
p-n scattering amplitude) drops down rapidly as one gets far from
the (p-n) zero relative-energy region.

o
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FIG. 6 - Our theoretical curve for reaction (3)
cross-section, in the singularity region, as
function of the total energy. Our model sems
to explain the peak for deuteron production,
ruling out the '"di-proton'’ resonance hypothe-
sis (see the text).

4 Phase-space .
200k(arbitrary units) pp—=pnm
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1 L 1 1 1 L a h 1
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FIG.7 - Lorentz-invariant '‘phase-space' behaviour
for the (complete) reaction pp = pn nT as function

of the total energy.
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R = K*(SQO); C=D=7o; E=K. The same . mechanism (with R= 92 and
C=D=E =7 ) has been involved(M) also for the Ay enhancement( 18‘19);
-in that case one expects a grouping of the events at the three kinema
tical "extremes' of a Dalitz plot{1%). Really, those three clusters
where observed(20), but at a different effective mass M(x ), inter
mediate between the Al and Az. We report that fact, without being
able at present to clarify this situation.

As already said, we consider useful - in any case - to identify
possible kinematical effects, e. g., of the type here studied, expecial
ly when they contribute in resonance regions, in order to explain so-
me partial apparent '‘resonance decays'; as well as to compare the
experimental distributions with a curve more sophisticated than the
phase-space one. We list here some other possible applications (see
Fig. 8), that will be analysed in detail in a further paper:

a) We suggest that the triangle graph in Fig. 8a can contribute with a
bump in the region of the resonances N(1680) and N(1688), which - at
least in the inelastic processes - dominantly decay into NZZ with
large widths., The intermediate N(1550) is known to decay into N7C
for the 35 %(18);

b) According to us, the graphs in Fig. 8b, with N(1550) and N'(1470)
as intermediate resonances(¥X), may account for the humps D35(1950)
and P13(1855;, reported e. g. by Lovelace(zz), and quoted by Rosen-
feld et al.(18) ag possible "‘threshold effects'’, Those humps have
have been claimed e. g. by the CERN group(zz) as a result of their
Argand diagram analysis. Besides, it is interesting the graph(14'21)
having Mp = A(1236), which could explain the fraction (50%) of
N(1518) decaying into N7t L (or better the events with that decay
and which fall kinematically under the N(1518) peak). The A++(1236)
just dominates the N(1518) decays into NZZ , and itself is known to
decay almost totally into N/ ;

c) Another graph(14' 21) that would be of interest to study is the one
depicted in Fig. 8c (with A(1520) as intermediate resonance), which
might contribute to the 2,(1765) enhancement. The 15% of the events
grouped under that peak correspond to decays just into A(1520) 7 ;

d) We propose also that the complete diagram shown in Fig. 8d
might give account for the "D**%(2520)'" enhancement, in the pp ™t
effective-mass~-distribution, observed in pp =» ppA T/~ reactions
at 4 GeV/c by Kidd et al.(23) Successively, Alexander et al.(23) gid
not observe that peak but at a different (higher) entering momentum:
5.5 GeV/c. On the contrary, Reay et al.(8), at other (lower) momen
ta: 2.8, 3.2 and 3. 65 GeV/c, did not found amy evidence for a true
resonance DT, but noticed (at different angular directions) humps
corresponding to M(pp#) & 2520 Me'\/'/c2 which ones were just inter

(x) - These resonances where observed to decay abundantly into N .
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(a)

nu

/

s -1
Mg =N (1550) =>M* (nN) s950Mey/£2 m 7 ’p

Mg=N (1470)=> n 41850
Mgp=A (1236)=> v 1490
N
(b)
m
. 20
e ’//Q( *
s / M" (= nn) = 1800 Mev/c?

p

P
* 2
M*(ppmép2530MevL?

