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SUMMARY -

In this work we deal with a "nucleon-exchange" model for pI> anni 
hilation in flight into pions. The aim of the model is to explain the observed 
fact that, in the C. M. system, charged mesons seem to prefer the direction 
of the nucleon of equal charge. 

As suggested by S. Minami(9), it is assumed that a virtual annihila­
tion, with multipion production (treated in the spirit of the statistical model), be 
preceded by a peripheral emission of one pion both by nucleon and antinucleon. 

We have taken into proper account the conditions that Lorentz and 
isospin invariances impose on the structure both of the contributions of the p~ 
ripheral-emission vertices, and of the virtual-annihilation amplitude. 

A final formula for ,.+ (or 1<-) angular distribution is given. With the 
help of some physical simplifying considerations, this formula is reduced to a 
numerically evaluable one (by using some phase-space techniques), and the re­
sults are compared with the available experimental data at the entering labora 
tory-momenta of 1.6 Gev/c, 3.3 GeV/c and 5.7 GeV/c. -

Despite of the fact that our model neglects resonance production, a 
satisfactory enough accord has been found. Some Appendices conclude this work. 
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2. 

1 - INTRODUCTION -

Recently it has been observed that the charged mesons emitted 
from annihilation in flight of antiprotons, with a laboratory momentum 
of a few GeV Ic, have a rather definite orientation with r espect to the i!! 
coming particles(l,2): negatively charged mesons prefer small CM angles 
with the antiproton momentum direction; positively charged mesons prefer 
large ones(3). That is to say, charged mesons from pp annihilation in flight 
seem to prefer the direction of the nucleon of equal charge, in contrast with 
a purely statistical model. 

A mechanism for producing angular asymmetries of annihilation 
mesons is easily estabilished in the Koba-Takeda model(5, 6). In this model, 
the pI> annihilation is considered to proceed via a "core" annihilation (trea­
ted for instance according to the statistical theory), coupled to the disper­
sion of the pion clouds without further interactions. 

Thus, in pI> annihilation, the proton cloud, in which positive char 
ge dominates(7), continues its forward flight in the global center-of-mass,­
as the antiproton cloud does, in which negative charge dominates. 

For a quantitative treatment, one might assume that cloud me­
sons are emitted isotropic ally in the rest-frame of their mother nucleon. 
But Pilkuhn(8) observed that the statistical "core" -annihilation probabili­
ty becomes then a complicated function of the CM angles and momenta of 
the cloud mesons, which is difficult to calculate numerically. 

Therefore Pilkuhn tried(8) to obtain the asymmetries working 
with a "pole model", one pole being associated to a peripheral emission of 
one meson (see fig. 1, where it is illustrated the case with one "peripheral" 
meson). His conclusions were against the assumption of exactly one pole 
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FIG.l - Graphs of the "pole model", as considered by H. Pilkuhn(8). 
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for all ll-multiplicities, and they were 
~;;' n 

~ doubtful about the case of postulating 
/. ~, exactly two poles for all multiplicities. 

"0'\ (9) 
Recently Minami proposed that 

the pI> annihilation be dominated by a 
graph with two internal nucleon-lines -.on 

(01 q A (as in fig. 2). Thus, here we consider 
1 I 't-'" ~ 

-',;)" Y a model, in which a virtual annihilation, 
\.0"/ 
,/ with statistical (10) multi pion production, 

" /-/ "/, _( 0( l_l K_J -,-_~ IT " -~ is preceded by a peripheral symmetric 
, /' ........ "0v emission of one pion by both nucleon and 

, ,~ antinucleon. Roughly, a priori one expects 
, '<'., TT that this "peripheroid" model explain qu~ 

litatively the main physical characteristics 
of the pionic eM angular distributions in 
pI> annihilation, expecially if one bears in 
mind the experimental observation that 

FIG.2 - Our modelfor p p --'> 5./t. 

the FIB asymmetry increases as the to 
tal energy increases and as the pion mul 
tiplicity decreases. Moreover, for every 
multiplicity, both the anisotropy and the 
asymmetry in the angular distribution of 

the c'barged pions are experimentally due mainly to the pions emitted with 
greater impulse. 

