$\frac{\text { INFN/AE }-67 / 6}{27 \text { Maggio } 1967}$

E. Frota - Pessoa*
Istituto Nezionale di Fisica Nucleare
Trieste

ABSTRACT

An extensive analysis is made of all results on the angular distribution of $\pi-\mu$ decays in the nuclear emulsion stack used by Hulubei et al.

Contrary to their previous analyses, which favoured anisotropy for this distribution, it is shown that no strong indication of anisotropy subsists which is free from serious suspicion of residual uncorrected bias. The safe part of the scanning of that stack is in good agreement with isotropy.

[^0]
INTRODUCTION

The angular distribution of $\pi-\mu$ deoays at rest in nuclear emulsions have been re-examined recently by HULUBEI et al. (${ }^{1}$) . They obtained an isotropic distribution in contra distinction to their previous anisotropio results $\left({ }^{2-5}\right)$.

However they conclude that these different angilar distributions are meaningful thus asoribing the variations to not well defined changes in previous pion history.

An extensive analysis of the previous results on the angular distribution was made by HULUBEI et al. $\left({ }^{5}\right)$ with the conclusion that the significant departure from isotropy in $\pi-\mu$ deoay was a genuine physical result. However the fact that we had obtained (${ }^{6}$) a distribution consistent with isotropy-using plates from the same stack where they found the anisotropic result-was minimized. They argue that the conclusions of that paper (${ }^{6}$) were based on qualitative considerations, that soanning efficiencies have not been estimated nor were beam mouns investigated. They claim that results of reference (${ }^{6}$) are not at va riance with their more recent results (${ }^{5}$). Finally they state that the comparison of our results, uncorrected, with their old results (${ }^{2}$) uncorreoted for bias, seems of no pratioal interest.

We think, however, that we should extraot all possible informations from these different analysis of the stack where pion history is the same.

Aotually this is exactly the aim of the present paper where not only the answers to the oriticisms to reference (${ }^{6}$) above mentioned are given, with the pertinent additional informations, hut also a detailed analysis of all results obtained with that stack is made. The conolusion is that no strong indication of anisotropy in $\pi-\mu$ decay exists whioh is free from serious suspicion of residual uncorrected blas.

RESULTS FOR SEVERAL SCANNINGS

The angular distribution we are considering in $d N / d \theta$, θ being the angle between the initial direotion of the μ meson projected on the emulsion's plane and the direotion of π beam.

In $\left(^{2}\right)$ the method of area scanning was used, looking for $\pi-\mu$ vertex. $\mathrm{A} \chi^{2}=181.4$, for three degrees of freedom, was found in the comparison of the results with isotropy (7526 deoays).

After we obtained a few plates of that same stack thanks to the kindness of Professor Hulubei, a soanning by the same method was made finding a distribution also not compatible with isotropy (${ }^{6}$). A $\chi^{2}=22.9$ was obtained for three degrees of freedom (2594 decays), thus giving a probability $P \simeq 0.01 \%$ for isotropy. However these results were also hardly oompatible with those of reference $\left({ }^{2}\right)$ leading to $\chi^{2}=10.4$ (three d.of f_{0}) or a probability of 1.5% for the two samples to correspond to the same distribution. To oheck some indioations of observational bias unfavouring small $\pi-\mu$ angles a new scanning was made (${ }^{6}$) using a different method. The soanners were instruoted to look for all black
traoksending in the emulsion and follow them baok (in the same plate) to see whether they correspond to a μ resulting from π deoay at rest. The $\pi-\mu$ vertex must be found within the μ range and acoepted even if it looks as a soattering, in which oase it nould have been lost in the $\pi-\mu$ vertex soanning. The distribution was then oompatible with isotropy $\left(\chi^{2}=\right.$ $=5.2$ for three $d_{\text {. of }} f_{0}$, or $P=15,8 \% ; 4132$ deoays). It was, however, incompatible with the results of $\left({ }^{2}\right)\left(x^{2}=42.8\right.$ for three d. of f.o or $\left.P \ll 0.001 \%\right)$ 。

In (${ }^{7}$) we inoreased the statistios using the same method with essentially the same re sults of (${ }^{6}$) (total of 8669 deoays).

