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ABSTRACT 

The problem of reducing the direct product of two irreducible ten
sors into irreducible components is dealt with, for the 03 group, through 
the use of a redundant cartesian representation. Half -integral order ten
sors are also included. Explicit formulae are stated far the reduction coel. 
ficients. A table is given for the simplest cases. Although it sacrifices al 
gebraic elegance, the present treatment is much simpler in some practical 
applications. 

SOMMARIO 

11 presente lavoro tratta il problema delle riduzioni del prodotto 
diretto di due tensori irriducibili nelle sue componenti irriducibili, nel 
caso del gruppo 03, adoperando una rappresentazione cartesiana ridon
dante. E' compreso anche il caso dei tensori di ordine semintero. Si da!2 
no formule esplicite di coefficienti di riduzione, e una tabella dei casi 
piu semplici. Questa trattazione, pur sacrificando l'eleganza algebrica, 
riesce di piu semplice applicazione pratica in alcuni casi. 
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I. INTRODUCTION 

The classical Clebsch -Gordan problem deals with the reduction of 
the direct product of two irreducible representation s of the orthogonal 
group in three dimensions (03). An alternative formulation is the following: 
given two irreducible tensiol-al sets of degrees j 1, jz, to extract from 
their direct product a third irreducible set of degree j. It is well known 
that the solution exists if and only if 

(1) I j1 - j21 ~ j !'. j1 + j2 

and can be written 

(2 ) (jml 

where the (jml m1m2) represent the Clebsch-Gordan-Wigner coefficients(1). 

The above way of dealing with the Clebsch-Gordan problem is be
yond any doubt the most elegant and deep-rooted one, because of its alge
braic simplicity and of its group-theoretical meaning. Furthermore, and 
needless to say, the concept of irreducible tensorial set proves very use
ful in quantum theory. 

There are, however, some cases where irreducible tensorial sets 
are not the most convenient tool (just as the choice of polar coordinates is 
not always better than that of cartesian coordinates, even if the former e~ 
ploit the symmetry properties of a system better that do the latter). But, 
if one wants to resort to cartesian tensors, the difficulty arises that car
tesian tensors are generally reducible. 

This paper is devoted to giving an extensive tratment of cartesian 
irreducible tensors (of integral and half-integral order). The cartesian r~ 
presentation of an irreducible tensor is necessarily redundant, i. e. some 
identities exist among its components, but definite rules can be given, which 
describe how to extract all irreducible parts from the product of two irre
ducible tensors., It will be found that the coefficients involved are much sim 
pIer than Clebsch-Gordan-Wigner's, and that the composition rules are ra 
ther intuitive. 

On account of what we have said above, the following will contain 
no basically new result. It is mainly intended to give a plain exposition 
of the Clebsch-Gordan problem in cartesian form and to present some 
formulae which we expect to be of use in many practical calculations. 

Section 2 contains the main definitions and sets the notations. In Sec 
lion 3 the irreducible tensors are defined and some irreducibility criteria, 
to be used later, are stated. 

...0 ... 
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Section 4 outlines the structu re of the irreducible part of the product 
of two irreducible tensors, and fixes the procedure to be followed in calcu
lating the coefficients. The final formulae are also given for easy referen
ce. 

Sections 5, 6, 7 contain the details of the calculations for the va
rious cases (spinor-spinor, spinor-tensor, tensor-tensor coupling). 

In Section 8 we present some examples and discuss some possible 
extensions. 

Finally, in the Appendix, we give some algebraic results about sy~ 
metrized products of Pauli matrices which are used in this paper. 

II. CARTESIAN TENSORS OF INTEGRAL AND HALF-INTEGRAL ORDER 

We will always be concerned with the group 03' i. e. with the group 
of rotations in a three-dimensional real space: 

(3) x - A X a ab-o 

We nee d not recall the properties of Aab' Only the form for infinitesimal 
rotations will be given 

(4) A = J 
ab ab 

where U c is the "vector" of the rotation. 

