Istituto Nazionale di Fisica Nucleare
Sezione di Milano

INFN/AE-67/2
24 Febbraio 1967
V. Berzi ${ }^{(\mathrm{x})}$ and E . Recami ${ }^{(0)}$: A MODEL FOR pp ANNIHILATION IN FLIGHT WITH MULTIPION PRODUCTION ${ }^{(+)}$. -

SUMMARY -

In this work we deal with a "nucleon-exchange" model for $\mathrm{p} \overline{\mathrm{p}}$ anni hilation in flight into pions. The aim of the model is to explain the observe \bar{d} fact that, in the C.M. system, charged mesons seem to prefer the direction of the nucleon of equal charge.

As suggested by $\mathrm{S} . \operatorname{Minami}{ }^{(9)}$, it is assumed that a virtual annihilation, with multipion production (treated in the spirit of the statistical model), be preceded by a peripheral emission of one pion both by nucleon and antinucleon.

We have taken into proper account the conditions that Lorentz and isospin invariances impose on the structure both of the contributions of the pe ripheral-emission vertices, and of the virtual-annihilation amplitude.

A final formula for π^{+}(or π^{-}) angular distribution is given. With the help of some physical simplifying considerations, this formula is reduced to a numerically evaluable one (by using some phase-space techniques), and the results are compared with the available experimental data at the entering labora tory-momenta of $1.6 \mathrm{Gev} / \mathrm{c}, 3.3 \mathrm{GeV} / \mathrm{c}$ and $5.7 \mathrm{GeV} / \mathrm{c}$.

Despite of the fact that our model neglects resonance production, a satisfactory enough accord has beenfound. Some Appendices conclude this work.
(x) - Istituto di Scienze Fisiche dell'Università di Milano, Milano, Italy and Istituto Nazionale di Fisica Nucleare, Sezione di Milano.
(o) - Istituto di Scienze Fisiche dell'Università di Milano, Milano, Italy and Scuola di Perfezionamento in Fisica Atomica e Nucleare dell'Università di Milano.
(+) - Work partially supported by the "Consiglio Nazionale delle Ricerche" and by the "Ministero della Pubblica Istruzione".

1 - INTRODUCTION -

Recently it has been observed that the charged mesons emitted from annihilation in flight of antiprotons, with a laboratory momentum of a few $\mathrm{GeV} / \mathrm{c}$, have a rather definite orientation with respect to the in coming particles $(1,2)$: negatively charged mesons prefer small CM angles with the antiproton momentum direction; positively charged mesons prefer large ones ${ }^{(3)}$. That is to say, charged mesons from $\mathrm{p} \overline{\mathrm{p}}$ annihilation in flight seem to prefer the direction of the nucleon of equal charge, in contrast with a purely statistical model.

A mechanism for producing angular asymmetries of annihilation mesons is easily estabilished in the Koba-Takeda model $(5,6)$. In this model, the $\mathrm{p} \overline{\mathrm{p}}$ annihilation is considered to proceed via a "core" annihilation (treated for instance according to the statistical theory), coupled to the dispersion of the pion clouds without further interactions.

Thus, in $\mathrm{p} \overline{\mathrm{p}}$ annihilation, the proton cloud, in which positive char ge dominates(7), continues its forward flight in the global center-of-mass, as the antiproton cloud does, in which negative charge dominates.

For a quantitative treatment, one might assume that cloud mesons are emitted isotropically in the rest-frame of their mother nucleon. But Pilkuhn(8) observed that the statistical "core"-annihilation probability becomes then a complicated function of the CM angles and momenta of the cloud mesons, which is difficult to calculate numerically.

Therefore Pilkuhn tried ${ }^{(8)}$ to obtain the asymmetries working with a "pole model", one pole being associated to a peripheral emission of one meson (see fig. 1, where it is illustrated the case with one "peripheral" meson). His conclusions were against the assumption of exactly one pole

FIG. 1 - Graphs of the "pole model", as considered by H. Pilkuhn ${ }^{(8)}$.

FIG. 2 - Our model for $\mathrm{p} \overline{\mathrm{p}} \rightarrow 5 \pi$.
for all π-multiplicities, and they were doubtful about the case of postulating exactly two poles for all multiplicities.

Recently Minami ${ }^{(9)}$ proposed that the $p \bar{p}$ annihilation be dominated by a graph with two internal nucleon-lines (as in fig. 2). Thus, here we consider a model, in which a virtual annihilation, with statistical (10) multipion production, is preceded by a peripheral symmetric emission of one pion by both nucleon and antinucleon. Roughly, a priori one expects that this "peripheroid" model explain qua litatively the main physical characteristics of the pionic CM angular distributions in $\mathrm{p} \overline{\mathrm{p}}$ annihilation, expecially if one bears in mind the experimental observation that the F / B asymmetry increases as the to tal energy increases and as the pion mul tiplicity decreases. Moreover, for every multiplicity, both the anisotropy and the asymmetry in the angular distribution of the charged pions are experimentally due mainly to the pions emitted with greater impulse.

In particular ${ }^{(11)}$, for $\mathrm{pp} \rightarrow 5 \pi$, the model assumes the diagram of fig. 2 .

It was tempting to analize carefully the consequence of the model, taking into account all kinematic coefficients and spin and isospin factors. Ob viously our model, in this version, does not consider resonance production.

2-GENERAL FORMULATION OF THE MODEL -

We consider in this work the particular process:

$$
\begin{equation*}
\mathrm{p} \overline{\mathrm{p}} \rightarrow \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0}, \tag{1}
\end{equation*}
$$

for which good experimental information (i.e. a good statistics) is available $^{(1,12,13,14,15)}$. We want to study the contributions to the transition ma trix elements ($T \equiv S-1$), for this process, arising from graphs with the same structure of the one of fig. 2 .

In fig. 2 the tetravectors $\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}, \mathrm{~K}_{4}, \mathrm{~K}_{5}$ are the fourmomenta of the corresponding (entering or outgoing) particles, while the
4.
$\alpha_{i}(i=1, \ldots, 5)$ indices, which can assume the values $\pm 1,0$, determine the charge state of the outgoing pions. Obviously:

$$
\begin{equation*}
\sum_{i=1}^{5} \alpha_{i}=0 \tag{2}
\end{equation*}
$$

The two internal lines of the graphs refer to virtual nucleons with fourmomenta $q_{1}=p_{1}-K_{1}$ and $q_{2}=K_{5}-p_{2}$ and with the third component of isospin equal to ρ and σ. The ρ and σ may assume the values $\pm 1 / 2$ and result univocally determined if we fix α_{1} and α_{5}, owing to charge conservation. With those no tations, the contribution to the T-matrix element from the graph of fig. 2 can be written:

$$
\begin{equation*}
\langle\mathrm{f}| \mathrm{T}|\mathrm{i}\rangle=\delta^{(4)}\left(\mathrm{P}_{\mathrm{f}}-\mathrm{P}_{\mathrm{i}}\right) \cdot \mathrm{M}_{\mathrm{fi}} \tag{3}
\end{equation*}
$$

where, applying the standard rules, one obtains ${ }^{(16)}$:
(4)

$$
M_{f i}=-\frac{m}{(2 \pi)^{21 / 2}} \cdot \frac{\mathrm{G}_{\alpha_{1}} \mathrm{G}_{\alpha_{5}}}{\left[32 \mathrm{p}_{1_{\mathrm{o}}} \mathrm{p}_{2_{\mathrm{o}}} \mathrm{~K}_{1_{\mathrm{o}}} \mathrm{~K}_{2_{\mathrm{o}}} \mathrm{~K}_{3_{\mathrm{o}}} \mathrm{~K}_{4_{\mathrm{o}}} \mathrm{~K}_{5}\right]^{1 / 2}}
$$

$$
\cdot \tilde{v}\left(\overrightarrow{p_{2}}\right) \gamma_{5} \frac{\gamma \cdot q_{2}+m}{q_{2}^{2}-m^{2}} A^{\alpha / \rho \sigma}\left(q_{1} q_{2} K\right) \frac{\gamma \cdot q_{1}+m}{q_{1}^{2}-m^{2}} \gamma_{5} w\left(\overrightarrow{p_{1}}\right)
$$

In formula (4):
a) $-G_{+1}=\sqrt{2} G ; G_{o}=G, G$ being the $\left(p p \pi^{0}\right)$ coupling constant ${ }^{(17)}$.
b) $-m$ is the nucleon mass.
c) $-\mathrm{w}\left(\overrightarrow{\mathrm{p}}_{1}\right)$ is a positive-energy spinor with momentum $\overrightarrow{\mathrm{p}}_{1}$ and $\mathrm{v}\left(\overrightarrow{\mathrm{p}_{2}}\right)$ is a ne-gative-energy spinor with momentum $-\overrightarrow{p_{2}}$, satisfying the equations:
$\left.\left(\mathscr{y} \cdot \mathrm{p}_{1}-\mathrm{m}\right) \mathrm{w}\left(\overrightarrow{\mathrm{p}_{1}}\right)=\left(\mathscr{\gamma} \cdot \mathrm{p}_{2}\right)+\mathrm{m}\right) \mathrm{v}\left(\overrightarrow{\mathrm{p}_{2}}\right)=0$; the adopted normalization is: $\overrightarrow{\mathrm{w}}\left(\overrightarrow{\mathrm{p}_{1}}\right)$ $\mathrm{w}\left(\overrightarrow{\mathrm{p}_{1}}\right)=1$, and $\widetilde{\mathrm{v}}\left(\overrightarrow{\mathrm{p}_{2}}\right) \mathrm{v}\left(\overrightarrow{\mathrm{p}_{2}}\right)=-1$; the elicity indices are understood.
d) $-\alpha \equiv\left(\alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ and $K \equiv\left(K_{2}, K_{3}, K_{4}\right)$.
e) $-A^{\alpha / \rho \sigma}\left(\mathrm{q}_{1} \mathrm{q}_{2} \mathrm{~K}\right)$ is a 4×4 matrix in the Dirac-spinor space, and has the proper Lorentz and isospace transformation properties.
Bearing in mind that the intrinsic parity of a π is -1 , the Lorentz structure of \mathcal{A} is assumed to be the following one:

$$
\begin{equation*}
A^{\alpha / \rho \sigma}\left(\mathrm{q}_{1} \mathrm{q}_{2} \mathrm{~K}\right)=\gamma_{5} A^{\alpha / \rho \sigma}\left(\mathrm{q}_{1} \mathrm{q}_{2} \mathrm{~K}\right), \tag{5}
\end{equation*}
$$

where $A^{\alpha / \rho \sigma}\left(q_{1} q_{2} K\right)$ is a Lorentz scalar.
Keeping into account its transformation properties for isorotation, we can write:(see fig. 3):

$$
\begin{equation*}
A^{\alpha / \rho \sigma}\left(q_{1} q_{2} K\right)=\sum_{0}^{1} \nu, T{ }_{T}\langle\alpha \mid T, \nu\rangle A^{T, \nu}\left(q_{1} q_{2} K\right)\langle T \mid \rho,-\sigma\rangle \tag{6}
\end{equation*}
$$