In particular(ll), for pp ,~ 57r, the model assumes the diagram 
of fig. 2. 

It was tempting to analize carefully the consequence of the model, 
taking into account all kinematic coefficients and spin and isospin factors. O!:?, 
viously our model, in this version, does not consider resonance production. 

2 - GENERAL FORMULATION OF THE MODEL -

We consider in this work the particular process: 

(1) 

for which good experimental information (i. e. a good statistics) is availa­
ble(l, 12, 13, 14, 15). We want to study the contributions to the transition ma 
trix elements (T l! S-l), for this process, ariSing from graphs with the sa~ 
me structure of the one of fig. 2. 

In fig. 2 the tetravectors PI, P2, K 1, K 2, K 3, K 4, K5 are the fourmo­
menta of the corresponding (entering or outgoing) particles, while the 
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oJ. i(i=1, ••• ,5) indices, which can assume the values :!:1,0, determine the 
charge state of the outgoing pions. Obviously: 

5 
(2) 2. c( = 0. 

i = 1 1 

The two internal lines of the graphs refer to virtual nucleons with fourmo­
menta q1 =P1-K 1 and q2=K 5- P2 and with the third component of isospin equal 
to f and s-. The f and s- may assume the values ::1/2 and result univocally 
determined if we fix 01. 1 and 01. 5' owing to charge conservation. With those n~ 
tations, the contribution to the T-matrix element from the graph of fig. 2 can 
be written: 

(3) 

. (16) 
where, applying the standard rules, one obtams : 

m 
M = - ---:--::--,~ 

fi (2,,)21/2 

(4) 

r;r 5 w(P7) •• 

In formula (4): 

a) - G+
1 

= Vz G; Go = G, G being the (ppn-0 ) coupling constant(17). 

b) - m is the nucleon mass. 

c) - W(Pl) is a positive-energy spinor with momentum PI and v(P2) is a ne­
gative-energy spinor with momentum -Ii2, satisfying the equations: 
('3'. Pl-m)w(Pi) = ('7- P2)+m) v(P2) = 0; the adopted normalization is: w(Pi) 
w(Pi)=I, and v(p1)v(P2)=-I;the elicity indices are understood. 

d) - 0<. :; (0/ 2, 0( 3' 0(.4) and K -= (K2, K 3, K 4 ). 

e) - .It "'-her (ql q2K) is a 4x4 matrix in the Dirac-spinor space, and has the 
proper Lorentz and isospace transformation properties. 

Bearing in mind that the intrinsic parity of a n is -1, the Lorentz structure 
of A is assumed to be the following one: 

(5) 
o(.j ~ ~ <></.f 6" A (ql q2K ) = '45 A (q1 q2K ). 

oI./f s-- . 
where A (qlq2K) 1S a Lorent,z scalar. 

Keeping into account its transformation properties for isorotation, 
we can write :(see fig. 3): 
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(6) 

The .( ':l,s- I T> and ..( ~ \ T,"'> are the coefficients of the decomposition 
into eighenstates of total isospin T and its third component (which is not 
explicitly written), respectively for a state formed by two particles with 
isospin 112 and third components fi , -I), and for a state formed by three 
particles with isospin 1 and third components 0(2,0<.3' 0<..4. 

It is well known that in the second case the total isotopic spin and 
its 3rd component are not enough to single out the decomposition terms, and 
it is necessary to introduce a third quantum number v , that appears in for­
mula (6). 

At this point, as more detailed dynamic informations are lacking, 
we set down the "statistical"(l8, 23) hypothesis that AT, Y (ql q2K) be inde­
pendent of all those variables on which a priori it should depend, writing: 

(7) 

where A is a constant, with the dimensions of a lenght, which -if one .takes 
the model seriously-will result to be, e. g., about 8 fm for an entering labo 
ratory momentum of 5.7 GeV Ic. (Actually, as we do not concern ourselves 
with different-multiplicity processes, the -II. -parameter introduction is not 
strictly necessary). With our assumptions, we get: 

(8 ) + interferential terms, 

having set: 

(9 ) 

Let us consider the reaction: 

the contribution of the graph of fig. 2 to the differential cross-sections, ave­
raged on the entering nucleon helicities, is given, if we neglect the interfe­
rence terms in (8), by 