A tensor of order m (m integral) is defined in the conventional way: 
it is a set of 3m numbers(2) T a .... a (ai = 1,2,3; i = 1, .... m) transfor-
ming according to 1 m 

(5) - T •••• --+ 
a1 am 

A b .... A b Tb .... b 
a 1 1 am m 1 m 

All the usual operations of tensor algebra are understood, as well as the 
meaning of the Kronecker and Ricci tensors J" ab' E.abc' 

A tensor of order m+1/2 (m integral) is defined as a set of 2. 3m 

numbers .:t a .... a (d-. = 1,2; ai = 1,2,3; i = 1, •..• m) transforming 
according to 1 m 

(6 ) 

where U.,(/O> is a representation of order 2 of 03. The explicit form of 
U is 

(7) U = e- 1/ 2 I)c U c 

U c being the vector of the rotation and ""c a set of 2 x 2 matrices satisfying 

i ~ abc nc (8) 

1 0 " 
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The Pauli matric es are a so lution of (8), and any other solution is unitari 
ly equivalent to them. 

An important prop e rly o[ U is the following 

(9 ) u- l S- U = A ~b 
a ab 

(easy to prove for infinitesimal transformations). From F.q. (9) il follows 
thal by applying a Q to a tensor of half -integral ord e r one gets anolher te.!.'. 
SOl' which is one unit higher in order. 

In strict analogy wilh lhe direct product of two tensors o[ integral 
order, the direct product of "- tensor of integral order with one of half - in 
tegral order can be defined. It is a tensor whose order is the sum of lh e 
orders of the factors. The direct product of two tensors of half -integral 
order, is not a tensor, however, because of its two upper indices. Thes e 
can be eliminated by performing the following operation 

_ oyt, , 0( \~/!, 
T b ...• b - B X .. . • Tb .... b 

a I am 1 h a I am I n 
( 10) 

and Ta ..•. a b
l

" .• b is a tensor of order m + n if Bo«('> satisfies 
I m n 

(11) B cf.(I, U cf. p U;;a- = B ~ b 

A necessary and sufficient condition that Eq. (11) hold for every U is 

(12) B ~ B-1 = - 6" T 
a a 

(in this equation T denotes the transpose). This defines B up to a numerical 
factor. (If the Pauli representation is used for the 6'"'s, B can be taken e
qual to 6'2)' The tensor which one forms from two tensors of half integral 
order, according to Eq. (10), will be called their tensor product. It will be 
often denoted in this paper by the following notatio 

(13) T a .... a b .... b =(X a .... a yb .... b) 
1 rn 1 n 1 m, 1 n 

It can be shown that Bo(!1> · is an antisymmetric matrix. It follows 
that 

( 14) U: .. . . Y b .•.. b ) = - ( Y b ····b 
al am 1 h 1 n 

Another useful property of the tensor product is 

(15) 6' Y; b "'b ) c 1 n 

which is a direct consequence of Eqs. (10), (12). Thus we need not bother 
about the order of the factors in a tensor product (apart for its sign) and may 
always understand that a 6' is applied to its first factor. It should be noted 
that the 1. h. s. 's of Eqs. (14), (15) taken together have just as many indepen
dent components as the direct product of X and Y', while being" good" ten-
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sors. 

III. IRREDUCIBLE CARTESIAN TENSORS 

The order of a tensor can be lowered by contraction with the d.sotro
pic tensors dab, Eab6 contraction with dab lowers the order by two, 
contraction with Eabc by one or by three. For a tensor of half -integral o!: 
der there is a further possibility: contraction by l'>a (3), which lowers th e 
order by one. By irreducible tensor we mean one whose contractions all 
vanish. 

Quite obviously, any tensor of order less than or equal to 1 is irr~ 
ducible. For tensors of higher order, irreducibility is not a trivial proper
ty and we can state the following criteria: 

ICl. Irreducibility criterion for tensors of integral order 

IC 1. 1: The tensor must be symmetrical in all indices 
IC 1. 2: Its trace must vanish. 