(d)

FIG. 8 - Other possible applications (see the text): proposed models
for explaining (at least partially) some observed enhancements as
possible kinematical effectsdue to final state interaction. We fit out
in these figures only the positions of the peaks predicted by our me-
chanism according to the approximate formula(5). Graph (a) can con
tribute in the region of the resonances N(1680) and N(1688); graphs
(b) may account for the bumps D35(1950) and P;3(1855) quoted in
ref. (18,22), and for a (large) fraction of_-the N(1518) resonance; graph
(c) might give some contribution to the ¢ (1765) enhancement; the
diagram (d) could render account for the ""DTt"(2520)' peak, in the
pp it effective-mass distribution, reported in ref. (23).
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15.

preted as probable reflections of the dynamics of pion prodnction(x).
A priori, our "kinematical' model could allow to interpret why that
peak was observed at some entering momenta and not at higher ones.

Many other kinematical effects may be supposed to influence
the effective-mass-distributions : for examplification, diagrams of
the type of Fig. 5, with MR = A(1405); m1=mg=7Z; mg=J , or
with Mg = A(1520); m; = 7} ; mg=mg =/, might bring contributions
in the region of 2(1660) resonance. - |

At this point, we want clarify that the (purely kinematical)
conditions for actual "anomalous singularity'’ intervention impose
really that the triangle degenerates into a ''stright line'. The Landau
(logarithmic) singularity then arises when that degenerate triangle
graph describes a three-step reaction involving particles on the mass-
shell. First (see Fig. 5), in the c. m. s. particles My and M, are (of
course) produced on the same line, and then particle M breaks up
into paticles Mg and &, where M3 moves backwards relative to the
flight direction of/‘-, it reaches particle I\/’I2 and rescatters or
reacts(o).

In order that this mechanism be physically possible, the life-
time 2% of resonance Mj should be sufficiently short (% 1018 s),
and obviously the c. m. s. velocity of the primary-emitted particle
Mg must be smaller than the subsequently-emitted M4. As one can
expect, resonance M; lifetime has been shown to be obtainable from
my, m, angular correlation and effective mass(24), For instance
the lifetimes of some 13N levels have been '"measured'(2%) by means
of reaction 2c +d —> C+n+p

Let us notice that a priori the intermediate resonances are
allowed to decay also weakly, provided that the aformentioned con-
dition (Z = 10718 s) is approximately satisfied. But we mention
that Valuev(186, 26) considered the possibility of determining even
the ZO°-lifetime, through the reaction K™ +N, —> Z°+N, _; —>
—> A+ ¥ + N, _; (with pair production in the final- nucleus field).
Moreover, if we would ''forget'’ the previous physical meaning or
limitations of the triangle interactions, we might arrive to consider
other weak graphs corresponding to '"mass-formula' type(*) relations

(x) - Analogous kinematical enhancements mightbe predlcted for the NN7Z
system also (e. g. ) at about 2480 MeV/c2, 2630 MeV/c? and so on.
(o) - For instance, the contribution of a mechanism of this type to
reaction (2) may be desumed also from the decay angular distribution
for the d ™ system, plotted by Buchner et al 5?7

(+) - Of course, one may write a series of ""mass-formula'' also in
correspondence to above consuiered gz aphs, e. g : 2(K*2+K2)- 72 = =g2
2(KX2 + F2)-K2 K3/2(1175) 2( A2+ T2)-N2 = N 14{0)2 492+ 7c2= A%
For instance, the last one is similar to the mass-formulas reported
by S. Weinberg, Phys. Rev. Letters 18, 507 (1967) and by C. Lovela-
ce, Phys. Letters 28B, 264 (1968).
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=2 +y2
like the following: 2(Z2+722) -/V2=A(1405)2; 2(._':_'.( ) +E(')

= 1.."3(1530)2, verified within about 1%.