29 
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(11 ) 

[( )2 4] 1 /2 P • P -m 
1 2 

"" ~-~ 1 
• -4

1 L ~(~2) ~5( '0. q2+m ) • 
( 2 2)2( 2 2)2 ( ql- m q2-m helicities) 

1
2 ctKl ctK2 dK 3 ctK4 dK5 

-'0 ('O.q +m) q w(p~ ) -- --------. 
5 1 5 1 2K 2K 2K 2K 2K 10 20 30 40 50 

W f ' d '1 (19) e in easi y : 

(12) = 1 • Tr {('O.q -m)('O.q +m)('.r.p +m)(lQ·q +m) 
16 m 2 2 1 2 2 

. ( '0. q -m)( 0". p +m)} = --",1--::-. F(PIP2KIK5). 
1 1 16 m 2 

The explicit trace expression is: 

Some details of this evaluation are given in APPENDIX B, while 
in APPENDIX A we give the meaning of the invariants one ' meets with in 
this trace calculation. 

If we put: 

- (2 2)2( 2 2)2 
ql - m q2 - m 

3 
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(13) 

Let us now restrict ourselves to reaction (1), that is: 

n 

FIG. 3 - The statistical "core" ~ 
nihilation here considered. Note 

and consider for that process the con­
tributions of the twelve graphs that one 
can obtain by exchanging the identical­
-particle momenta one another in the 
three diagrams of fig. 4. 

With the same procedure used for 
the diagram of fig. 2 (and with the same 
approximation), we will evaluate the co~ 
tribution of those graphs to the transition 
rate and to the cross-section. that with our conventions: 

6"' = - ~. q' =-q , 2 2' Then, if we neglect the intereference 
terms between the various graph contri­
butions, we get, for the differential cross ­

the expression: -section of reaction (14), 

1l.4 4 [ 
dS = G 19 4 Il,~,~1 [G(1,5) + G(2,5) + G(1,4)+G(2,4)1 + 

16 (2Jr) ---
2' 2 

with, in general: 

(16) 

3 ... 

2K ' 50 

F(PI P2 K j Kh ) 

2 2 2 2 
(ql-m )(q2 -m ) 
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. (20) 
where now q1 =P1- K j and q2 =~ -P2' and with: 

11,-1,-1 11,1,-1 3 
= = 

1 1 1,1 5 -- --
(16' ) 

2' 2 2' 2 2 2 

Therefore, with our assumptions, if we define: 

(17) 

H(P1 P2 K
1 
••• K

5
) ::: ~~ [G(1 ,5 )+G(2,5)+G(1,4)+G(2,4)1 + 

... 1: [G(1,3)+G(2, 3)+G(3,5)+G(3,4)1, 

the C. M. angular distribution of n-+ (or ,n:--), from reaction (14), as func­
tion of the scattering-angle cosine, will be (c being the light velocity): 

1 
= 

c 

5 

~(VS - L Ki ) 
i=l 0 

P~G~. // "lQ,,) P /, ""n 'l-,\ P' ,'" ... ", 11+(',) 
/ y' '. ) /"'i 

/, 

~CJY""'" P (t) ( •• )/ 'Tr«.) 
n H) .# 

y (;)J/ nl,) 
fE.) _ ~ '/ / (,Ii 

/,.-/ (+ I) 
, . TTl',) -- --/' nl<,) n~,) '-..{+ 1) 'HI ~- I) 

"- "- "-n I ') 
'<' ... J[ t t) -" Ii If ) "" \1 TT T,,) TIl',) TT (K,) 

, 1 y" 
/ //~ 

"- "- "-

P -G "-'C!rl~s\ 
, 

' -JT ),,) , TT'~) " P P ' 'l\. ' 

(al (bl (eJ 

FIG. 4 - The possible final states for reaction (14). From each di~ 
gram we can get four graphs by exchanging the momenta of 
the identical particles one another in all possible ways. 



9. 