IC 1. 1 is necessary and sufficient in order that the contraction with E abc 

vanish. I 
IC 1. 2 (stated for anyone of the traces, which are all equal on account of 

IC 1. 1) ensures that the contraction with cf ab is zero. 

IC2. Irreducibility criterion for tensors of half integral order 

IC2. 1: The tensor must be symmetrical in all lower indi ces 
IC2. 2: The contraction with E) a must vanish. 

IC2. 1 has the same meaning as IC 1. 1. IC2. 2 is obvious and entails also 
the vanishing of the contraction with dab, on account of IC2. 1 and 
Eq. (8). 

IV. REDUCING THE PRODUCT OF TWO IRREDUCIBLE TENSORS 

Our problem can be solved in two steps: 

1) writing down all tensors of a given order, which are bilinear in the given 
tensors; 

2) finding a linear combination of them, which is irreducible. 

It results as a consequence of the procedure we are going to outline, that 
the irreducible combination, when it exists, is unique up to a factor. 

On account of the different form of representation which we choose 
for integral and half -integral order tensors, the treatment will not be the 
same for both; so we shall distinguish three cases: 



A: both tensors of half -integral order; 
B: one tensor of half -integral and one of integral order: 
c: both tensors of integral order. 

Let I.!S start with case A. 

7. 

A: both tensors of half integral order. - Let m + 1/2 and n + 1/2 
(m n) be the orders of the two tensors. Ol.!r first problem is how to bl.!ild 
up, through linear operations on their direct product, a tensor of order p. 
We have already noted at the end of Sec. 2 that ( X , 'I' ) and ( 6'c;;( ,If ) 
have just as many independent components as the direct product of ;r and 
If , while being already tensors of orders m + nand m + n + 1 respective 

ly. In the following we shall use for ( S-c;( , 'I ) the notation S-c( X, )F) 
which is handier, though quite equivalent to the former. It will be always 
understood that any number of S-' s outside the parenthesis should be applied 
to the first factor inside, before effecting the tensor product. Thanks to 
E q. (15), no need will ever arise of applying 6"' s to the second factor in a 
tensor product. 

In order to get a tensor of order p from ( X , 'I ) and S-c ( X, .Y') 
we may only multiply one of these tensors by some c's and/or £. 's, per
haps contracting some indices. But it is not difficult to show from Eq. (8) 
that both cf' ab and g abc can be expressed as a sum of products of 6' 's. 
Then all independent tensors we can obtain will be of the form 6' ...• 6 ( X , 
If! ) (indice!': not hf'ing shown). Somf' of the indices will be free, others will 

be dummy; we are now going to discuss this point more thoroughly. 

First of all, no contraction is allowed between indices of X (one would 
get zero), and the same holds for Y • Second, it is useless to contract bet
ween two 6" s. If the contracted 6" s are consecutive, the result is an expre~ 
sion with two 6" 's less. If they are hot consecutive, we can move one of them 
near the other, and add the resulting anticommutators: these are again expre~ 
sions with two 6"s less. Third, no contraction is needed between one S- and 
;( (or If! ) for much the same reasons: if the contracted 6"" is the rightmost 

one, the result is zero, since X is irreducible; if this is not the case, we have 
only to add some anticommutators, which give terms with two 6"s less. So 
the only contractions allowed are those between .:t and Y;. Hereafter, for ca
ses Band C as well, we will denote the number of contracted pairs by >-. If 
s is the number of S's, we must obviously have 

(16) p=m+n+s-2).. 

For given p, we have many possibilities for s and A • Since ~ must 
always be less than or equal to n, it will be convenient to introduce a new va 
riable t, defined by 

(17) t = n - ~ 

In terms of t, s is given by 

0'. 
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(18) s = k - 2t 

where 

(19 ) k =p-m+n 

is the greatest value allowed for s. It is obvious t hat s has always the parity 
of k; we will refer late r to this result. As a consequence of Eq. (19), we see 
tha t p must not be less than m-n, otherwise no tensor of order p can be built. 