The departures from isotropy in the angular distribution are not, however, only due to a forwand-baokward asymmetry, as a pole-equator asymmetry was also observed.

Thus the values of ooeffioients (5) b and $\mathrm{d}_{\text {, }}$

$$
\begin{aligned}
& \mathrm{b}=\frac{2 \text { (forward-baokward) }}{\text { forward }+ \text { baokward }}=\frac{2\left(X_{1}+X_{2}-X_{3}-X_{4}\right)}{X_{9}+X_{8}+X_{3}+X_{4}} \\
& \mathrm{~d}=\frac{2(\text { pole }- \text { equator) }}{\text { oquator }+ \text { pole }}=\frac{2\left(X_{1}+X_{4}-X_{3}-X_{3}\right)}{X_{1}+X_{2}+X_{3}+X_{4}}
\end{aligned}
$$

are useffl to analyse these distributions. Here X_{i} are the numbers of observed deceys with θ in the intervals as follows

	X_{1}	8	0°	-45°	plus $315^{\circ}-360^{\circ}$
X_{8}	8	45°	-90°	plus $270^{\circ}-315^{\circ}$	
X_{3}	8	90°	-135°	plus $225^{\circ}-270^{\circ}$	
X_{8}	8	$135^{\circ}-225^{\circ}$			

Their values are given in Table I for the above mentioned results, all of them uneor reoted for effioienoy, the numbers corresponding to the number of referenoe, [(${ }^{6}$) refers only to $\pi-\mu$ vertex soanning].

TABLE I

Exp.	b	a
$\left(^{2}\right)$	-0.115 ± 0.023	-0.268 ± 0.023
$\left(^{6}\right)$	-0.040 ± 0.039	-0.180 ± 0.039
$\left({ }^{7}\right)$	-0.026 ± 0.022	-0.057 ± 0.022

It is also oonvenient to introduce the coeffioient

$$
a=\frac{2}{\sqrt{3}}\left(\frac{4 X_{1}}{X_{1}+X_{2}+X_{3}+X_{6}}-1\right)
$$

In the Table II the coefficients are given for all experiments made with Hulubei stacks $\mathrm{L}, \mathrm{H}, \mathrm{T}_{1}$ and T_{2} are the experiments quoted in references $\left({ }^{5}\right)$. Lis the same desoribed in re ferences (${ }^{2}$) and (${ }^{3}$) with a slight increase in statistics and with correction for bias. H is an experiment with higher scanning efficiency (${ }^{5}$) using the same method as in (${ }^{2}$)。

In T, the scanning was made following the gray track in the beam until it ended (4). If a position track was present the μ-track was followed back for approximately 600μ to look for the $\pi-\mu$ vertex.

In experiment T_{2} the same method was used but the $\pi-\mu-\theta$ event had both vertices in the same plate where the gray tracks was picked up. In both case it was assumed that there was no bias.

Experdment E in Table II is part of reference (${ }^{7}$) correoted for effioiencies as analised in the next section.

TABLE II

Exp.	$\mathrm{b} \times 10^{3}$	$\mathrm{~d} \times 10^{3}$	$\mathrm{a} \times 10^{3}$
L	-124 ± 21	-131 ± 21	-208 ± 21
H	-95 ± 38	-124 ± 38	-134 ± 36
$\mathrm{~T}_{1}$	-143 ± 48	-88 ± 48	-108 ± 46
$\mathrm{~T}_{2}$	-16 ± 59	$+2 \pm 59$	$+70 \pm 60$
E	$+8 \pm 38$	-51 ± 38	-18 ± 40

CORRECTED RESULTS

The oorrection for scanning efficiency by double scanning could not be made for all scanners as we had to send back the plates used. However 1700 out of 2594 deoays found in reference (${ }^{6}$) using $\pi-\mu$ vertex scanning were in the same area scanned with the black track ending method.