The $\langle\rho, 5 \mid T\rangle$ and $\langle\alpha \mid T, \nu\rangle$ are the coefficients of the decomposition into eighenstates of total isospin T and its third component (which is not explicitly written), respectively for a state formed by two particles with isospin $1 / 2$ and third components $\rho,-\sigma$, and for a state formed by three particles with isospin 1 and third components $\alpha_{2}, \alpha_{3}, \alpha_{4}$.

It is well known that in the second case the total isotopic spin and its $3^{r d}$ component are not enough to single out the decomposition terms, and it is necessary to introduce a third quantum number ν, that appears in formula (6).

At this point, as more detailed dynamic informations are lacking, we set down the "statistical" $(18,23)$ hypothesis that $A^{T}, \nu\left(q_{1} q_{2} K\right)$ be independent of all those variables on which a priori it should depend, writing:

$$
\begin{equation*}
\left|A^{T, \nu}\left(q_{1} q_{2} K\right)\right|^{2}=\Lambda^{4} \tag{7}
\end{equation*}
$$

where Λ is a constant, with the dimensions of a lenght, which -if one takes the model seriously-will result to be, e.g. , about 8 fm for an entering labo ratory momentum of $5.7 \mathrm{GeV} / \mathrm{c}$. (Actually, as we do not concern ourselves with different-multiplicity processes, the Λ-parameter introduction is not strictly necessary). With our assumptions, we get:

$$
\begin{equation*}
\left|A^{\alpha / \rho \sigma}\left(q_{1} q_{2} K\right)\right|^{2}=\Lambda^{4} I_{\rho,-\sigma}^{\alpha} \quad+\text { interferential terms } \tag{8}
\end{equation*}
$$

having set:

$$
\begin{equation*}
\mathrm{I}_{\rho,-\sigma}^{\alpha}=\left.\sum_{\nu, \mathrm{T}}\langle\alpha \mid \mathrm{T}, \nu\rangle\right|^{2}|\langle\mathrm{~T} \mid \rho,-\sigma\rangle|^{2} \tag{9}
\end{equation*}
$$

Let us consider the reaction:

$$
\begin{equation*}
\mathrm{p}\left(\mathrm{p}_{1}\right)+\overline{\mathrm{p}}\left(\mathrm{p}_{2}\right) \rightarrow \pi\left(\mathrm{K}_{1} \alpha_{1}\right)+\pi\left(\mathrm{K}_{2} \alpha_{2}\right)+\pi\left(\mathrm{K}_{3} \alpha_{3}\right)+\pi\left(\mathrm{K}_{4} \alpha_{4}\right)+\pi\left(\mathrm{K}_{5} \alpha_{5}\right) ; \tag{10}
\end{equation*}
$$

the contribution of the graph of fig. 2 to the differential cross-sections, averaged on the entering nucleon helicities, is given, if we neglect the interference terms in (8), by
6.

$$
\mathrm{d} \epsilon=\Lambda^{4} \cdot \frac{\mathrm{G}_{\alpha_{1}}^{2} \mathrm{G}_{\alpha_{5}}^{2}}{(2 \pi)^{19}} \cdot \frac{\mathrm{~m}^{2} \delta^{(4)}\left(\mathrm{p}_{1}+\mathrm{p}_{2}-\sum_{i=1}^{5} \mathrm{~K}_{\mathrm{i}}\right)}{\left[\left(\mathrm{p}_{1} \cdot \mathrm{p}_{2}\right)^{2}-\mathrm{m}^{4}\right]^{1 / 2}}
$$

(11)

$$
\begin{aligned}
& \left.\frac{\mathrm{I}_{\rho,-\sigma}^{\alpha}}{\left(\mathrm{q}_{1}^{2}-\mathrm{m}^{2}\right)^{2}\left(\mathrm{q}_{2}^{2}-\mathrm{m}^{2}\right)^{2}} \cdot \frac{1}{4} \sum_{\text {(helicities) }} \right\rvert\, \tilde{\mathrm{v}}\left(\overrightarrow{\mathrm{p}}_{2}\right) \gamma_{5}\left(\gamma \cdot \mathrm{q}_{2}+\mathrm{m}\right) \cdot \\
& \left.\cdot \gamma_{5}\left(\gamma \cdot \mathrm{q}_{1}+\mathrm{m}\right) \gamma_{5} \mathrm{w}\left(\overrightarrow{\mathrm{p}}_{1}\right)\right|^{2} \frac{\mathrm{~d} \overrightarrow{\mathrm{~K}}_{1}}{2 \mathrm{~K}_{1_{\mathrm{o}}}} \frac{\mathrm{~d} \overrightarrow{\mathrm{~K}}_{2}}{2 \mathrm{~K}_{2_{\mathrm{o}}}} \frac{\mathrm{~d} \overrightarrow{\mathrm{~K}}_{3}}{2 \mathrm{~K}_{3_{\mathrm{o}}}} \frac{\mathrm{~d} \overrightarrow{\mathrm{~K}}_{4}}{2 \mathrm{~K}_{4_{\mathrm{o}}}} \frac{\mathrm{dK}_{5}}{2 \mathrm{~K}_{5_{\mathrm{o}}}}
\end{aligned}
$$

We find easily ${ }^{(19)}$:

$$
\frac{1}{4} \sum_{\text {(helicities) }}\left|\tilde{v}\left(\vec{p}_{2}\right) \gamma_{5}\left(\gamma \cdot q_{2}+m\right) \gamma_{5}\left(\gamma \cdot q_{1}+m\right) \gamma_{5} w\left(\vec{p}_{1}\right)\right|^{2}=
$$

$$
\begin{align*}
& =\frac{1}{16 \mathrm{~m}^{2}} \cdot \operatorname{Tr}\left\{\left(\gamma \cdot \mathrm{q}_{2}-\mathrm{m}\right)\left(\gamma \cdot \mathrm{q}_{1}+\mathrm{m}\right)\left(\gamma \cdot \mathrm{p}_{2}+\mathrm{m}\right)\left(\gamma \cdot \mathrm{q}_{2}+\mathrm{m}\right)\right. \tag{12}\\
& \left.\cdot\left(\gamma \cdot \mathrm{q}_{1}-\mathrm{m}\right)\left(\gamma \cdot \mathrm{p}_{1}+\mathrm{m}\right)\right\}=\frac{1}{16 \mathrm{~m}^{2}} \cdot \mathrm{~F}\left(\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{~K}_{1} \mathrm{~K}_{5}\right)
\end{align*}
$$

The explicit trace expression is:

$$
\begin{aligned}
\mathrm{F}\left(\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{~K}_{1} \mathrm{~K}_{5}\right) & =4\left\{\mathrm{~m}^{6}+\mathrm{m}^{4}\left(\mathrm{p}_{1} \cdot \mathrm{p}_{2}-\mathrm{q}_{1}^{2}-q_{2}^{2}\right)+\mathrm{m}^{2}\left[2 (\mathrm { q } _ { 1 } \cdot q _ { 2 }) \cdot \left(q_{1} q_{2}-2 p_{1} \cdot p_{2}-p_{1} \cdot q_{1}-\right.\right.\right. \\
& \left.-p_{1} \cdot q_{2}+p_{2} \cdot q_{1}+p_{2} \cdot q_{2}\right)-2\left(p_{1} \cdot q_{1}-p_{1} \cdot q_{2}\right)\left(p_{2} \cdot q_{1}-p_{2} \cdot q_{2}\right)+q_{1}^{2}\left(p_{1} \cdot p_{2}-\right. \\
& \left.\left.-2 p_{2} \cdot q_{2}\right)+q_{2}^{2}\left(p_{1} \cdot p_{2}+2 p_{1} \cdot q_{1}-2 p_{2} \cdot q_{1}-q_{1}^{2}\right)\right]-2\left(p_{1} \cdot q_{1}\right)\left(q_{1} \cdot q_{2}\right)\left(p_{1} \cdot q_{2}+\right. \\
& \left.+p_{2} \cdot q_{2}\right)+2 q_{1}^{2}\left(p_{1} \cdot q_{2}\right)\left(p_{2} \cdot q_{2}\right)+2 q_{2}^{2}\left(p_{1} \cdot q_{1}\right)\left(p_{2} \cdot q_{1}\right)+2\left(p_{1} \cdot p_{2}\right)\left(q_{1} \cdot q_{2}\right)^{2}- \\
& \left.-q_{1}^{2} q_{2}^{2}\left(p_{1} \cdot p_{2}\right)\right\} .
\end{aligned}
$$

Some details of this evaluation are given in APPENDIX B, while in APPENDIX A we give the meaning of the invariants one meets with in this trace calculation.