Both A a nd s must b e greater than or equa l to zero; th e refore the up 
p er bound of t is 

(20) r = min ( (f</2], n) 

(the square bracket meaning "th e l argest integer not greater than"). W e shall 
tak e t in the follo wing as the ind ependent varia ble , ranging from zero to r; :\ 
and s can be expr es sed through t by Eqs . (17) and (18). 

Thus th ere are r + 1 different ways of forming a tensor of order p. 
Since only symmetric t ensors are needed, the general form thereof is 

= 7 L\~s ) .... b (X b .... b 
i s s+1 s+m- >. 

'f b + >. + 1" "b c1"" q ) s rn- p . 

(21) 

where b1" ... bs ' b s +1 .... bp _t ' bp _t + 1 .......... bp is a ternary combina-
tion of a 1, .... ap' and th e sum is over all such combinations. The number of 
terms in the sum is (p!)/(s!(m - A)!(n - >-)!). The symbol L\(s) denotes the 
symmetrized product of s 5's; its properties a r e given in the Appendix. 

The most general symmetric t ensor of order p is a linear combina
tion of (21) 

(22 ) 
W(p) =;. '$ (p) V(p, t) 

a1' .• a p ;:0 t a1" .ap 

We must now choose the "5's in order that w(p)... be irreducible, i. e . -
a1 ap 

- on account of ICI.2 - that its trace vanish. The details of the calculations 

are given in Sec. 5; the result is that if m - noS: p ~ m + n + 1 there is one 
irre ducible tensor, given by E q. (22 ) with the following values of the t' s 

(23) 

( k!! (2p - k + 2t - 1)! ! 
J (k - 2 t)! ! (2p - k - 1)! ! 

1 (k - 1)! !(2p - .1c +2t ) !! 
(k - 2t - 1)! !(2p -k)!! 

,.. 
.1 v 

even k 

odd k 
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B: one tensor of half -integral and one of integral order. In this c~ 
se, througn an analysis quite similar to the one we made in A, we can rea<!J. 
ly show that two different kinds of tensors are obtained, according to whether 
no 6"" is contracted with the tensor of integral order, or one S is contracted. 
These two kinds of tensors will be denoled by subscripts 0( and f-> respecti
vely. If m, n+l/2 are the orders of the original tensors, equations analogous 
to Eq. (16) may be written 

(24) 
jP=m+n+s-2>

lp=m+n+s - 2>- -2 

( 01. ) 

( (b ) 

the order of the product tensor being p + 1/2. Eqs. (24) can be summarized 
into 

(25) p=m+n+s-2>-- -2 

where A = 0 for ( 0( ), ,A = 1 for ( /!> ). 
If we define 

(26 ) 

(27 ) 

(28) 

(29) 

we have 

(30) 

r f = max (m - ;k, n) 

) g = min (m - I-<- , n) , 
e=f-g=\m-n-f<-I 

t=g->-

k = p - e 

s = k - 2t + A 

and t is allowed to assume the values 0, 1, .... , r with 

(31 ) r = min ([j</2J, g). 

In the following we shall denote by ko( , ro(. , k /?>' rl'> the values of k, r 
forA = 0, 1 respectively. 

It is not difficult to show that no tensor of order p + 1/2 can be built 
unless p satisfies at least one of the conditions 

p~lm-nl 

p~\m-n-11 

or, that is the same thing, unless 

p + 1/2 Z \ m - n - 1/2 I 
which is what we expected. 