They could be used to determine the efficiencies of three of the scanners (A, B and C) who had used the last method. The results are given in Table III. In Table IV the correc ted values of X_{i}, of coefficients b, d and a and of χ^{2} for isotropy with three degrees of freedom are given.

TABLE III

Scan.	Observed results							
	X_{1}^{0}	X_{2}^{0}	X_{3}^{0}	X_{4}^{0}	ϵ_{1}	ϵ_{2}	ϵ_{3}	ϵ_{4}
A	683.5	705.5	742.5	690.5	75.0 ± 3.3	78.1 ± 2.7	80.2 ± 2.7	75.7 ± 3.0
B	706.5	800.0	778.0	717.5	66.1 ± 3.4	66.8 ± 3.0	66.2 ± 3.0	62.7 ± 3.3
C	332.5	329.0	337.0	309.5	72.7 ± 13.4	77.8 ± 13.9	83.3 ± 10.8	93.3 ± 6.4

Soan.	X_{1}	X_{2}	X_{3}	X_{4}	$b \times 10^{3}$	$d \times 10^{3}$	$a \times 10^{3}$	X^{2}
A	911.3 ± 53.1	903.3 ± 46.2	925.8 ± 46.1	912.2 ± 50.1	-13 ± 54	-3 ± 54	-2 ± 57	0.1
B	1068.8 ± 68.9	1197.6 ± 68.5	1175.2 ± 67.9	1144.3 ± 74.1	-23 ± 61	-70 ± 61	-78 ± 60	2.0
C	457.2 ± 88.1	423.0 ± 78.9	404.4 ± 56.7	331.6 ± 29.7	$+178 \pm 159$	-48 ± 166	$+152 \pm 198$	6.4

The combined corrected results of A, B and C and the corresponding errors were obtained using the following equations. Let us call $P_{i}{ }^{A}=X_{i}{ }^{A} / \sum_{j=1}^{4} X_{j}^{A}$ the relation of corrected number of cases found by observer A in interval i to the total corrected number of decays found by this observer (and similarly for the other observer) and $\sigma_{i}^{A}=\Delta X_{i}^{A} / \sum_{j=1}^{4} \Delta X_{j}^{A}$ where $\Delta X_{i}{ }^{A}$ is the error in $X_{i}{ }^{A}$. Then the combined value for P_{i} was found by the expression (${ }^{8}$):

$$
P_{i}=P_{i}^{0}+\delta P_{i}
$$

where

$$
\begin{equation*}
\frac{P_{i}^{\circ}}{\sigma_{i}^{2}}=\frac{P_{i}{ }^{A}}{\left(\sigma_{i}{ }^{A}\right)^{2}}+\frac{P_{i}{ }^{B}}{\left(\sigma_{i}{ }^{B}\right)^{2}}+\frac{P_{i}{ }^{C}}{\left(\sigma_{i}{ }^{C}\right)^{2}} \tag{1}
\end{equation*}
$$

and

$$
\delta P_{i}=\left(1-\sum_{j=1}^{4} P_{j}^{0}\right) \sigma_{i}^{2} / \sum_{k=1}^{4} \sigma_{k}^{2} .
$$

Here σ_{i} given by

$$
\begin{equation*}
\frac{1}{\sigma_{i}{ }^{2}}=\frac{1}{\left(\sigma_{i}{ }^{A}\right)^{2}}+\frac{1}{\left(\sigma_{i}^{B}\right)^{2}}+\frac{1}{\left(\sigma_{i}{ }^{C}\right)^{2}} \tag{2}
\end{equation*}
$$

is the error in P_{i} and P_{i} satisfies

$$
\sum_{i=1}^{A} P_{i}=1
$$

The value of χ^{2} of the combination of two experiences A and B, which generalize Pearson's formula is in this case given by (${ }^{8}$):

$$
x_{A B}^{2}=\sum_{i=1}^{4} \frac{\left(P_{i}^{A}-P_{i}^{B}\right)^{2}}{\left(\sigma_{i}^{A}\right)^{2}+\left(\sigma_{i}^{B}\right)^{2}}+\frac{1-\sum_{k=1}^{4} P_{k}^{0}{ }^{A B}}{\sum_{j=1}^{2}\left(\sigma_{j}^{A B}\right)^{2}}
$$

where $P_{k}^{\circ} A B, \sigma_{j}{ }^{A B}$ are given by expressions (1) and (2) for the combined experiences A, B only.