If we put:

$$
G(1,5) \equiv G\left(p_{1} p_{2} K_{1} K_{5}\right) \equiv \frac{F\left(p_{1} p_{2} K_{1} K_{5}\right)}{\left(q_{1}^{2}-m^{2}\right)^{2}\left(q_{2}^{2}-m^{2}\right)^{2}}
$$

where $q_{1}=p_{1}-K_{1}$ and $q_{2}=K_{5}-p_{2}$, we get:

$$
\begin{equation*}
\mathrm{d} \sigma=\Lambda^{4} \frac{\mathrm{G}_{\alpha_{1}}^{2} \mathrm{G}_{\alpha_{5}}^{2}}{16(2 \pi)^{19}} \cdot \frac{\mathrm{G}(1,5) \mathrm{I}_{\rho_{1}-\sigma}^{\alpha}}{\sqrt{\left(\mathrm{p}_{1} \cdot \mathrm{p}_{2}\right)^{2}-\mathrm{m}^{4}}} \cdot \delta^{(4)}\left(\mathrm{p}_{1}+\mathrm{p}_{2}-\sum_{i=1}^{5} \mathrm{~K}_{\mathrm{i}}\right) \frac{\mathrm{d} \overrightarrow{\mathrm{~K}}_{1}}{2 \mathrm{~K}_{1_{o}}} \cdots \frac{\mathrm{~d} \overrightarrow{\mathrm{~K}}_{5}}{2 \mathrm{~K}_{5_{o}}} \tag{13}
\end{equation*}
$$

Let us now restrict ourselves to reaction (1), that is:

$$
\begin{equation*}
\mathrm{p}\left(\mathrm{p}_{1}\right)+\overline{\mathrm{p}}\left(\mathrm{p}_{2}\right) \rightarrow \pi^{+}\left(\mathrm{K}_{1}\right)+\quad \pi^{+}\left(\mathrm{K}_{2}\right)+\pi^{\mathrm{o}}\left(\mathrm{~K}_{3}\right)+\pi^{-}\left(\mathrm{K}_{4}\right)+\pi^{-}\left(\mathrm{K}_{5}\right), \tag{14}
\end{equation*}
$$

FIG. 3 - The statistical "core" an nihilation here considered. Notethat with our conventions:

$$
\sigma^{\prime}=-\sigma ; \quad q_{2}^{\prime}=-q_{2} .
$$

and consider for that process the contributions of the twelve graphs that one can obtain by exchanging the identical--particle momenta one another in the three diagrams of fig. 4.

With the same procedure used for the diagram of fig. 2 (and with the same approximation), we will evaluate the con tribution of those graphs to the transition rate and to the cross-section.

Then, if we neglect the intereference terms between the various graph contributions, we get, for the differential cross-
-section of reaction (14), the expression:

$$
\begin{aligned}
& \mathrm{d} \boldsymbol{\sigma}=\frac{\Lambda^{4} \mathrm{G}^{4}}{16(2 \pi)^{19}}\left\{\begin{array}{c}
4 \mathrm{I}^{1,0,-1}-\frac{1}{2}, \frac{1}{2}
\end{array}[\mathrm{G}(1,5)+\mathrm{G}(2,5)+\mathrm{G}(1,4)+\mathrm{G}(2,4)]+\right. \\
& +2 \mathrm{I}_{-\frac{1}{2},-\frac{1}{2}}^{1,-1}[2 \mathrm{G}(1,3)+2 \mathrm{G}(2,3)]+2 \mathrm{I}_{\frac{1}{2}, \frac{1}{2}}^{1,1,-1}[2 \mathrm{G}(3,5)+ \\
& +2 \mathrm{G}(3,4)]\} \cdot \frac{\delta^{(4)}\left(\mathrm{p}_{1}+\mathrm{p}_{2}-\sum_{\mathrm{i}=1}^{5} \mathrm{~K}_{\mathrm{i}}\right)}{\sqrt{\left(\mathrm{p}_{1} \cdot \mathrm{p}_{2}\right)^{2}-\mathrm{m}^{4}}} \cdot \frac{\mathrm{dR}_{1}}{2 \mathrm{~K}_{1}} \cdots \frac{\mathrm{dr}_{5}}{2 \mathrm{~K}_{5}},
\end{aligned}
$$

with, in general:

$$
\begin{equation*}
G(j, h) \equiv G\left(p_{1} p_{2} K_{j} K_{h}\right) \equiv \frac{F\left(p_{1} p_{2} K_{j} K_{h}\right)}{\left(q_{1}^{2}-m^{2}\right)\left(q_{2}^{2}-m^{2}\right)} \tag{16}
\end{equation*}
$$

8.

where now $q_{1}=p_{1}-K_{j}$ and $q_{2}=K_{h}-p_{2}$, and with: (20)

$$
\mathrm{I}_{-\frac{1}{2}, \frac{1}{2}}^{1,0,-1}=\frac{1}{6} \cdot \frac{1}{2}+\frac{2}{5} \cdot \frac{1}{2}=\frac{17}{60} ; \quad \mathrm{I}^{1,-1,-1} \underset{-\frac{1}{2},-\frac{1}{2}}{1,}=\frac{I^{\frac{1}{2}}, \frac{1}{2}}{1,-1}=\frac{3}{5} .
$$

Therefore, with our assumptions, if we define:

$$
\begin{align*}
\mathrm{H}\left(\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{~K}_{1} \ldots \mathrm{~K}_{5}\right) & \equiv \frac{17}{15}[\mathrm{G}(1,5)+\mathrm{G}(2,5)+\mathrm{G}(1,4)+\mathrm{G}(2,4)]+ \\
& +\frac{12}{5}[\mathrm{G}(1,3)+\mathrm{G}(2,3)+\mathrm{G}(3,5)+\mathrm{G}(3,4)] \tag{17}
\end{align*}
$$

the C. M. angular distribution of π^{+}(or π^{-}), from reaction (14), as function of the scattering-angle cosine, will be (c being the light velocity):

$$
\frac{1}{c} \cdot \frac{d \sigma^{+}}{d \cos \theta}=\frac{\Lambda_{1}^{4} \mathrm{G}^{4}}{8(2 \pi)^{18}} \cdot\left[s\left(\frac{s}{4}-m^{2}\right)\right]^{-1 / 2} \cdot \int_{-\infty}^{\infty} \frac{\mathrm{d}_{2}}{2 \mathrm{~K}_{2}} \int_{-\infty}^{\infty} \frac{\mathrm{d}_{4}}{2 \mathrm{~K}_{4}} \int_{-\infty} \frac{\mathrm{d}_{5} \overrightarrow{\mathrm{~K}}_{5}}{2 \mathrm{~K}_{5_{\mathrm{o}}}}
$$

(18)

$$
\left.\int_{0}^{\infty} \frac{\mathrm{d}\left|\overrightarrow{\mathrm{~K}}_{1}\right|\left|\overrightarrow{\mathrm{K}}_{1}\right|^{2}}{2 \mathrm{~K}_{1_{o}}} \cdot \frac{\delta\left(\sqrt{s}-\sum_{i=1}^{5} \mathrm{~K}_{\mathrm{i}_{\mathrm{o}}}\right)}{2 \mathrm{~K}_{3_{o}}} \cdot H\left(\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{~K}_{1} \ldots \mathrm{~K}_{5}\right)\right|_{\overrightarrow{\mathrm{K}}_{3}=-\overrightarrow{\mathrm{K}}_{1}-\overrightarrow{\mathrm{K}}_{2}-\overrightarrow{\mathrm{K}}_{4}-\overrightarrow{\mathrm{K}}_{5}}
$$

(a)

(b)

(c)

FIG. 4 - The possible final states for reaction (14). From each dia gram we can get four graphs by exchanging the momenta of the identical particles one another in all possible ways.

3 - NUMERICAL EVALUATION AND COMPARISON WITH EXPERIENCE -
If we put, for every function $G(j, h)$ entering in formula (17):
(19) $\boldsymbol{J}_{j, h}=\int \frac{\mathrm{d}_{2}}{2 \mathrm{~K}_{2}} \int \frac{\mathrm{dr}_{3}}{2 \mathrm{~K}_{3_{\mathrm{o}}}} \int \frac{\overrightarrow{\mathrm{dK}}_{4}}{2 \mathrm{~K}_{4_{\mathrm{o}}}} \int \frac{\overrightarrow{\mathrm{dK}}_{5}}{2 \mathrm{~K}_{5_{\mathrm{o}}}} \mathrm{G}(\mathrm{j}, \mathrm{h}) \delta\left(\sqrt{\mathrm{s}}-\sum_{\mathrm{i}=1}^{5} \mathrm{~K}_{\mathrm{i}_{\mathrm{o}}}\right) \delta^{(3)}\left(\sum_{\mathrm{i}=1}^{5} \overrightarrow{\mathrm{~K}}_{\mathrm{i}}\right)_{\text {, }}$
it is immediate to see that:

$$
J_{1,5}=\Im_{1,4}=\Im_{1,3} \equiv \Im_{1}\left(s,\left|\vec{K}_{1}\right|, \cos \theta_{1}\right) ;
$$

and

$$
J_{2,5}=J_{2,4}=J_{2,3}=J_{3,5}=J_{3,4} \equiv J_{2}\left(s,\left|\overrightarrow{\mathrm{~K}}_{1}\right|, \cos \theta_{1}\right)
$$