3 - NUMERICAL EVALUATION AND COMPARISON WITH EXPERIENCE -

If we put, for every function G(j, h) entering in formula (17): 

(19) 

it is immediate to see that: 

J = J !; J
1
(s,\itJcOSQ1); 

1,4 1,3 

and 

Therefore, formula (18) may be rewritten as follows: 

(20 ) 

where: 

x ~ K1 . cosQ = cosQ . 
0' l' 

(21 ) 

G4 r 2 ]-1/2 
d,.(S) = • Ls(~-m) ; 

8(2?t)18 4 

I'y \4 \ 14 1 142" 
-.I (s J K1 ,cosQ) = 3 1 + 15 J 2 • 

Thus the problem has been reduced to the evaluation of the two integrals 
'J j(j=1,2). One may write, applying the generalized mean - value theorem, 
that: ... 

J = / dK2 

j 2K2 
o 

(22) 

(j = 1,2) 
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where m stays for mean. 

Let us consider firstly the integral J
1

• In order to be able to ev~ 
luate it numerically, we make the assumption, apparently reasonable on ph1: 
sical basis, that (for every fixed K1): 

·~(m) ~ 
(23) K5 = -K

1 

which is equivalent, more in general, to substitute 

(24) 

into the function G(l, 5) (see also the (lA)). 
If we put: 

G( s , x, cosll) = G(1,5) I 

then we have: 

(26) 

The four-body "phase-space" (for equal mass particles), R4 , can 
be easily calculated(21, 22). Let us set: 

(27) 

x ;: x = K1 . 5 0' 
x = 

n+1 

As R4 is Lorentz-invariant, it will be: 

(28 ) 

2 2 2 f - (n -l)A n+1 

2'£ n+1 

(n=2,3,4) 



• 
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A d ' 'l 1 t' (23) h ( ll' ) n , uSIng a SImp e recurrence re a lOn ,we ave /"" = plOn mass : 

where the explicit expression of the Lorentz-invariant three-body "phase­
space" (for equal mass particles), R 3, is well-known(21): 

~ /3 [t24)<2}1/2 
R

3
(0, ~3) = TtJ dx

3 
Vx~-r2' 2- 2 • 

~ t2 
(30) 

Therefore, we may rewrite the (26) as follows: 

2 2' 3 2 2' '[2- 4/-< X [- 2 2]1/2 
dx4 VX

4 -1'- / dx3 VX 3-)( ~~ 
and we get in conclusion: 

(32) 

"" 
I1 (S,COSQ)=i' o((s)· jdx5 VX~_,A2'Q(X5-1'-)·Q(i'4-41'.)· ::J

1
(s,X,COSQ)= 

o 

7 ;X5 If 2 2 
= '3' o«(s)' dx 5 Vx5-..... 'J 1(s,x,coSQ). 

fo 

Considering now the integral ':1 2 of formula (22), we could pro­
ceed as we did for ':J l' assuming in this case: 

(33) 

that i,s to say, more in general, effecting the substitution (24), for every 
fixed q1' into the function G(2,5). 
But, as 'J 2 relates to the charged pions emitted in the virtual "core" anni­
hilation, one may reasonably assume that it depend only weakly on the direc - -tion of K1' thus supplying a quasi-isotropic contribution to the charged-pion 
distribution. We do not make any attempt to evaluate such a "background", 
but we keep it as an additive fitting-parameter, depending only on the total 
energy {S. 

In conclusion, one obtains the following final formula for the cha!:, 
ged-pion distribution from reaction (14): 
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(35) 

• 

dIS" 
dcosQ 

4 
= A . II (s) cosQ) + Z(s). 

The comparison with experimental data has been done for 1.6 
GeV Ic(l), 3.3 GeV Ic(13) and 5.7 GeV Ic(14) laboratory-momenta, using 
an IBM -7040 elaborator. 

7 70 

P.1.6 GoY/c P.3.3 GoY/c P. 5.7 GoY/c 

4 x 674 CHARGED PIONS ~600 4 x 1596 CHARGED PIONS 4 x 872 CHARGED PIONS 

0: 
150 l5 500 5 ~ 

'" "-w 

"' ~ 400 
400 ~ 

Z 

300 

200 

'00 
Ibl ( , I 

0 o 

!1 ;1 C05-3' !, C05-3' 

FIG. 5 - C. M. distributions of the (charged) ~ =+- from reaction (141, 
with respect to the direction of the incoming antiproton, at 
the three experimentally-available laboratory momenta. The 
continuous lines are the theoretical curves, yielded by our 
model. The experimental data are respectively taken:a) from 
ref.(ll, for 1.6 GeV Ic; b) from ref.(13),for 3.3 GeV Ic; c) from 
ref. (14), for 5.7 GeV Ic. 