It should be mentioned that for purely statistical distributions $\Sigma P_{i}^{0}=1$ and the additional terms in $1-\sum P_{1}^{0}$ disappear.

The values obtained for P_{i} were:

$$
\begin{array}{ll}
P_{1}=0.2461 \pm 0.0103 & P_{2}=0.2560 \pm 0.0095 \\
P_{3}=0.2568 \pm 0.0093 & P_{4}=0.2411 \pm 0.0091
\end{array}
$$

In no case δP_{i} was larger than 0.003 . The values of χ^{2} for the combination of the scannings two by two are (3 degrees of freedom) :

$$
x_{\mathrm{AB}}^{2}=1.1 \quad x_{\mathrm{BC}}^{2}=4.5 \quad x_{\mathrm{AC}}^{2}=4.5
$$

which shows the consistency of these three scannings. The values of the coeffioients a, b and d given in Table I (line E) and corresponding errors were obtained from the above values of P_{i}.

MUON BEAM CONTAMINATION

The possibility that μ meson soatterings where taken as $\pi-\mu$ decays is excluded in our experiments (${ }^{7}$). Indeed:

1) Each event accepted was looked three times and examined for characteristic change of ionization and coulomb scattering. First with objectives 25 X and eye pieces 15 X and then with objective 100 X and eye pieces 15 X . In the second time depth and angles of positron and μ mesons with the direction of π beam were measured. In the third time the projected angle between π and μ was measured. Each event was looked in the second or third time by an experienced physicist. In no case a μ scattering was found to be taken as $\pi-\mu$ decay.
2) All μ lenghts were approximately measured. Thus if a μ-scattering was taken as a $\pi-\mu$ decay, the soattering had to occur at about 600μ of the μ traok's end. However, the estimated contamination of μ mesons in our stack was about 5%. Thus, as shown in reference $\left({ }^{5}\right)$ the fraction of muons scattered by angle great than 5° at approximately 600μ is negligibly small and would lead to a negligible correction.

DISTORSION IN THE STACK

In $\left(^{5}\right),{ }^{(6)}$ and (${ }^{7}$) the $d N / d \vartheta$ distribution was obtained for a total of 18993 particles from contamination stars.

The results give a probability of 24% (χ^{2} with three degrees of freedom) for it to be isotropic. This may be taken as an indication that distorsion in the stack is not si gnifioant.

COMPARISON OF THE EXPERTMENTS

Table V gives the probabilities for oompatibility of the several experiments among themselves, with isotropy and with the α stars distribution. They were obtained from the values of χ^{2} for three degrees of freedom.

TABLE V

Exp.	E	L	H	$\mathrm{T}_{\mathbf{1}}$	T_{2}	α
Isot.	56%	0.001%	0.06%	0.46%	14.5%	24%
α	66%	0.001%	0.03%	0.16%	14.0%	
$\mathrm{~T}_{2}$	29%	0.008%	2.4%	12.5%		
$\mathrm{~T}_{1}$	8.5%	2.7%	61.5%			
H	12.5%	16%				
I	0.04%					

We see that experiment L is incompatible with \mathbb{T}_{2}, E and hardly compatible with T_{1}, and thus must be discarded. We see also that experiments T_{2} and E are the only ones which are compatible with isotropy, and with the α distribution.

As we wish to analise if the anisotropy is due to a genuine physical effect or if it may have been originated from some uncorrected bias in the experiments, we first combine the two experiments which are more sure to be free of such biases, that is, experiments T_{2} and E.

As pointed out in reference (${ }^{6}$) the greatest danger of loss coneerns $\pi-\mu$ decays with small projected $\pi-\mu$ angles, leading to smaller X_{1} value.