Therefore, formula (18) may be rewritten as follows:

$$
\begin{equation*}
\frac{d \sigma^{+}}{d \cos \theta}=\Lambda^{(4)} \cdot \alpha(s) \cdot \int_{0}^{\infty} \frac{\mathrm{d}\left|\overrightarrow{\mathrm{~K}}_{1}\right|\left|\overrightarrow{\mathrm{K}}_{1}\right|^{2}}{2 x} \cdot J\left(s,\left|\overrightarrow{\mathrm{~K}}_{1}\right|, \cos \theta\right) \tag{20}
\end{equation*}
$$

where:
(21)

$$
\left\{\begin{array}{l}
x \triangleq \mathrm{~K}_{1_{o}} ; \cos \theta=\cos \theta_{1} ; \\
\alpha(s)=\frac{\mathrm{G}^{4}}{8(2 \pi)^{18}} \cdot\left[s\left(\frac{s}{4}-\mathrm{m}^{2}\right)\right]^{-1 / 2} \\
J\left(\mathrm{~s},\left|\overrightarrow{\mathrm{~K}}_{1}\right|, \cos \theta\right)=\frac{14}{3} J_{1}+\frac{142}{15} J_{2}
\end{array}\right.
$$

Thus the problem has been reduced to the evaluation of the two integrals $J_{j}(j=1,2)$. One may write, applying the generalized mean-value theorem, that:
(22)

$$
\begin{aligned}
\mathrm{J}_{\mathrm{j}} & =\left.\int \frac{\mathrm{d} \overrightarrow{\mathrm{~K}}_{2}}{2 \mathrm{~K}_{2_{\mathrm{o}}}} \int \frac{\mathrm{~d}_{3}}{2 \mathrm{~K}_{3_{\mathrm{o}}}} \int \frac{\mathrm{~d} \overrightarrow{\mathrm{~K}}_{4}}{2 \mathrm{~K}_{4_{o}}}[\mathrm{G}(\mathrm{j}, 5)]\right|_{\overrightarrow{\mathrm{K}}_{5}=\overrightarrow{\mathrm{K}}_{5}^{(\mathrm{m})}} \int \frac{\mathrm{d} \overrightarrow{\mathrm{~K}}_{5}}{2 \mathrm{~K}_{5_{o}}} . \\
& \cdot \delta\left(\sqrt{\mathrm{s}}-\sum_{\mathrm{i}=1}^{5} \mathrm{~K}_{\mathrm{i}_{\mathrm{o}}}\right) \delta^{(3)}\left(\sum_{\mathrm{i}=1}^{5} \overrightarrow{\mathrm{~K}}_{\mathrm{i}}\right), \quad(\mathrm{j}=1,2)
\end{aligned}
$$

10.

where m stays for mean.
Let us consider firstly the integral \mathcal{J}_{1}. In order to be able to eva luate it numerically, we make the assumption, apparently reasonable on phy sical basis, that (for every fixed K_{1}):

$$
\begin{equation*}
\overrightarrow{\mathrm{K}}_{5}^{(\mathrm{m})}=\overrightarrow{-K}_{1} ; \tag{23}
\end{equation*}
$$

which is equivalent, more in general, to substitute

$$
\begin{equation*}
\vec{q}_{2}=\vec{q}_{2}^{(m)}=\vec{q}_{1} ; \quad q_{2}=q_{2}^{(m)}=-q_{1_{o}} \tag{24}
\end{equation*}
$$

into the function $G(1,5)$ (see also the (1A)). If we put:

then we have:

$$
\begin{equation*}
T_{1}=G(s, x, \cos \theta) R_{4}\left(-\overrightarrow{\mathrm{K}}_{1}, \varepsilon\right) . \tag{26}
\end{equation*}
$$

The four-body "phase-space" (for equal mass particles), R_{4}, can be easily calculated $(21,22)$. Let us set:

$$
\varepsilon_{5} \equiv \sqrt{s} ; \quad \varepsilon_{\mathrm{n}}=\sqrt{\varepsilon_{\mathrm{n}+1}^{2}-2 \mathrm{x}_{\mathrm{n}+1} \varepsilon_{\mathrm{n}+1}+\mu^{2}} ;
$$

$$
\begin{equation*}
(n=2,3,4) \tag{27}
\end{equation*}
$$

$$
x_{5} \equiv x \equiv K_{1_{0}} ; \quad x_{n+1}=\frac{\varepsilon_{n+1}^{2}-\left(n^{2}-1\right) \mu^{2}}{2 \varepsilon_{n+1}}
$$

As R_{4} is Lorentz-invariant, it will be:

$$
\begin{equation*}
R_{4}\left(-\overrightarrow{\mathrm{K}}_{1}, \xi\right)=R_{4}\left(\overrightarrow{0}, \varepsilon_{4}\right) \tag{28}
\end{equation*}
$$

And, using a simple recurrence relation ${ }^{(23)}$, we have ($\mu=$ pion mass):

$$
\begin{equation*}
\mathrm{R}_{4}\left(0, \mathcal{\varepsilon}_{4}\right)=\int \frac{\mathrm{d} \overrightarrow{\mathrm{~K}}}{2 \mathrm{~K}_{\mathrm{o}}} \cdot \theta\left(\mathcal{E}_{3}-3 \mu\right) \cdot \mathrm{R}_{3}\left(0, \mathcal{\varepsilon}_{3}\right)=2 \pi \int_{\mu}^{\mathrm{X}_{4}} \mathrm{dx}_{4} \sqrt{\mathrm{x}_{4}^{2}-\mu^{2}} \mathrm{R}_{3}\left(0, \mathcal{\varepsilon}_{3}\right), \tag{29}
\end{equation*}
$$

where the explicit expression of the Lorentz-invariant three-body "phasespace" (for equal mass particles), R_{3}, is well-known(21):

$$
\begin{equation*}
R_{3}\left(0, \xi_{3}\right)=\pi^{2} \int_{\mu}^{X_{3}} \mathrm{dx}_{3} \sqrt{x_{3}^{2}-\mu^{2}}\left[\frac{\varepsilon_{2}^{2}-4 \mu^{2}}{\varepsilon_{2}^{2}}\right]^{1 / 2} \tag{30}
\end{equation*}
$$

Therefore, we may rewrite the (26) as follows:

$$
\begin{equation*}
T_{1}=2 \pi^{3} G(s, x, \cos \theta) \int_{\mu}^{x_{4}} d x_{4} \sqrt{x_{4}^{2}-\mu^{2}} \int_{\mu}^{X_{3}} d x_{3} \sqrt{x_{3}^{2}-\mu^{2}}\left[\frac{\varepsilon_{2}^{2}-4 \mu^{2}}{\varepsilon_{2}^{2}}\right]^{1 / 2} \tag{31}
\end{equation*}
$$

and we get in conclusion:

$$
\begin{align*}
I_{1}(s, \cos \theta) & =\frac{7}{3} \cdot \alpha(s) \cdot \int_{0}^{\infty} d x_{5} \sqrt{x_{5}^{2}-\mu^{2}} \cdot \theta\left(x_{5}-\mu\right) \cdot \theta\left(\mathcal{E}_{4}-4 \mu\right) \cdot J_{1}(s, x, \cos \theta)= \\
& =\frac{7}{3} \cdot \alpha(s) \cdot \int_{\mu}^{X_{5}} d x_{5} \sqrt{x_{5}^{2}-\mu^{2}} J_{1}(s, x, \cos \theta) . \tag{32}
\end{align*}
$$

Considering now the integral J_{2} of formula (22), we could proceed as we did for \mathcal{J}_{1}, assuming in this case:

$$
\begin{equation*}
\overrightarrow{\mathrm{K}}_{5}^{(\mathrm{m})}=-\overrightarrow{\mathrm{K}}_{2}, \tag{33}
\end{equation*}
$$

that is to say, more in general, effecting the substitution (24), for every fixed q_{1}, into the function $\mathrm{G}(2,5)$.
But, as J_{2} relates to the charged pions emitted in the virtual "core" annihilation, one may reasonably assume that it depend only weakly on the direc tion of $\overrightarrow{\mathrm{K}}_{1}$, thus supplying a quasi-isotropic contribution to the charged-pion distribution. We do not make any attempt to evaluate such a "background", but we keep it as an additive fitting-parameter, depending only on the total energy $\sqrt{\mathrm{s}}$.

In conclusion, one obtains the following final formula for the char ged-pion distribution from reaction (14):
12.

$$
\begin{equation*}
\frac{d \sigma}{d \cos \theta}=\Lambda^{4} \cdot I_{1}(s, \cos \theta)+Z(s) \tag{35}
\end{equation*}
$$

The comparison with experimental data has been done for 1.6 $\mathrm{GeV} / \mathrm{c}^{(1)}, 3.3 \mathrm{GeV} / \mathrm{c}^{(13)}$ and $5.7 \mathrm{GeV} / \mathrm{c}^{(14)}$ laboratory-momenta, using an IBM-7040 elaborator.

It is shown in fig. 5 . The best fit has been obtained with quite rea sonable $(18,23,24) \Lambda$-values: namely, e.g., $\Lambda=(13.9 \pm 0.5) \mathrm{fm}$ for $3.3 \mathrm{GeV} / \mathrm{c}$, and $\Lambda=(7.8 \pm 0.3) \mathrm{fm}$ for $5.7 \mathrm{GeV} / \mathrm{c}$. The accord between the theoretical li nes, normalized to the charged-pion numbers, and the experimental hystograms $(1,13,14)$ is satisfactory enough, except for the backward "tail", which appears at the higher momenta, i.e. at 3.3 and $5.7 \mathrm{GeV} / \mathrm{c}$.

Our model does not keep into account the production of resonances, that seem to appear largely in the more recent data, for the pion-multiplicity here considered (expecially the ρ, which enters very abundantly). A natu ral modification of the model would be the one represented in fig. 6. But we believe - as it may be argued also a priori - that the CM distributions of the charged pions would not be substancially affected by this change. On the contrary, the aforementioned "backward tail" could possibly be obtained conside

FIG. 6 - A natural modification of the model. We believe that the C.M. charged-pion distributions would not be af fected substantially by this changement. Here N means Nucleon.