)- A%=

At last, we want to point out further applications in the very
field of nuclear physics. In nuclear physics the triangle singularities
seem to be more frequent and more active'“/: our preliminary eva-
luations stress that "triangle' peaks can usually appear in the lah.
kinetic - energy range between few MeV and a few tenths MeV. It is
already well known(%7) that = for example in the projectile-induced
break-up of a target nucleus X into two constituents: A +X —> A+B+C
(where B, C are the nucleus fragments) = final state interactions
between pairs of particles can strongly modify the energy spectra of
detected particles(z' 10), Almost all existing measurements appear to
show that this mechanism is the predominant one for bombarding
energies around 10 MeV and for target nucleus mass Ax > 2a. m.u. 5
(In the case of X being a deuteron both processes seem to be present)( 8.)
We would like to suggest here, as an example, the diagrams represen
ted in Fig. 9 and relative to reaction <((d, pn)eX . One might predict
some possible peaks in the total cross-section as function of the lab.
kinetic energy. For instance, if we assumed 9Li and ®He in their
ground levels, we should have peakings at about 5.5 MeV.and 4 MeV,
in the cases of Fig. 9a and 9b respectively. In Fig. 9c we show some
points (connected with a dashed line only for indicative pumose(x)) of
the theoretical cross-sectionforcase (a). Thephase-space behaviour is
shown. It is worthwhile to add that, in the non-relativistic limit for
the case of three final particles like in Fig. 5, the total cross-section
peaking is expected to appear according to formula (5) at the lab., in-
coming kinetic energy:

5 My ' 1/2
(14) T |}/u1+/*2-Q+A) +—nqA(2m3+A)] *
(141) - (Mgt R A-Q,

where @ is the reaction Q-value and where A is the kinetic energy
at which the resonant state R, between mjy and mg, is observed (in
its partial ¢. m. 8. ). In nuclear physics one can use the approximate
very simple formula (14'), which differs from (14) within 1% in the
usual situations. It may be noticed that, when the intermediate re-
sonance is a target-nucleus excited state, the eventual enhancement
according to (14') should appear at energies just enough for the tar-
get excitation.

(x) - More details willbe given in further papers, when supports will
be available to perform other computer elaborations.

12
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(a) (b)

AG ‘
(arbitrary units)

5
a—=Lip=npa

10}
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50 55 To T (MeY)

FIG. 9 - A possible application in nuclear physics. Fig. (a) and (b)
refer to different intermediate states. Considering their ground le-
vels, we should have peakings in the total cross-section e. g. at
about 5. 5 and. 4 MeV, respectively, of lab. initial kinetic energy.
Fig. 9(c) shows some points of the theoretical cross-section for
diagram (a) and the Lorentz-invariant "‘phase-space" behaviour.
The dashed line is drawn only for indicative purpose.

~
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APPENDIX A
Our case considers two initial and three final (relativistic)
particles. In our model (see Fig. 5) we can choose the variables:

2
8 = (p; Py *+Pg)

By = Pyg
cos § = 31 " Pg
In our particular case we need three invariants (instead of five);

we used :
8 = 8
2 = m2-m2+2E, (V8 - Eq)+ 2c088 |/(E2- m2)(E2- 2‘)
o ! 3 g~ my KEg =
= s+m?-2E1\r§ .

. 2
Y = (p2+p3)

where obviously Eg = Eg(s, Ey, cos@).
For every fixed value of s the remaining variables E; and

cos® may vary in the connected domain(17):
(cos® <0/N m;< E < b(s, cosb)) U (cosé 201 my <E, < a(s)),

The conservation laws allow E5 to assume in the whole (previous) de
finition region the value E 5 (see eq. (13) of the text). Besides, Eg
may assume a second value, E3 , in the restricted region(17):

(cos@ 20 /) a(s) < E{ £ b(s, cosh)).