This loss may not be completely corrected for by the double scanning procedure and the uncorrected loss may be larger then the estimation made in reference (${ }^{5}$). Such a loss is significant in the $\pi-\mu$ vertex scanning, say for the L and H experiments as in these ca ses if a $\pi-\mu$ vertex was taken as a μ meson it is lost. In the other experiments it may be found when we return 600μ back from the μ-end. A strong indication that the double scan ning procedure analised in reference (${ }^{5}$) did not correct all bias losses in L and H comes from the fact that the "corrected" results of experiment L are, as indicated in Tavle V not compatible with experiment T_{2} and hardly compatible with experiment T_{1} of the same wor kers. In the same way H is not compatible (') with T_{2}.

It was shown in $\left({ }^{5}\right)$ that in the T_{2} experiment the loss was smaller than 1% of the total $\pi-\mu$ decays. This is also true for the E experiment, as in both only μ^{\prime} 's completely contained in the same plate were accepted. However for the T_{1} experiment, where $\mu^{\prime} s$ leaving the plate were accepted and followed, the analysis of (${ }^{5}$) is not applicable as the grain oounting results for flat μ-meson cannot be extrapolated to the steeper ones of this experiment.

Thus we find no justification for taking T_{1} in the same foot as $T_{2}\left({ }^{10}\right)$. On the contrary $T i$ is more compatible with H, although the methods are completely different. Thus we separately combine the results of T_{2} and E (29% probability of compatibility) and the results of H and T_{1} (61.5% probability of compatibility). Table VI gives the probabilities for compatibility of those results among themselves, with isotropy and with α difstribution, obtained from the values of χ^{2} for three degrees of freedom.

TABLE VI

Exp.	Isotropy	α	$H+T_{1}$	H	T_{1}
$E+T_{2}$	31%	35%	1%	3%	7%
$H+T_{1}$	$<0.001 \%$	$<0.001 \%$			

Table VII gives the values of b, d and a coefficients for the several cases. We should mention that coefficient a^{\prime} was introduced to characterize the lack of events in X_{1} interval; the faotor $2 / \sqrt{3}$ was chosen to make the error in a of the same order as tho se in \underline{b} and \underline{d}.
$\Delta \mathrm{b}, \Delta \mathrm{d}$ and $\Delta \mathrm{a}$ given in Table VII are the differences of b, d and a of considered cases and those of $E+T_{2}$.

TABLE VII

Exp.	$\mathrm{b} \times 10^{3}$	$\mathrm{~d} \times 10^{3}$	$\mathrm{a} \times 10^{3}$	$\Delta \mathrm{~b} \times 10^{3}$	$\Delta \mathrm{~d} \times 10^{3}$	$\Delta \mathrm{a} \times 10^{3}$
$\mathrm{E}+\mathrm{T}_{2}$	$+2 \pm 32$	-34 ± 32	$+10 \pm 33$	--	--	-
$\mathrm{H}+\mathrm{T}_{4}$	-113 ± 29	-110 ± 29	-124 ± 28	115 ± 43	76 ± 43	134 ± 43
H	-95 ± 38	-124 ± 38	-134 ± 36	97 ± 50	90 ± 50	144 ± 49
$\mathrm{~T}_{\mathbf{1}}$	-143 ± 48	-88 ± 48	-108 ± 46	145 ± 58	54 ± 58	118 ± 57

We see from Table VI and VII that the combination $H+T_{1}$ is not compatible with $\mathrm{E}+\mathrm{T}_{\mathrm{g}}$, not only because the probability of compatibility obtained from X^{2} is $\simeq 1 \%$ but also because $\Delta \mathrm{a}$ and $\Delta \mathrm{b}$ are respectively 3.1 and 2.7 standard deviations.

As for H and T_{1} separately which have a small probability of compatible with $E+T_{2}$ beoause Δ_{a} for H and Δb for T_{1} are respectively 2.9 and 2.5 standard deviations.

We thus conolude that it is not satisfactory to combine either H or T_{1} with $E+T_{2}$, T_{2} and E being the only experiments on this stack which are surely free of bias.