FIG. 7 - Another proposed "model", whose contribution at high energies could possibly explain the "backward tail" we can observe in the charged pion distributions (see in particular fig. 5).
ring also graphs of the type of the ones one gets from fig. 1, substituting a peripheral ρ-emission vertex to the one-pion vertex (see fig. 7). Finally another model, similar with the one shown in fig. 6 but with only one "peripheral" vertex, has been proposed very recently in ref. (14).

AKNOWLEDGEMENTS

We are greatly indebted to prof. P. Caldirola, for his kind interest, and to prof. F. Duimio, prof. E. Montaldi and prof. S. Ratti for some hel pful discussions. We express our gratitude also to Dr. A. Airoldi, for her help in numerical computations, and to Dr. V. Pelosi, who first suggested to us this model.

_APPENDICES

APPENDIX A -

The kinematics of interest for reaction (14), in the global CM system, is the following one.

$$
\begin{gathered}
\overrightarrow{\mathrm{p}}_{1}=-\overrightarrow{\mathrm{p}}_{2} ; \mathrm{p}_{1}=\mathrm{p}_{2} \equiv \mathrm{p}_{\mathrm{o}} ; \mathrm{p}_{1}^{2}=\mathrm{p}_{2}^{2} \equiv \mathrm{p}^{2}=\mathrm{m}^{2} ; \\
\mathrm{p}_{1}+\mathrm{p}_{2}=\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}+\mathrm{K}_{4}+\mathrm{K}_{5} .
\end{gathered}
$$

By definition (see fig. 2):

$$
\begin{gathered}
\mathrm{q}_{1}=\mathrm{p}_{1}-\mathrm{K}_{1} ; \quad \mathrm{q}_{2}=\mathrm{K}_{5}-\mathrm{p}_{2} ; \\
\left|\overrightarrow{\mathrm{p}}_{1}\right|=\left|\overrightarrow{\mathrm{p}}_{2}\right| \equiv|\overrightarrow{\mathrm{p}}| \equiv \mathrm{P} .
\end{gathered}
$$

Limiting ourselves to the diagram of fig. 4a, we can choose the variables:

$$
\begin{aligned}
& \mathrm{s} \equiv\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right)^{2}=4 \mathrm{p}_{\mathrm{o}}^{2} ; \\
& \mathrm{E}_{1} \equiv \mathrm{x} \equiv \mathrm{~K}_{1_{\mathrm{o}}} ; \mathrm{E}_{5} \equiv \mathrm{~K}_{5_{\mathrm{o}}} ; \\
& \mathrm{Q}^{2}=\left(\mathrm{K}_{1}+\mathrm{K}_{5}\right)^{2} ; \\
& \theta_{1}, \theta_{5}: \begin{array}{l}
\text { scattering angles of pions } 1 \text { and } 5 \text { relati- } \\
\quad \text { ve to the entering antiproton direction. }
\end{array}
\end{aligned}
$$

Then we get:

$$
\begin{aligned}
& \sqrt{\mathrm{s}-4 \mathrm{~m}^{2}}=2 \mathrm{P} ; \quad 2 \sqrt{\overrightarrow{\mathrm{p}}^{2}+\mathrm{m}^{2}}=\sqrt{\mathrm{s}} ; \\
& \left|\overrightarrow{\mathrm{K}}_{1}\right|=\sqrt{\mathrm{E}_{1}^{2}-\mu^{2}} ;\left|\overrightarrow{\mathrm{K}}_{5}\right|=\sqrt{\mathrm{E}_{5}^{2}-\mu^{2}} ; \\
& \mathrm{p}_{1} \cdot \mathrm{p}_{2}=\frac{\mathrm{s}}{2}-\mathrm{m}^{2} ; \\
& \mathrm{K}_{1} \cdot p_{1}=\frac{E_{1} \sqrt{\mathrm{~s}}}{2}+\mathrm{P}\left|\overrightarrow{\mathrm{~K}}_{1}\right| \cos \theta_{1} ; \\
& \mathrm{K}_{1} \cdot \mathrm{p}_{2}=\frac{E_{1} \sqrt{\mathrm{~s}}}{2}-\mathrm{P}\left|\overrightarrow{\mathrm{~K}}_{1}\right| \cos \theta_{1} ; \\
& \mathrm{K}_{5} \cdot p_{1}=\frac{E_{5} \sqrt{\mathrm{~s}}}{2}+\mathrm{P}\left|\overrightarrow{\mathrm{~K}}_{5}\right| \cos \theta_{5} ; \\
& \mathrm{K}_{5} \cdot p_{2}=\frac{E_{5} \sqrt{\mathrm{~s}}}{2}-\mathrm{P}\left|\overrightarrow{\mathrm{~K}}_{5}\right| \cos \theta_{5} ;
\end{aligned}
$$

$$
\begin{aligned}
& p_{1} \cdot q_{1}=m^{2}-K_{1} \cdot p_{1} ; \\
& p_{2} \cdot q_{2}=K_{5} \cdot p_{2}-m^{2} ; \\
& p_{1} \cdot q_{2}=K_{5} \cdot p_{1}-p_{1} \cdot p_{2} ; \\
& p_{2} \cdot q_{1}=p_{1} \cdot p_{2}-K_{1} \cdot p_{2} ; \\
& q_{1}^{2}=m^{2}+\mu^{2}-E_{1} \sqrt{s}-2 P\left|\vec{K}_{1}\right| \cos \theta_{1} ; \\
& q_{2}^{2}=m^{2}+\mu^{2}-E_{5} \sqrt{s}+2 P\left|\vec{K}_{5}\right| \cos \theta_{5} ; \\
& q_{1} \cdot q_{2}=\mu^{2}-\frac{Q^{2}}{2}-p_{1} \cdot p_{2}+K_{5} \cdot p_{1}+K_{1} \cdot p_{2}
\end{aligned}
$$

The assumption:

$$
\begin{equation*}
\overrightarrow{\mathrm{q}}_{1}=\overrightarrow{\mathrm{q}}_{2} ; \quad \mathrm{q}_{1_{\mathrm{o}}}=-\mathrm{q}_{2_{\mathrm{o}}} \tag{1A}
\end{equation*}
$$

which is equivalent to set in the present case (see the (23) of the text):

$$
\begin{aligned}
& \overrightarrow{\mathrm{K}}_{5}=-\overrightarrow{\mathrm{K}}_{1} ; \quad \mathrm{E}_{5}=\mathrm{E}_{1} ; \\
& \cos \theta_{5}=-\cos \theta_{1} \\
& \mathrm{Q}^{2}=4 \mathrm{E}_{1}^{2}=4 \mathrm{x}^{2}
\end{aligned}
$$

brings many simplifications.

APPENDIX B -

We want evaluate the spin factor for the first graph (fig. 4a), i. e. :

$$
\frac{1}{4} \sum_{r, s}^{1,2}\left|\tilde{v}^{r}\left(p_{2}\right) O w^{s}\left(p_{1}\right)\right|^{2} \equiv \frac{1}{16 \mathrm{~m}^{2}} \mathrm{~F}\left(\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{~K}_{1} \mathrm{~K}_{5}\right),
$$

with:

$$
0=\gamma_{5}\left(q_{2}+m\right) \gamma_{5}\left(q_{1}+m\right) \gamma_{5}
$$

The proceeding is "classic". The explicit expression of the function F of formula (12) is:

$$
\begin{aligned}
\mathrm{F}\left(\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{~K}_{1} \mathrm{~K}_{5}\right) & =\operatorname{Tr}\left\{\left(q_{2}-\mathrm{m}\right)\left(\phi_{1}+\mathrm{m}\right)\left(\not q_{2}+\mathrm{m}\right)\left(\phi_{2}+\mathrm{m}\right)\left(q_{1}-\mathrm{m}\right)\left(\not q_{1}+\mathrm{m}\right)\right\}= \\
& =\mathrm{T}_{\mathrm{o}}+\mathrm{T}_{2}+\mathrm{T}_{4}+\mathrm{T}_{6} ;
\end{aligned}
$$

16.

where first of all:

$$
\mathrm{T}_{\mathrm{o}}=4 \mathrm{~m}^{6}
$$

Observing that:

$$
\operatorname{Tr} \not A \not \beta=4 \mathrm{~A} \cdot \mathrm{~B},
$$

one then finds:

$$
\mathrm{T}_{2}=4 \mathrm{~m}^{4}\left(\mathrm{p}_{1} \cdot \mathrm{p}_{2}-\mathrm{q}_{1}^{2}-\mathrm{q}_{2}^{2}\right)
$$

Besides, noting that:

$$
\frac{1}{4} \operatorname{Tr} A B \not B \not \subset \not D=(A \cdot B)(C \cdot D)-(A \cdot C)(B \cdot D)+(A \cdot D)(B \cdot C),
$$

one gets:

$$
\begin{aligned}
\mathrm{T}_{4} & =4 \mathrm{~m}^{2}\left[2\left(\mathrm{q}_{1} \cdot \mathrm{q}_{2}\right)\left(\mathrm{q}_{1} \cdot \mathrm{q}_{2}-2 \mathrm{p}_{1} \cdot \mathrm{p}_{2}-\mathrm{p}_{1} \cdot \mathrm{q}_{1}-\mathrm{p}_{1} \cdot \mathrm{q}_{2}+\mathrm{p}_{2} \cdot \mathrm{q}_{1}+\mathrm{p}_{2} \cdot \mathrm{q}_{2}\right)+\right. \\
& +2\left(\mathrm{q}_{1} \cdot \mathrm{p}_{2}\right)\left(\mathrm{p}_{1} \cdot \mathrm{q}_{2}-\mathrm{p}_{1} \cdot \mathrm{q}_{1}\right)+2\left(\mathrm{q}_{2} \cdot \mathrm{p}_{2}\right)\left(\mathrm{p}_{1} \cdot \mathrm{q}_{2}-p_{1} \cdot q_{2}\right)+ \\
& \left.+q_{1}^{2}\left(p_{1} p_{2}-2 p_{2} \cdot q_{2}\right)+q_{2}^{2}\left(p_{1} \cdot p_{2}+2 p_{1} \cdot q_{1}-2 p_{2} \cdot q_{1}-q_{1}^{2}\right)\right] .
\end{aligned}
$$