It is shown in fig . 5. The best fit has been obtained with quite re~ 
sonable(18, 23, 24) A-values: namely, e. g. , A= (13.9 ~ 0.5) fm for 3.3 GeV Ic, 
and A= (7.8 ~ 0.3) fm for 5.7 GeV Ic. The accord between the theoretical I..!:. 
nes, normalized to the charged-pion numbers, and the experimental hysto­
grams(l, 13, 14) is satisfactory enough, except for the backward "tail", 
which appears at the higher momenta, i. e. at 3.3 and 5.7 GeV Ic. 

Our model does not keep into account the production of resonances, 
that seem to appear largely in the more recent data, for the pion-multiplici­
ty here considered (expecially the'S, which enters very abundantly). A nat~ 
ral modification of the model would be the one represented in fig. 6. But we 
believe - as it may be argued also a priori - that the CM distributions of the 
charged pions would not be substancially affected by this change. On the con­
trary, the aforementioned "backward tail" could possibly be obtained consid~ 

at 



p 

p 

FIG. 6 - A natural modifica­
tion of the model. We believe 
that the C. M. charged-pion 
distributions would not be af 
fected substantially by this 
changement. Here N means 
Nucleon. 

13. 

FIG. 7 - Another proposed "model", 
whose contribution at hi'gh energies 
could possibly explain the "backward 
tail" we can observe in the charged 
pion distributions (see in particular 
fig. 5). 

ring also graphs of the type of the ones one gets from fig. 1, substituting a 
peripheral ~ -emission vertex to the one-pion vertex (see fig.7). Finally 
another model, similar with the one shown in fig. 6 but with only one "peri­
pheral" vertex, has been proposed very recently in ref. (14). 
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APPENDICES 

APPENDIX A-

The kinematics of interest for reaction (14), in the global CM 
system, is the following one. 

-'0 __ _ 2 2_ 2 2 
PI = -P2; Pl o =P2

0 
=Po; PI =P2 = P =m ; 

P l +P2 = Kl+K2+K3+K4+K5' 

By definition (see fig. 2): 

ql =Pl-Kl ; q2 =K 5-P2 ; 

!Pl l= lp2!=!-P/"P. 

Limiting ourselves to the diagram of fig. 4a. we can choose the 
variables: 

s" (P
l

+P
2

)2 = 4P!; 

El "x" Klo; E5 -= K5
0

; 

Q2 = (Kl +K5)2; 

Then we get: 

(J l' (J 5: scattering angles of pions 1 and 5 relati­
ve to the entering antiproton direction. 

Vs-4m2 = 2P; 2 ~p2+m2 = 'f;; 

\Kll = ~E~_f'-2;\It5\ =VE~_.A2; 



(lA) 

2 
P1 • q1 = m - K1 • P1; 

2 
P2 • q =K·p m' 2 5 2 - , 

P1 • q2 = K5 • P1 - P1 • P2; 

P2 • q1 = P1 • P2 - K1 • P2; 

q~ = m
2 

+"u2 - E1 Vs - 2 pi it11 cosQ1; 

2 2 2 \.-
q2 =m +)4. - E 5 VS+ 2P K5ICOSQ5; 

2 Q2 
q1 • q2 =,u, -"2 - P1 P2 + K5 . P1 + K1 • P2• 

The assumption: 

15. 

which is equivalent to set in the present case (see the (23) of the text): 

cosQ 5 = - cosQ 1; 

Q2 = 4E 2 = 4x2 
1 ' 

brings many simplifications. 