The symmetric 01. - type tensor is 

.109 
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(32 ) 

th e (3 - type is 

V (p, l) 
~ aJ ap 

(33) 

The gen eral symm et ric t ensor of order p + 1/2 is 
0( ib 

(34) ') 't'(p) V (p, t) + L -"1" (p) VIp, t) 
;:0 301..t o(a1- - · a p t ~ O )/>t f>a J ... ap 

The details of th e ensuing calculations are given in Sec. 6; th e result is tll a t 
if 1 m - n - 1/21 ~ p + 1/2 ~ m + n + 1/2 there is one irredu c ible tensor, g!:. 
ven by Eq. (34) with the following values of the ~ 's 

(even h) 

(35) 

(odd h) 

m> n, h ~ P + n - m 

1 
h II (2p - h + 2t + I) !' 1 
(2p - h + I) II (h - 2t) II 

(h - 1)!'(2p-h+2t)'! 
(h - 2t- 1)'!(2p - h)!! 

m S n, h' ~ P - n + m 

(even h) {h'1I(2 P - h' +2t + I)!' ) 
(2p-h'+1)!!(h'-2t)1t ~ 5 (p) : (- Jj2!' \ 

o<.t (h'-I)'!(2p-h'+2t)ll 
(odd h') (2p - h' )'!(h' - 2l- 1)11 

't'(p) = (_ 1/ 2)1+1 
5 ,1 t 

( h!!t:lp-h+2t-O!! 
) (2p - h + I)II(h -2t)!' 

l (h - 1) ! '(2p - h + 2l) !! 
(h - 2l + 1)1I(2p - h)!! 

f h'II(2p-h' + 2t + I)!! 
- (2p-h'+I)'!(h'21-2)!! 

I (h' -1)!!(2p-h'+21+2)!! l (2p - h')' !(h' - 21- 1)' ! 

C: both tensors of integral order. This case deserves special di
scussion due to the fact that no 6"- - matric es are involv ed in constructing 
the composed tensor. L et us examine the operations by whic h a tensor can 
b e constructed from two tensors T and U (of order m, n (m";' n), respect:!:. 
vely): 

1) Contracting an index of T with an ind ex of U. 

11(1 
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2) Saturating and index of T and an index of U_ with a Ricci tensor E. ijk' 
3) Multiplying by any number of Kronecker <\ 's, 

No Ricci tensor witlt more than one free index can occur because 
of the requirement of symmetry of the tensor, Moreover, only one Ricci 
tensor is needed at most, for a product of an even number of Ricci ten
sors can be reduced to a linear combination of products of Kronecker J's, 
Therefore the possible forms for the composed tensor W, of order p, are 

e-type: We ol.. (any number of J 's)a1'" as Tb1'" bi d 1'" de 

, UC j""Q d 1"'de 

o-type: Wo ':oJ. (any number of <5 's)a!," ase E. efg' 

It is immediately seen that in the o-type, no substantial limitation is impo
sed by having saturated all the indices of the Ricci tensor, 

It is shown, in the Appendix, that a .6.. (s) -function with even s beha 
ves, apart from multiplication by the spinor identity, as a symmetrized pro 
duct of Kronecker <5"'s, Therefore we shall use an even-order Ll in the -
place of the product of d's, the index a of the t,.(a) being chosen so that s 
always indicates the number of free indices of the .6 , Therefore the rela
tion 

(36) p = m + n + s - 2 A - 2fo 

holds, where ), has the usual significance and ,M = 0,1 for e- and 0- types, 
respectively, 

It clearly follows that in the e-type, s equals a and is even, theref£ 
re p-m-n is even; in the o-type, s=a-1 and is odd, therefore p-m-n is odd, 
This is equivalent to saying that if for the composed tensor p-m-n is even, 
only e-type terms will occur in W, while, if p-m-n is odd, only o-type 
terms will occur there, 

In analogy with the preceding cases, one can define 

(37) t = g - A =m-;,<--A 

(38) k = p + m - n - fo 

and therefore 

(39 ) s = k - 2t + f<. 

and 

(40) 0 ~ t ~ min (jk/2], m -,A) - -

111 
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which (taking account of th e condition m == n) are exac tly the same formulae 
of case B. 

The general symmetric tensor of order p such that p-m-n is even is 

"' ;\ (s) 
/ .- b b 
P 1'" s 

T 
b 1 •.. b ci····CA s+ s+m- A 

( 41) 
• U

b s+m- A +1'" bp c1'" c,\ 

where ~ means sum over the combinations of a1_ ...... ,ap according to 
the partition (s, m- !\ , n- " ). 