CONCLUSIONS

If we accept the conclusion of the previous section we must use only $T_{2}+E$ as the result of the analysis of $\pi-\mu$ decay angular distribution for the stack under consideration. Thus we come to the conclusion that these results ($T_{2}+E$) are in good agreement with isotropy as seen from Table VI and from values of a, b and d in Table VII. The agra ement of $\mathrm{T}_{2}+E$ with the α distribution in the same stack, which should be isotropic, is also shown in Table VI. These results ($E+T_{2}$) are now compatible with the μ-distributron obtained in reference (${ }^{1}$) (40% probability from χ^{2} with three degrees of freedom) which was in good agreement with isotropy. But now the question is raised of why the resuits of (${ }^{1}$), with $\pi-\mu$ vertex scanning, corrected for scanning efficiency, should be more reliable then those of L and H. The losses with this method depend on the train ing of the scanners, the rapidity of the scanning, the conditions of the development of the stack, type of emulsion, optical equipment used and on the awareness of the scan ners that they may loose a certain kind of events. Thus it is possible that some of these factors are responsible for the increasing isotropy in the succession of experiments L, H and of reference (${ }^{1}$).

Summing up our conclusions we may state that

1) The results of the Hulubei stacks (${ }^{5}$) indicate there is some residual uncorreoted bias for experiments L, H, T_{1}, that make them not compatible with experiment $T_{2}+E$ which is free of bias.
2) The results of experiment $E+T_{2}$, which seems to be safe part of the scanning of this stack, are in good agreement with isotropy and with the μ-distribution of reference (${ }^{1}$).

Therefore there is no remaining indication of anisotropy in $\pi-\mu$ decay in such ex periments and no need to appeal to unknown differences in the $\pi-\mu$ history to explain die ferent forms of angular distributions.

ACKNOWLEDGMENTS

We are indebted to Professor G. Fidecaro for the hospitality offered to us at the Istituto Nazionale di Fisica Nucleare, Università di Trieste, where most of this work was made, to Professor J. Tiomno for helpful discussions and obtention of results mentioned in the text (${ }^{8}$) and to Miss Lelé Ribeiro Gil, Miss Regina Célia Correia and Mr. An tonic Mansutti for technical help.

REFERENCES

(${ }^{1}$) H. Hulubei, E.M. Friedländer, R. Nitu and T. Viskys Phys. Rev. 139, B 729 (1965)
${ }^{2}$) H. Hulubei, J. Ausländer, E. Balea, E. Friedländer and S. Titeicas Proc. Second Int. Conf. Peaceful Uses of Atomic Energy 30, 276 (1958)
(${ }^{3}$) H. Hulubei, J. Ausländer, E. Friedländer and S. Titeicas International Working Meeting on Cosmic Rays, Bucharest, p. 130 (1959)
(4) H. Hulubei, J. Ausländer, E. Friedländer and S. Titeicå Soviet Phys. JFPT 15, 210 (1962)
(${ }^{5}$) H. Hulubei, J.S. Ausländer, E.M. Friedländer and S. Titeicas Phys. Rev. 129, 2789 (1963)
(${ }^{6}$) E. Frota-Pessoa and N. Margems SuppI. N. Cimento, n. 1, 21, serie X, 48 (1961)
${ }^{7}{ }^{7}$) E. Frota-Pessoa and N. Margems Anais Acad.Brasileira de Cienc., 35, 165 (1963)
${ }^{8}$) J. Tiomno - private communication
${ }^{9}$) Not only the probability for compatibility of H and T_{2} from χ^{2} is near 2.4% but the difference of their a-values (Table II) is 2.9 standard deviations.
(${ }^{10}$) Experiment T of reference (${ }^{1}$) is the combination of T_{1} and T_{2}. These however, although having a probability for compatibility from χ^{2} of 12.5%, have coefficients a differing by 2.3 standard deviations (Table III).

[^0]: *) On leave of absence from Centro Brasileiro de Pesquisas Fisicas and Faculdade de FiIosofia, U.F.R.J., Rio de Janeiro.