Finally one has to evaluate:

$$
T_{6}=\operatorname{Tr}\left(\gamma_{\lambda} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \gamma_{\tau}\right),
$$

where we have put:

$$
\gamma_{\lambda}=\gamma_{\rho}=\gamma \cdot q_{2} ; \quad \gamma_{\mu}=\gamma_{\sigma}=\gamma \cdot q_{1} ; \quad \gamma_{\nu}=\gamma \cdot p_{2} ; \quad \gamma_{\tau}=\gamma \cdot p_{1}
$$

With an iterative procedure of the following type:

$$
\begin{aligned}
\mathrm{T}_{6} & =2 \mathrm{~g}_{\mu \nu} \operatorname{Tr}\left(\gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \gamma_{\tau}\right)-\operatorname{Tr}\left(\gamma_{\mu} \gamma_{\mu} \gamma_{\rho} \gamma_{\sigma} \gamma_{\tau}\right)= \\
& =8 \mathrm{~g}_{\lambda \mu}\left(\mathrm{g}_{\nu \tau} \mathrm{g}_{\rho \sigma}-\mathrm{g}_{\nu \sigma} \mathrm{g}_{\rho \tau}+\mathrm{g}_{\nu \rho} \mathrm{g}_{\sigma \tau}\right)- \\
& -2 \mathrm{~g}_{\lambda \nu} \operatorname{Tr}\left(\gamma_{\mu} \gamma_{\rho} \gamma_{\sigma} \gamma_{\tau}\right)+\operatorname{Tr}\left(\gamma_{\mu} \gamma_{\mu} \gamma_{\lambda} \gamma_{\rho} \gamma_{\sigma} \gamma_{\tau}\right)= \\
& =\ldots,
\end{aligned}
$$

one arrives to the expression:

$$
\begin{aligned}
\mathrm{T}_{6} & =4\left\{2\left(\mathrm{q}_{1} \cdot \mathrm{q}_{2}\right)\left[\left(\mathrm{p}_{1} \cdot \mathrm{p}_{2}\right)\left(\mathrm{q}_{1} \cdot \mathrm{q}_{2}\right)-\left(\mathrm{p}_{1} \cdot \mathrm{q}_{1}\right)\left(\mathrm{p}_{2} \cdot \mathrm{q}_{2}\right)-\left(\mathrm{p}_{1} \cdot \mathrm{q}_{2}\right)\left(\mathrm{p}_{2} \cdot \mathrm{q}_{1}\right)\right]+\right. \\
& \left.+2 \mathrm{q}_{1}^{2}\left(\mathrm{p}_{1} \cdot \mathrm{q}_{2}\right)\left(\mathrm{p}_{2} \cdot \mathrm{q}_{2}\right)+2 \mathrm{q}_{2}^{2}\left(\mathrm{p}_{1} \cdot \mathrm{q}_{1}\right)\left(\mathrm{p}_{2} \cdot \mathrm{q}_{1}\right)-\mathrm{q}_{1}^{2} \mathrm{q}_{2}^{2}\left(\mathrm{p}_{1} \cdot \mathrm{p}_{2}\right)\right\} .
\end{aligned}
$$

From a computative point of view, with the simplifying assumption (1A), one gets in the C.M. (see the (23) of the text):

$$
\frac{1}{4} F\left(p_{1} p_{2} K_{1} K_{5}\right) \equiv \frac{1}{4} F(s, x)=a+B \cos \theta_{1}+\varphi \cos ^{2} \theta_{1}+\not \partial \cos ^{3} \theta_{1},
$$

where $\mathrm{x}=\mathrm{E}_{1}=\mathrm{K}_{1_{o}}$, and where:

$$
\begin{aligned}
Q & \equiv m^{6}+m^{4}(t-2 d)+m^{2}\left(2 w^{2}-2 a^{2}-2 c^{2}-d^{2}+2 c d+2 d t+4 a c+4 a d-4 a w-4 c w-4 w t\right)+ \\
& +2 a^{2} w+2 c^{2} w+2 w^{2} t-d^{2} t-4 a c d ; \\
B & \equiv b\left[4 m^{4}+m^{2}(8 w-8 a-4 c-4 t-2 d)+4 a d+4 c d+4 d t-4 a w-4 c w+8 a c\right] \\
\mathscr{E} & \equiv 4 b^{2}\left(2 m^{2}+w-2 a-2 c-d-t\right) ; \\
D & \equiv 8 b^{3}
\end{aligned}
$$

being:

$$
\begin{aligned}
& a \equiv m^{2}-\frac{x \sqrt{s}}{2} \\
& b \equiv\left[\left(\frac{s}{4}-m^{2}\right)\left(x^{2}-\mu^{2}\right)\right]^{1 / 2} \\
& c \equiv \frac{\sqrt{s}}{2}(x-\sqrt{s})+m^{2} \\
& d \equiv m^{2}-e ; \\
& e \equiv x \sqrt{s}-\mu^{2} ; \\
& t \equiv p_{1} \cdot p_{2}=\frac{s}{2}-m^{2} \\
& w \equiv \mu^{2}-2 x^{2}-t+x \sqrt{s}-2 b \cos \theta \\
& 1
\end{aligned}
$$

Besides, in the adopted approximation:

$$
\left(q_{1}^{2}-m^{2}\right)\left(q_{2}^{2}-m^{2}\right)=\left(2 b \cos \theta_{1}+e\right)^{2}
$$

APPENDIX C -

While considering the kinematics of our reaction with five equal--mass final bodies, we evaluated also the CMI "volume", in the impulse-spa ce, of the allowed kinematical region for the three-momentum $\overrightarrow{\mathrm{K}}_{5}$ of a final particle, at fixed three-momentum $\overrightarrow{\mathrm{K}}_{1}$ of one of the other four final particles.

Owing to its intrinsic interest, we report here that evaluation. We purpose calculating the integral:

$$
\begin{equation*}
\mathrm{g}\left(\mathrm{~s}, \overrightarrow{\mathrm{~K}}_{1}\right)=\int_{\mathrm{C}_{1}} \mathrm{~d} \overrightarrow{\mathrm{~K}}_{5} \tag{1C}
\end{equation*}
$$

where $C_{1}=C_{1}\left(\vec{K}_{1}\right)$ is the set of the values of \vec{K}_{5} for which, at fixed \vec{K}_{1}, the following system ($\mathrm{K}_{\mathrm{i}_{\mathrm{o}}}=\sqrt{\mathrm{K}_{\mathrm{i}}^{2}-\mu^{2}}$):

$$
\left\{\begin{array}{l}
\sqrt{s}-\sum_{i=1}^{5} \mathrm{~K}_{\mathrm{i}_{\mathrm{o}}}=0 \tag{2C}\\
\sum_{i=1}^{5} \overrightarrow{\mathrm{~K}}_{\mathrm{i}}=0
\end{array}\right.
$$

can be satisfied. That is to say, we have to determine, for each fixed $\overrightarrow{\mathrm{K}}_{1}$, $\xrightarrow[\rightarrow]{\text { the }} \xrightarrow{\text { set }}$ of the values of $\overrightarrow{\mathrm{K}}_{5}$, in corrispondence to which there exist vectors $\overrightarrow{\mathrm{K}}_{2}, \overrightarrow{\mathrm{~K}}_{3}$ and $\overrightarrow{\mathrm{K}}_{4}$ that satisfy the system (2C).
As we already did elsewhere, often the dependence on s is understood.
Let us firstly notice that, whatever $\overrightarrow{\mathrm{K}}_{5}$ be, the second equation of the (2C) can be satisfied, provided that one choose: $\overrightarrow{\mathrm{K}}_{4}=-\left(\overrightarrow{\mathrm{K}}_{1}+\overrightarrow{\mathrm{K}}_{2}+\overrightarrow{\mathrm{K}}_{3}+\overrightarrow{\mathrm{K}}_{5}\right)$. Thus one is driven to look for the values of K_{5}, in corrispondence to which there exist some \vec{K}_{2} and \vec{K}_{3} that satisfy the:

$$
\begin{equation*}
\sqrt{\mathrm{s}}-\mathrm{K}_{1_{\mathrm{o}}}-\mathrm{K}_{2}-\mathrm{K}_{3}-\sqrt{\left(\mathrm{K}_{1}+\mathrm{K}_{5}+\mathrm{K}_{2}+\mathrm{K}_{3}\right)^{2}+\mu^{2}}-\mathrm{K}_{5_{\mathrm{o}}}=0 \tag{3C}
\end{equation*}
$$

We may undertake a gradual dealing. Firstly, one may look for what conditions we have to impose on $\overrightarrow{\mathrm{K}}_{1}, \overrightarrow{\mathrm{~K}}_{5}$ and $\overrightarrow{\mathrm{K}}_{2}$ in order that (3C) may be satisfied by some values of $\overrightarrow{\mathrm{K}}_{3}$. Those conditions single out a certain region $\mathrm{C}\left(\overrightarrow{\mathrm{K}}_{1} \overrightarrow{\mathrm{~K}}_{5} \overrightarrow{\mathrm{~K}}_{2}\right)$. Next, one looks for what conditions on $\overrightarrow{\vec{K}_{1}} \overrightarrow{\mathrm{~K}}_{1} \overrightarrow{\mathrm{~N}_{2}} \overrightarrow{\mathrm{~K}}_{5}$ are necessa ry to the existence of some values of $\overrightarrow{\mathrm{K}}_{3}$, for which $\mathrm{C}\left(\overrightarrow{\mathrm{K}}_{1} \overrightarrow{\mathrm{~K}}_{5} \overrightarrow{\mathrm{~K}}_{2}\right)$ is not empty. Thus one obtains a new region $C\left(\overrightarrow{\mathrm{~K}}_{1} \overrightarrow{\mathrm{~K}}_{5}\right)$; the set of the values of $\overrightarrow{\mathrm{K}}_{5}$, for which $\mathrm{C}\left(\overrightarrow{\mathrm{K}}_{1} \overrightarrow{\mathrm{~K}}_{5}\right)$ is not empty, will be the integration domain $\mathrm{C}_{1}\left(\overrightarrow{\mathrm{~K}}_{1}\right)$ we are looking for.