(42) 

The coefficients r are given by 

~(p) 0 (_1/2)t k!1 (2p - k + 2t - 1)!! 
> t (k - 2t) I! (2p - k - 1)!! 

The general symmetric tensor of order p such that p-m-n is odd is given by 

( 43) 

U b s +m - A ••. bp q ... c "g. 

where 15 means sum over the combinations of indices a1, ....• ,ap acco!: 
ding to the partition (s, m- A -1, n- ).. -1). The coefficients r are given 
by 

( 44) .:e(p) 0 (-1/2)t (k + 2)!! (2p - k + 2t - 1)!! 
30t (k-2t+2)!!(2p-k-1)!! 

5. EVALUATION OF THE J -COEFFICIENTS FOR CASE A 

The general form of the tensor of order p which canbe obtained from 
two tensors t and If! of order m + 1/2 and n + 1/2 respectively, is given 
by Eq. (22), where 

l A (s) ( X 
p -b1···bs bs+1···bs+m_ A 

( 45) 
lfib s +m _ ,x, +1", bp C l' .. c>. ) 

The sum in Eq. (45) is made over all the combinations of indices a1,"" a p 

11:: 



according to the partition (s, m - " , n- ~ ). It contains therefore p 1/ 
/(s1(m-A )1(n- >- )1) terms. 
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The problem is to find th e coefficients! ;p) of the irreducible ten
sor of order p. The tensor given in Eq. (22) with the V(p, t) given by Eq. (45) 
is symmetric. After the general method described in Sec. 4, it remains only 
to use the condition that the contraction of W(P) is zero. This con traction 
gives the equation 

= 

(46) 

Let us call first group the group of indices b 1, . ... . , b s ' second 
group b s +1, •...• bp_t, third group the indices bp -t+l, ... . . ,bp. The sum 
(46) splits into six parts according to the position of the indices a I, a2 in 
the three groups. If aI, a2 are hoth in the first group , that is if they are 
indices of a ~ (s), use of Eq. (A6) of the appendix gives the contribution 

(47 ) 
) s(s+l) 1 v(p-2, t) 

1 (s-l)(s+2) ~ a 3·· · a p 

the upper line referring to the case of even s (that is of even k), the lower 
to the case of odd s. The preceding notation will be used wherever such a 
distinction is to be done. 

If a1 is in the first group and a2 is in the second group, or a2 in the 
first and al in the second, one gets 

(48) 2 ) s 1 (m _ >- ) v(p-2, t ) 

1 s - 1 J a 3· . • ap 

the factor 2 arising because the terms with al in the first group and those 
with a2 in the first group give the same result. The first coefficient in Eq. 
(48) is the one found in Eq. (A 7) of the Appendix. The factor (m - A. ) is ac.:. 
counted for by comparing the number of terms of V and V . In the case of V 
the number of terms (compare Eq. (45)) is given by 

(p - 4) 1 
(s - 1) 1 (m - ;, -1) 1 (n - )0.,) 1 

In the case of V the number of terms is 

(p - 2) 1 

(s - 2) 1 (m - )0., ) 1 (n - A ) I 
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We might expect therefore a factor (m - >. )/(s - 1), but the (s - 1) is furn.! 
shed by the sum on i in Eq. (A 7) of the Ap pendi x. 

If at is in the first and a2 is in the third group or viceversa, the result 
follows from (A8) by only exchanging m with n, 

(49 ) 2 J s }(n_A) v(P-2,t) 
1 s _ 1 . a3· .. a p 

The cases with aI, a2 both in the second or in the third group do not contri
bute on account of th" irreducibility of :t: and lj! . If however al is in the 
second group and a2 is in the third or viceversa, the result is 

(50) 2 
v(p - 2, t - 1) 

a3' ... a p 

the counting of the number of terms in Eq. (50) giving no factor but the fac
tor 2 which is accounted for by the interchange of a 1 with a2' 

Th e contraction of the tensor wlr/ .. ap is therefore obtained by 
summing the contributions (47) to (50). (It i s worth while to point out that 
(47), (48) and (49) give zero if s i:. 2. Moreover, (48) gives no contribution 
if t = 0, for there are no indices to contract in the second group; a similar 
thing happ ens for (49) and (50) when s = p-m+n). 