APPENDIX B.
Following Valuev(ls), the explicit expression of J/L (see for

mula (9) of the text) may be written, for Vs > M+ M, :
In A3

; ’ -'TCP In A
2 ey 1
M) = 8ot —=

7 2V .\/Plz-i'rlz VBi-17;s

(B1)

where (215 z; 2, 5/“‘2; Zg =g):
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z.P +-i'3’lz.
A, = . l—— (j = 1 and 3)
J (\/)\I{j+ V}vj-i'rlzi)

3 Ri/z;
& lz T ! A
o 4 § - Mt (Ry-z;t)
i=1
0
3 St + (R -z1;)1/2
x In( } (R-zt)1/2 +
f _dt 2P (zit'Ri)ll
# aretg e
3 -t R 7 B+t
R/z zt Ri) i
¥, = B MT
4N =27+ T+ s - [(/14-2+s)z+/AS]
RS 32- M Mk (i, i,k) cyclic permutation
J J of (1,2,3)
PJ..=.M.2Mi-'53+33 3)-M3 M3
- N 2
(B2) 3j = g (M M- 2) = My M,y
3. >\R2 = .
- /0\2

The quantities A;, (1=0,1 and 3), are complex; the determi-
nation such that =7Z <Im In A < +/Z is to be taken for the wvalues
of the natural logaritms appearing in (B1). Formula (B1l) has been
derived under the condltmns Yo »l and Y1 < -1, in order tobe
able to r‘epresent(3 16) the "singular'’ amplltuge corresponding to

our diagram (see Fig. 5): that is to say in the region \/s > Mg + Mg
(see sect. III).
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APPENDIX C.

In this appendix we want forward the energy distribution of
particle mg = A& at a given total energy.

To fix the ideas and for semplicity, let us consider the par-
ticular reaction:

p+tp =>p+n+ 7C+,
(in which my = m, =M, =Ky = m), under the usual condition Vs >
> MA + m.

In our model (see Fig. 5), the pion energy distribution will be
expressed as follows (€ = c. m. pion total energy) at fixed Vs :

<+ 2

T 2eaem?| P ot (50 27] -

(C1) =
rag-2) (3 z;]}
where :
EE 82‘/“‘2 +
d; (€) .
" % : =12 2
Z+=Z(€)=(f1):‘/ dcosQ[E(l)-mz] X
J i 2
| #l?
e gl
Us -E(l+ - €&
+ +
d; (&) = I1; dy (&) = d(8)
3,2 42712
= | 4m°L” - B
d(8) [ — ]
4m” &
‘/ﬂ'; Eﬂ(s,z) (F = S > -
E =V§—E1 g;pz -pl-pB
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E(‘T') - E(;)(‘g.cose) = LAt omeg? 'fcoszg(cosze - d)
: ; 2[£ 2cose - 2]

f = 8-2m Vs +/A2
© 2(\s - m)

o =& -Ve: A= s-28Vspl,

The quantities uaa and z are defined as in Appendixes A
and B. The kinematical limits of & are:

2 2
€ £« (8- 4w $H00
g Efs 2\s



23.

REFERENCES.

(1) -

(2) -

(3}

(4)-5
(5) -

(6) -

(7) -

(8) -

(9) -
(10) -

See, e. g., M. Month, Phys. Rev. 139B, 1093 (1965); 151,
1302 (1966); V. V. Anisovich and A. A, Anselm, Sov. Phys. -
Uspekhi 9, 117 (1966); See also ref. (2).

See, e. g., E. I Dubovoi and I. S. Shapiro, Soviet Phys. -Jetp
24, 839 (1967); I S. Shapiro and S. T. Timashev, Nuclear Phys.
79, 46 (1965); B. N. Valuev, Soviet Phys. -Jetp 20, 433 (1965);
V. V Anisovich and L. G. Dakhno, Phys. Letters 10 221
(1964); C.Kacser, Phys. Letters 12, 269 (1964); V.V. Ani-
sovich and V. M. Shekhter, Proc. 12nd Int. Conf. on High
Energy Physics, Dubna 1964 (Moscow, Atomizdat, 1966),
Vol. I, p. 277; A, Forino et al., ibidem, p. 445; Yu. K, Aki-
mov, V. I. Komarov, K. S. Marish, O. V. Savchenko and L. M.
Soroko, Soviet Phys. -Jetp 13, 1073 (1961); See also ref. (25,

27);and I.J.R.Aitchison, C.Kacser, Rev. Mod. Phys. 37, 350.