APPENDIX B-

with: 

The proceeding is "classic". The explicit expression of the function F of 
formula (12) is: 

F(P1 P2K1K 5) = Tr { (rj.2 -m)(rj.1 +m)(P'2 +m)(~2 +m)(~l-m)(p'l +m)} = 



16. 

where first of all: 

T =4m
6 

o • 

Observing that: 

Tr ~~ = 4A·B, 

one then finds: 

Besides, noting that: 

~ Tr lhhj = (A.B){C·D)-(A·C){B·D)+(A·D){B·Cl, 

one gets: 

T4 = 4m
2 

[2(ql· q2){ql· q2- 2Pl· P2 -P1• ql-P1· q2+P2· ql+P2·q2) + 

+ 2 (Q(P2){Pl·Q2- Pl· Ql)+2(Q2· P2){Pl·q2- P(q2) + 

2 2 21 + Ql (P1P2- 2P2· Q2) + Q2(P1• P2+2P1• QC 2P2· Ql-Ql) • 

Finally one has to evaluate: 

where we have put: 

~ = 'd'S = o· Q2; ~ = ~6' = ,.... Ql; '1'" =7· P2; ot" =,.... Pl· 

With an iterative procedure of the following type: 

T6 = 2 g"...." Tr (? .. ,,1f .... <r~) - Tr (~qviJfq6'0'l:) = 

= 8 gA,.. (g,,1:' g~~ - gY<f g9'?: + g"S' goT) -

- 2 g;..y Tr (~r,'T.,..'O,!:) + Tr (~:?,,'aA3J.'dcS''OT) = 

= ... , 

one arrives to the expression: 
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From a computative point of view, with the simplifying assumption (lA), 
one gets in the C.M. (see the (23) of the text): 

~ F(PI P2K I K 5) =- ~ F(s, x) = a.. + G cosQ1 + 'C COS2Ql + ~ COS3Ql' 

where x=El =Kl
0

' and where: 

/1_ 6 4 22222 
U. '" m +m (t-2d)+m (2w -2a -2c -d +2cd+2dt+4ac+4ad-4aw-4cw_4wt)+ 

+2a2w+2c 2w+2w2t_it_4acd o , 

d3 [4 2 
=- b 4m +m (8w-8a - 4c-4t-2d)+4ad+4cd+4dt-4aw-4cw+8ac]; 

_ 2 2 
'" 4 b (2m +w-2a- 2c-d-t); 

being: 

2 xVs 
a='ID --2-; 

r s 2 2 2 }1 /2 
b =- _ ("4'::'" m )(x -.r ) ; 
c E ~ (x-Vs) + m 2 ; 

d = m 2 - eo - , 

eExVs-,r2; 

s 2 
t E PI· P2 ="2 - m 

w =- jA 2 -2x2-t+x{S - 2bcosQl. 

Besides, in the adopted approximation: 

22222 
(ql -m )(q2 -m ) = (2bcoSQl + e) 

41 
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APPENDIX C-

While considering the kinematics of our reaction with five equal­
-mass final bodies, we evaluated also the CM "volume", in the impulse-s p'~: 
ce, of the allowed kinematical region for the three-momentum K5 of a final 
particle, at fixed three-momentum itl of one of the other four final partic l es. 

Owing to its intrinsic interest, we report here that evaluation. We 
purpose calculating the integral: 

( IC) g(s,KI ) = j dK5 
C I 

..... -+ .....,. 
where C I =C I (KI ) is the set of the values of K5 for which, at fixed KI, the 
following system (Ki = V K? _/'- 2): 

01
5 

\Is - L Kio = 0, 
i=1 

(2C) 
5 

2-
i=1 -can be satisfied. That is to say, we have to determine, for each fixed K I , 

t h e set of the values of K5, in corrispondence to which there exist vectors 
-+ - ...... K2, K3 and K4 that satisfy the system (2C). 
As we already did elsewhere, often the dependence on s is understood. 

-+ 
Let us firstly notice that, whatever K5 be, the second equation o f 

~ ...... ~~--
t h e (2C) can be satisfied, provided that one .s.hoose: K4 = -(KI +K2+K 3+K 5). 
Thus one is driven to look for· the values of K 5, in corrispondence to whic h - -there exist some K2 and K3 that satisfy the: 

We may undertake a gradual dealing. Firstly, one may look for 
-+ - -.. what conditions we have to irr~ose onKI, K5 and K2 in order that (3C) may be 

satisfier! by some values of K3. Those conditions single out a certain region ...... ....,.~ ~ -+ 
C(KIK 5K 2 ). Next, one looks for what~onditions on IiI..,W'.<!K 5 are necess~ 
ryto the existence of some valueso~K3' for which C(KI K 5K 2 ) ~not empty. 
Th~s~ne obtains a new region C(KI K 5); the set of the val~es of K 5, for which 
C(KIK 5) is not empty, will be the integration domain C

I 
(KI ) we are looking 

for. 