To make this program progressing, let us put ($\mathrm{x} \equiv \mathrm{K}_{1_{\mathrm{o}}}$):
(4C)

$$
\left\{\begin{array}{l}
\varepsilon=\sqrt{s}-K_{1_{0}}=\sqrt{s}-x \\
A=\varepsilon-K_{5_{o}} ; \\
B=A-K_{2} ; \\
\vec{v}=\vec{K}_{1}+\vec{K}_{5} ; \quad v=|\vec{v}| \\
u=\vec{v}+\vec{K}_{2} ; \quad u=|\vec{u}| \\
k_{i}=\left|\vec{K}_{i}\right|, \quad(i=1, \ldots, 5)
\end{array}\right.
$$

The (3C) may be rewritten, setting $z^{\prime \prime}=\cos \widehat{\mathrm{K}_{3}} \overrightarrow{\mathrm{u}}$:

$$
\begin{equation*}
B-\sqrt{k_{3}^{2}+\mu^{2}}+\sqrt{u^{2}+k_{3}^{2}+2 u k_{3} z^{\prime \prime}+\mu^{2}}=0 \tag{5C}
\end{equation*}
$$

The above-defined region $\mathrm{C}\left(\mathrm{K}_{1} \mathrm{~K}_{5} \mathrm{~K}_{2}\right)$ is determined by the condition that the (5C) may be satisfied by some values of k_{3} and $\mathrm{z}^{\prime \prime}$, with $\mathrm{k}_{3} \geq 0,\left|\mathrm{z}^{\prime \prime}\right| \leq 1$. One obtains:

$$
\begin{equation*}
\mathrm{C}\left(\overrightarrow{\mathrm{~K}}_{1} \overrightarrow{\mathrm{~K}}_{5} \overrightarrow{\mathrm{~K}}_{2}\right): \tag{6C}
\end{equation*}
$$

$$
B \geq \sqrt{4 \mu^{2}+u^{2}}
$$

More explicitly, if one sets $z^{\prime}=\cos {\widehat{\mathrm{K}_{2}} \vec{v}}^{\text {, one has: }}$

$$
\begin{equation*}
\mathrm{C}\left(\overrightarrow{\mathrm{~K}}_{1} \overrightarrow{\mathrm{~K}}_{5} \overrightarrow{\mathrm{~K}}_{2}\right): \quad \mathrm{A}-\sqrt{\mathrm{k}_{2}^{2}-\mu^{2}}-\sqrt{4 \mu^{2}+\mathrm{v}^{2}+\mathrm{k}_{2}^{2}+2 \mathrm{vk}_{2} z^{\prime}} \geq 0 . \tag{7C}
\end{equation*}
$$

The request that the (7 C) be satisfied by some values of k_{2} and z^{\prime}, with $\mathrm{k}_{2} \geq 0,\left|\mathrm{z}^{\prime}\right| \leq 1$, picks out the region $\mathrm{C}\left(\overrightarrow{\mathrm{K}}_{1} \overrightarrow{\mathrm{~K}}_{5}\right)$:

$$
\begin{array}{ll}
C\left(\vec{K}_{1} \vec{K}_{5}\right): \quad & \left(A \geq 0, \text { and } A^{2}-v^{2}-3 \mu^{2} \geq 0\right) \\
& \text { or }\left(A^{2}-v^{2}-3 \mu^{2} \geq 2 \mu \sqrt{A^{2}-v^{2}}\right) . \tag{8C}
\end{array}
$$

This condition (at fixed $\overrightarrow{\mathrm{K}}_{1}$) depends only on k_{5} and $\mathrm{z}=\cos \widehat{\mathrm{K}}_{1} \overrightarrow{\mathrm{~K}}_{5}$. Let us now identify $\overrightarrow{\mathrm{K}}_{5}$ by means of its polar cohordinates k_{5}, z, ϕ, being ϕ the azymu thal angle with respect to a reference polar-plane passing through $\overrightarrow{\mathrm{K}}_{1}$. It is then clear that, for every allowed pair of values of k_{5} and z , all the ϕ values are allowed too. Consequently, $\mathrm{C}_{1}\left(\overrightarrow{\mathrm{~K}}_{1}\right)$ is the topological product of the inter val $(0,2 \pi)$ and of the set $\overrightarrow{\mathrm{C}}_{1}\left(\overrightarrow{\mathrm{~K}}_{1}\right)$, consisting of all the pairs k_{5} and z for which at least one inequality (8C) may hold.

Thus one reaches this result: $\overline{\mathrm{C}}_{1}\left(\overrightarrow{\mathrm{~K}}_{1}\right)$ is empty, unless (for $\sqrt{\mathrm{s}}>5 \mu$);
20.

$$
\begin{equation*}
x \leq \frac{s-15 \mu^{2}}{2 \sqrt{s}} \tag{9C}
\end{equation*}
$$

If the (9C) is verified, $\bar{C}_{1}\left(K_{1}\right)$ results formed as follows $(x \geq \mu)$:
(i) if $x \leq \frac{(\sqrt{s}-\mu)^{2}-8 \mu^{2}}{2(\sqrt{s}-\mu)}$,
(10C)

$$
\overline{\mathrm{C}}_{1}\left(\overrightarrow{\mathrm{~K}}_{1}\right): \quad-1 \leq \mathrm{z} \leq \mathrm{z}_{1}\left(\mathrm{~s}, \mathrm{x}, \mathrm{~K}_{5_{\mathrm{o}}}\right) ; \mu \leq \mathrm{K}_{5_{0}} \leq \varepsilon_{2}(\mathrm{~s}, \mathrm{x}),
$$

where:

$$
\begin{aligned}
z_{1}\left(s, x, K_{5_{o}}\right)= & \left\{\begin{array}{l}
1, \text { when: } \varepsilon_{1}(s, x) \leq K_{5_{0}} \leq \varepsilon_{2}(s, x) \\
\frac{\varepsilon^{2}-k_{1}^{2}-8 \mu^{2}-2 \varepsilon^{2} K_{5_{0}}}{2 k_{1} \sqrt{K_{5}{ }_{0}^{2}-\mu^{2}}}, \text { when: } \mu \leq K_{5_{0}} \leq \varepsilon_{1}(s, x) ;
\end{array}\right. \\
& \text { (ii) if } x \geq \frac{(\sqrt{s}-\mu)^{2}-8 \mu^{2}}{2(\sqrt{s-\mu})},
\end{aligned}
$$

$$
\begin{equation*}
\overline{\mathrm{C}}_{1}\left(\overrightarrow{\mathrm{~K}}_{1}\right): \quad-1 \leq \mathrm{z} \leq \mathrm{z}_{2}\left(\mathrm{~s}, \mathrm{x}, \mathrm{~K}_{5_{\mathrm{o}}}\right) ; \quad \varepsilon_{1}(\mathrm{~s}, \mathrm{x}) \leq \mathrm{K}_{5_{0}} \leq \varepsilon_{2}(\mathrm{~s}, \mathrm{x}), \tag{11C}
\end{equation*}
$$

where:

$$
z_{2}\left(s, x, K_{5_{o}}\right)=\frac{\varepsilon^{2}-\mathrm{k}_{1}^{2}-8 \mu^{2}-2 \xi_{\mathrm{K}_{50}}}{2 \mathrm{k}_{1} \mathrm{k}_{5}}
$$

$\varepsilon_{1}(\mathrm{~s}, \mathrm{x})$ and $\varepsilon_{2}(\mathrm{~s}, \mathrm{x})$ are the two solutions of the equation:

$$
\begin{gather*}
4\left[(\xi-\mu)^{2}-\mathrm{k}_{1}^{2}\right] \varepsilon^{2}-4(\xi-\mu)\left[(\xi-\mu)^{2}-\mathrm{k}_{1}^{2}-3 \mu^{2}\right] \varepsilon+ \\
+\left\{\left[(\xi-\mu)^{2}-\mathrm{k}_{1}^{2}-3 \mu^{2}\right]+4 \mathrm{k}_{1}^{2} \mu^{2}\right\}=0 \tag{12C}
\end{gather*}
$$

that is to say:
(13C)

$$
\begin{aligned}
\varepsilon_{1}(\mathrm{~s}, \mathrm{x}) & =\frac{\xi\left(\xi^{2}-\mathrm{k}_{1}^{2}-8 \mu^{2}\right)}{2\left(\xi^{2}-\mathrm{k}_{1}^{2}\right)} \pm \frac{\mathrm{k}_{1}}{2\left(\xi^{2}-\mathrm{k}_{1}^{2}\right)}\left[\left(\xi^{2}-\mathrm{k}_{1}^{2}-8 \mu^{2}\right)^{2}-\right. \\
& \left.-4 \mu^{2}\left(\xi^{2}-\mathrm{k}_{1}^{2}\right)\right]^{1 / 2}
\end{aligned}
$$