L. Landau, Nuclear Phys. 13, 81 (1959); L. C. Polkinghorne
and G. R. Screaton, Nuovo Cimento 15, 289 and 925 (1960).
F.Duimio and E. Recami, private communication (1965).

K. Buchner, G. Dehm, G. Goebel, H, Hupe, T. Joldersma, I.
S. Mittra, W. Wittek, J. M. Crispeels, J.Debaisieux, M. De-
labaye, P.Dufour, F.Grard, J. Heughebaert, J. Naisse, G.
Thill, A.Grant, V. P. Henri, B. Jongejand, U. Kundt, F. Mul
ler, R.L.Sekulin and G. Wolf, Nuclear Phys. B9, 286 (1969);
I. Butterworth, J. Brown, G. Goldhaber, S.Goldhaber, A, Hi-
rata, J.Kadyk and G. Trilling, Phys. Rev. Letters 15, 500
(1965); G. Vegni, H. Winzeler, P. Zaniol, P. Fleury and G. De
Rosny, Phys. Letters 19, 526 (1965); M. Abolins, D. Carmo-
ny, R.Lander and N. Xuong, Phys. Rev. Letters 15, 125
(19265).

V. M. Siderov, Soviet Phys. -Jetp 4, 22 (1957); B. 5. Neganov
and O. V. Savchenko, ibidem 5, 1033 (1957); A.G. Meshkovsky,
Ya. Shalamon and V. A. Shebanov, ibidem 8, 46 (1959).

M. G. Meschcheryachov, B. S. Neganov, N. P. Bogachev and
V. M. Siderov, Dokl. Akad. Nauk SSSR 100, 673 (1955); ibi-
dem 100, 677 (1955); B. S. Neganov and L. B. Parfenov, Soviet
Phys. -Jetp 7, 528 (1958); See also ref. (15).

See also, for the experimental papers, W.J. Fickinger, E.
Pickup, D. K. Robinson and E. O. Salant, Phys. Rev. 125,
2082 (1962); G. Cocconi, E. Lillethun, J. P. Scanlon, C. A,
Stahlbrandt, C. Ting, J. Walter and M. Wetherell, Phys, Let
ters 7, 222 (1963); N. W. Reay, A.C. Melissinos, J. T. Reed,
T. Yamanouchi and L. C. Yuan, Phys. Rev. 142, 018 (1966);
See also ref. (11, 15).

S. Mandelstam, Proc. Roy. Soc. 244A, 491 (1958).

K. M. Watson, Phys. Rev. 88, 1163 (1952); A. E. Woodruff,
Phys. Rev. 117, 1113 (1960).

137



24.

(L)~

(12) -
(13) -

(14) -

(15) -

(16) -
(17) -

(18) -

(19) -

C. Richard-Serre, Report CERN 68-40(1968); We want here
recall and comment only the dynamical model by JN. Chahoud,
G. Russo and F. Selleri, Nuovo Cimento 45, 38 (1966), in which
satisfactory agreement with experimental data seems to be ob-
tained in the peak region by considering a different '"triangle"
diagram (with one-pion-exchange followed by deuteron forma-
tion). But we prefer, for physical reasons, our triangle graph,
which includes substancially the abovementioned diagram. Be-
sides, our aim was to single out the role of the pure kinema-
tics. By the way, we want to mention, that the relation, enpha
sized in the last part of the paper by the same Authors, Phys.
Rev. Letters 11, 506 (1963), has a trivial mathematical ori-
gin(4), and it may be found easily also in other reactions (like
p+d=>xt+3H).