To make this program progressing, let us put (x=KI ): 
o 
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(4C) 

't = 'Vs - K1 = VS - x; 
o 

A =! - K5 . 
0' 

B = A - K2 . 
0' 

v=\~\; 

u = \~~ \ ; 

....-.... 
" ~ .... The (3C) may be rewritten, setting z =cosK3u: 

( 5C) B- V k:+/,-2 + Vu2+k:+2Uk3z"+.A2 = o. 

19. 

The above-defined region C(KIK5K2) is determined by the condition that the 
(5C) may be satisfied by some values of k3 and z", with k3~ 0, \ z"\ ~ 1. 
One obtains: 

(6C) 

..--... 
~ ... 

More explicitly, if one sets z' = cos K2 v, one has: 

(7C) 

The request that the (7C) be satis~e~by some values of k2 and z', 
with k2~ 0, I z' \ ~ 1, picks out the region C(KIK 5): 

2 2 2 
(A~ 0, and A -v -31'- ~ 0), 

(ac) 
or (A2 _v2 _31'2 ~ 2.;K Y A2 _v2 ). 

/--- ~-This co~ition (at fixed K 1 ) depends only on k5 and z = cos Kl K 5• Let us now 
identify K5 by means of its polar cohordinates k5' z, .p , being 1> ~e azym~ 
thaI angle with respect to a reference polar-plane passing through K 1• It is 
then clear that, for every allowed p~r of values of k5 and z, all the ~ values 
are allowed too. Consequ':!:tl~ C 1 (K1 ) is the topological product of the inte!:. 
val (0, 27C") and of the set C 1(K1), consisting of all the pairs k5 and z for which 
at least one inequality (aC) may hold. 

- -Thus one reaches this result: C 1 (K1
) is empty, unless (for \IS '> 5)1-); 



20. 

(9C) 
2 

-< s - 15p. 
x - 2Vs 

If the (9C) is verified, C
1 

(K
1

) results formed as follows (X1!:j<): 

(i) if 

where: 

(ii) if 

(llC) 

where: 

.r- 2 2 
(vs - fA) -8fA 

x~ 
- 2(Vs-f') 

£ 1 (s, x) and t; 2(s, x) are the two solutions of the equation: 

(12C) 

4 [(i _)<)2 -k121 t 2 -4(t -)I-) [(t _)1-)2 -k
1
2 -3)<21t + 

+ {[(t _jl-)2 -k
1
2 -3f'-21 + 4 k12p. 2} = 0; 

that is to say: 

(13C) 
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-'> 
According to these results, g(s, K

1
) depends - besides on the 

total energy-only on k
1

: 

-(14C) g(s, K
1

) = g(s, x), 

and finally we have: 

(15C) 

with: 

(16C) 

(16 I C) 

_ s-15""- (ts-}<-) -8.1.<-2 { ,,-- 2 2 
g(s, x) = 2lrQ ( 18 - x) Q ( 2( lIS-I" ) - x) gl (s, x) + 

(1/8-)1..) -8)< 2 2 } 
+Q(x- 2(1fS-f') ) g2(s,x) , 

~(s, x) 

gl (s, x) = j dK50 K50 V K5~ _1"2 [ZI (s, x, K50 ) + 1] = 

= ~ (t 2 _p2)3/2 _ ~ (t 2 _/,2)3/2 + 
2 2 4 1 

+ _1_ [d 2 _x 2 -7)'- 2 )( E. 2 _)<-2 ) _ t ( E 3 _ ;<-3)1 . 
4kl 1 1 'J' 

£2(S, x) 

g2(s,x) = J dK50 K50 iK5~-}'-2 [Z2(S,X,K50 ) + 11 = 

£1(S,X) 
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