According to these results, $\mathrm{g}\left(\mathrm{s}, \overrightarrow{\mathrm{K}}_{1}\right)$ depends - besides on the total energy-only on k_{1} :

$$
\begin{equation*}
\mathrm{g}\left(\mathrm{~s}, \overrightarrow{\mathrm{~K}}_{1}\right)=\overline{\mathrm{g}}(\mathrm{~s}, \mathrm{x}) \tag{14C}
\end{equation*}
$$

and finally we have:
(15C)

$$
\bar{g}(s, x)=2 \pi \theta\left(\frac{s-15 \mu^{2}}{\sqrt{s}}-x\right)\left\{\theta\left(\frac{(\sqrt{s}-\mu)^{2}-8 \mu^{2}}{2(\sqrt{s}-\mu)}-x\right) g_{1}(s, x)+\right.
$$

$$
\left.+\theta\left(x-\frac{(\sqrt{s}-\mu)^{2}-8 \mu^{2}}{2(\sqrt{s}-\mu)}\right) g_{2}(s, x)\right\}
$$

with:
(16C)

$$
\begin{aligned}
\bar{g}_{1}(s, x) & =\int_{\mu}^{\varepsilon_{2}(s, x)} d K_{5_{o}} K_{5_{o}} \sqrt{K_{5_{o}}^{2}-\mu^{2}}\left[z_{1}\left(s, x, K_{5_{o}}\right)+1\right]= \\
& =\frac{3}{2}\left(\varepsilon_{2}^{2}-\mu^{2}\right)^{3 / 2}-\frac{3}{4}\left(\varepsilon_{1}^{2}-\mu^{2}\right)^{3 / 2}+ \\
& +\frac{1}{4 k_{1}}\left[\left(\varepsilon^{2}-x^{2}-7 \mu^{2}\right)\left(\varepsilon_{1}^{2}-\mu^{2}\right)-\xi\left(\varepsilon_{1}^{3}-\mu^{3}\right)\right]
\end{aligned}
$$

$$
\bar{g}_{2}(s, x)=\int_{\varepsilon_{1}(s, x)}^{\varepsilon_{2}(s, x)} \mathrm{dK}_{5_{o}} K_{5_{o}} \sqrt{K_{5_{o}}^{2}-\mu^{2}}\left[z_{2}\left(s, x, K_{5_{o}}\right)+1\right]=
$$

($16^{\prime} \mathrm{C}$)

$$
\begin{aligned}
& =\frac{3}{4}\left(\varepsilon_{2}^{2}-\mu^{2}\right)^{3 / 2}-\frac{3}{4}\left(\varepsilon_{1}^{2}-\mu^{2}\right)^{3 / 2}+ \\
& +\frac{1}{4 \mathrm{k}_{1}}\left[\left(\varepsilon^{2}-\mathrm{x}^{2}-7 \mu^{2}\right)\left(\varepsilon_{2}^{2}-\varepsilon_{1}^{2}\right)-\varepsilon\left(\varepsilon_{2}^{3}-\varepsilon_{1}^{3}\right)\right]
\end{aligned}
$$

(1) - For the first experimental evidence of this fact, see: B. Maglić, G. Kalbfleisch and M. Stevenson, Phys. Rev. Letters 7, 137 (1961).
(2) - For the subsequent experimental works, related to four-pronged anhilations, see e. g. : Ref.(13), Ref.(12) and Ref. (14), and Ref. (15).
(3) - It is to be remarked that, as pointed out by Pais ${ }^{(4)}$, the charge-conju gation invariance implies that the π^{+}and π^{-}CM angular distributions, with respect to the direction of the nucleon of equal charge, be the same if both p and $\overline{\mathrm{p}}$ are unpolarized.
(4) - A. Pais, Phys. Rev. Letters 3, 242 (1959).
(5) - Z. Koba and G. Takeda, Prog. Theoret. Phys. 19, 269 (1958).
(6) - A.Stajano, Nuovo Cimento 28, 197 (1963); 24, 774 (1962).
(7) - H. Miyazawa, Phys. Rev. 101, 1564 (1956); S. Fubini and W. E. Thirring, Phys. Rev. 105, 1382 (1957).
(8) - H. Pilkuhn: "Theoretical studies in antinucleon annihilation structures", Arkiv fOlr Fysik 23, 259 (1963).
(9) - S. Minami: "A possible Model for Nucleon-Antinucleon Annihilation", preprint (Osaka, 3 sept. 1965). Previously the model was suggested to us by V. Pelosi.
(10) - With the word "statistical" we mean that the off-mass-shell amplitude for the "core" annihilation is assumed to depend in the simplest way by all the variables on which it a priori must depend.
(11) - Actually, for momenta up to few $\overline{\mathrm{GeV} / \mathrm{c}}$, the mean π-multiplicity is about five and the four-prong annihilation in $(5 \pi)^{\circ}$ constitute a large amount of the annihilation processes. Without the statistic hypothesis for the virtual annihilation, the matrix element for the diagram of fig. 2 might be:

$$
\begin{aligned}
& \langle f| S-1|i\rangle=i G_{\alpha_{1}} G_{\alpha_{5}} \int_{-\infty}^{\infty} d^{4} x_{1} \int_{-\infty}^{\infty} d^{4} x_{2} \int_{-\infty}^{\infty} d^{4} x_{3} \cdot \\
& \cdot\langle\pi| \gamma_{5} \vec{\tau} \psi\left(x_{1}\right) \cdot \vec{\phi}\left(x_{1}\right)|p\rangle K_{+}\left(x_{2}-x_{1}\right) \cdot \\
& \cdot\langle\pi \pi \pi| T\left\{g^{\prime}\left(x_{2}\right) \gamma_{5} \tau_{2} \varepsilon^{h k m} \phi_{h}\left(x_{2}\right) \phi_{h}\left(x_{2}\right) \phi_{m}\left(x_{2}\right)+\right. \\
& \left.+g^{\prime \prime}\left(x_{2}\right) \gamma_{5} \vec{\tau} \cdot \vec{\phi}\left(x_{2}\right) \phi_{n}\left(x_{2}\right) \phi^{n}\left(x_{2}\right)\right\}|p \bar{p}\rangle K_{+}\left(x_{3}-x_{2}\right) \cdot \\
& \cdot\langle\pi| \tilde{\psi}\left(x_{3}\right) \gamma_{5} \vec{\tau} \cdot \vec{\phi}\left(x_{3}\right)|p\rangle .
\end{aligned}
$$

(12) - K. Bockmann, B. Nellen, E. Paul, B. Wagini, I. Borecka, J. Diaz, V. Wolff; J. Kidd, L. Mandelli, L. Mosca, V. Pelosi, S. Ratti, L. Tallone, Nuovo Cimento 42, 954 (1966), and references therein; V. Russo, pri
vate communication; A. M. Rusconi:Degree Thesis (unpublished, 1965, Università di Milano).
(13) - T. Ferbel, A. Firestone, J. Sandweiss, H. D. Taft; M. Gailloud, T. W. Morris, W. J. Willis; A. H. Bachman, P. Baumel and R. M. Lea, Phys. Rev. 143, 1096 (1966).
(14) - V. Alles-Borelli, B. French, A. Frisk, L. Michejda; E. Paul: "Anti-proton-Proton Annihilations into five pions at $5.7 \mathrm{GeV} / \mathrm{c}^{\prime \prime}$, CERN pre print TC/PHYSICS 66-25 (24.10.1966).
(15) - See also, e. g.:(a T. Ferbel, J. Sandweiss, H. D. Taft; M. Gailloud, T. W. Morris; R.M. Lea; T. E. Kalogeropoulos: "International Conference on High-Energy Physics (CERN, 1962)" p. 76; (b) C. Baltay, T. Ferbel, J.Sandweiss, H. D. Taft; B. B. Culwick, W. B. Fowler, M. Gail loud, J. K. Kopp, R. I. Louttit, T. W. Morris, J. R. Sanford, R. P. Shutt, D. L. Stonehill, R.Stump, A. M. Thorndike, M. S. Webster, W. J. Willis; A. H. Bachman, P. Baumel, and R.M. Lea: in "Nucleon Structure" (edi ted by Hofstadter and Schiff), Proceedings of the Stanford Conference on Nucleon Structure, June 1963, p. 267 (Stanford Univ. Press, 1964); (c) T. Ferbel: "Antiproton-Proton Interactions in Flight", preprint Ya le Univ., Jun. 23, 1965 (Paper presented at the A.P.S. Meeting at Columbia).
(16) - With the metric (+---), and in natural units.
(17) - See e. g. : P. Roman: "Theory of Elementary Particles" (North-Holland Pub. Co., 1961), p. 421. The experimental value of G is: $\frac{\mathrm{G}^{2}}{4 \pi}=14.6$.
(18) - M. Kretzschmar, Ann. Rev. Nuclear Sci. (1961); R. Hagedorn, Nuovo Ci mento 15, 434 (1960).
(19) - See e. g.: S. Schweber: "An introduction to Relativistic Quantum Field Theory" (Row, Peterson and C.,1961), p. 89.
(20) - See: F. Cerulus, Suppl. Nuovo Cimento 15, 402 (1960).
(21) - See e.g.: G.Kalbfleish: "Phase Spaces - Definitions and Calculations", L. R. L. Physics Notes, Nemo 150 (1960); O. Skjeggestad: "Notes on Phase Spaces", in: Proceedings of the 1964 Easter School for Physicists, Herceg Novi", vol. II', CERN 64-13 (3/28/64). See also: M. Block, Phys. Rev. 101, 796 (1956).
(22) - While considering the kinematics connected with our process with five final bodies, we evaluated also the CM volume of the allowed kinematical region for the three-momentum of a final particle, at fixed momentum of one of the other four final bodies. Owing to its intrinsic interest, we have reported this evaluation in APPENDIX C.
(23) - P. Srivastava and G. Sudarshan, Phys. Rev. 110, 765 (1958).
(24) - B. Desai: "Pion multiplicity in nucleon-antinucleon annihilation", UCRL-9024 Rev. (L. R. L. , Berkeley; Feb. 17th, 1960).