I. Aitchison and C. Kacser, Phys. Rev. 133B, 1239 (1964).
V.Y. Anisovich, A. A. Anselm and V. N. Gribov, Soviet Phys. -
Jetp 15, 159 (1962); I. Aitchison, Phys. Rev. 133B, 1257
(1964); C.Kacser, Phys. Letters 12, 269 (1964); J. B. Bron-
zan, Phys. Rev. 134B, 687 (1964); I. Aitchison, Nuovo Ci-
mento 35, 434 (1964); C. Kacser, J. Math. Phys. 7, 2008
(1966); I. Aitchison and C. Kacser, Phys. Rev. 142, 1104
(1966); 152, 1518 (1966); See also M. E. Ebel and R. L. Goble,
Phys. Rev. 140B, 1675 (1965); R. B. Amado, Phys. Rev. 158,
1414 (1967); L. Bertocchi, Nuovo Cimento 50A, 1015 (1967);

L. Bertocchi and L. Caneschi, Nuovo Cimento 52A, 295(1967);
C. M. Hindle, preprint DAMPT 68/17 (Cambridge, U. K. 1968).
M. Month, Phys. Letters 18, 357 (1965); Y. F. Chang and S. F.
Tuan, Phys. Rev. 136B, 741 (1964); Analogue results seem
to be obtainable with another model, see A. M. Gleeson and

W. J. Meggs, Nuovo Cimento 55A, 584 (1968).

R. M. Heinz, O. E. Overseth, D. E. Pellet and M. L. Perl, Phys.
Rev. 167, 1232 (1968); D. Dekkers, B. Jordan, R. Mermod, C.
C. Ting, G. Weber, T. R. Wilutts, K. Winter, X. De Bouard

and M. Vivargent, Phys. Letters 11, 161 (1964).

B. N. Valuev, Soviet Phys. -Jetp 20, 433 (1965); In our model
we lave not to take into account any '"root-type'’ singularity.

J. Proriol and R. Laverriere, External report Lycen/6816
(Liyon, 1968).

A. H. Rosenfeld, N. Barash-Schmidt, A. Barbaro-Gualtieri,

L. R. Price, P.Sdding, C.G. Wohl, M. Roos and W. J, Willis,
Rev. Mod. Phys. 40, 77 (1968); 41, 109 (1969).

See, for instance, F. Bomse, S. Borenstein, A. Callahan, J.
Cole, B. Cox, D. Ellis, L, Ettlinger, D. Gillespie, G. Luste,

R. Mercer, E. Moses, A. Peysner and R. Zdanis, Phys. Rev,
Letters 20, 1519 (1968); G. Ascoli, M. B. Crawley, U. Kruse,
D. W. Mortara, E. Schafer, A, Shapiro and T. Terrault, Phys.
Rev. Letters 21, 113 (1968).

[
ca
=



(20) -
(21) -
(22) -

(23) -

(24) -
(25) -

(26) -
(27) -

(28) -

25.

E. Fiorini and P. Negri, private communication (1965).

Y. F. Chang and S. F. Tuan, Phys. Rev. 136B, 741 (1964).

C. Lovelace, Proc. Heidelberg Int. Conf. on Elementary Par
ticles, 1967 (Amsterdam, 1968), p. 79.

J.Kidd, L. Mandelli, V. Peloei, S. Ratti, A. Sichirollo, L. Tal
lone, F.Conte and G. Tomasini, Phys. Letters 16, 75(1965);
G. Alexander, N. Kidron, B. Reuter, A. Shpira and G. Yekutieli,
Nuovo Cimento 39, 384 (1965).

R. Fox, Phys. Rev. 125, 311 (1962).

J.Lang, R.Mllller, W. Wdlfli, R. R8sch and P. Marmier, Phys.
Letters 15, 248 (1965) J. Lang etal. , Nuclear Phys. 88, 576 (1966).
B. N. Valuev, Soviet Phys. -Jetp 40, 1844 (1961).

V. Valkovic, C. Josephy, S. T. Emerson and G. C. Phillips, Nu-
clear Phys. A106, 138 (1963).

I. Slaus, J.W. Verba, J. R. Richardson, R. F. Carlson, L. S.
August and E. L. Peterson, Int. Conf. on Nuclear Physics,
Gathinburg (1966); R. E. Warner and R. W, Bercaw, Phys. Let
ters 24B, 517 (1967).

1 ©3
1L