(51) 

The condition that the contraction of W be zero is therefore 

~ 'f (p) [1 s(2p - s+1) t V(p-2, t) + 2 V(p-2, t-l) 1 = a 
t .3 l 1 (s-I)(2p-s+2) J a3' .. a p a3' .. a p 

where the sum goes over all possible values of t. Let us substitute for s 
its expression k-2t. W e find 

(52) 

"'t'(p) 
L :; t 
t 

f (k-2t)(2p-k+2t+1) J. V(p-2, t) + 

1 (k-2t-l)(2p-k+2t+2) as· ·· a p 

We must distinguish two cases: 

1) p ~ m+n+1. In this case r= (k/2] The first sum goes therefore 
from 0 to (j./2 ]-1 on account of the fact that p has decreased by 2. The se 
cond sum goes from 1 to {k/2 J on account of th e fact that t-l must be gre~ 
ter than or equal to zero. The Eq. (52) reduces to 

(j./27-1 (p) 

~ 1t 1. 
t = a 

(53) 

+2 

(k-2t)(2p-k+2t+1) 1. 
(k-2t-l)(2p-k+2t+2) J 

(k/2J 
-:7 1 (p) v(p-2,t-1) 
- t a

3 
•.• a

p 
= a 

t= 1 

1 1 ~ 
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Shifting the origin of the ind ex t in the first sum we obtain 

fJ</2J 
(54) " [~(p) {(k-2t+2)(2P-k+2t-1)} +2 't' (p)] V(p-2, t-1) 

(:1 ~ t-1 (k-2t+l)(2p-k+2t) ) t a 3", a p = 0 

The preceding condition is equivalent to a system of equations in the l' 's, 
on account of the fact that the 

V(p-2, t-1) 
a 3 , , , a p 

are linearly independent, The sys tem is composed of fJ</2J-l equations 
in the {j</2J variabl es $ (p), We can solve it by setting arbitrarily 
"~ (p) t 
.S 0 = 1, and obtain 

(55 ) 
~(p) 
~ t = (_1/2)t 

k!i(2p - k + 2t - 1)!! 
(k - 2t)!!(2p-k-1)!! 

(k - I)!! (2p - k + 2t)!! 
(k - 2t - 1)1! (2p - k)!! 

wher e , as we already said, the upper line refers to even k, the lo wer to 
odd k, 

2) p ~ m+n+ 1. In this case it is nu l L1ifficult to show, from thc dcEni 
tions of I' and k, that r on < {k/2J, The first sum in Eq, (52) goes therefor; 
from zero to n, In the second s um the term with toO drops off on account of 
th e fact that t-1 must be greater than zero, Therefore Eq, (52) takes the 

form 

~ ~(p) {(k-2t)(2P-k+2t+1)~ 
L- "t (k-2t-1)(2p-k+2t+2) toO 

(56 ) 

= 0 

By the procedur"e of case (1), Eq, (56) can be reduced to 

(57) 

n+1 [ r .-~ (p) J 
L '(>t-1 l 
t= 1 

(k-2t+2)(2p-k+2t-l) 1 +2 (1 _ S ) 
(k-2t+1)(2p-k+2t) t, n+1 

+ 

V(p-2, t-1) 
, a

3
, , ,a

p 
= 0 

This is equivalent to a system of n+1 equations in the n+1 variables r:;)", 
,,' J;r), The solution is therefore determined unambiguously, From the 
equation for t=n+1 we obtain "~(p) = 0; for ton, we get :> n 
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{ 
(k-2n+2}(2P-k+2n-l)} '1' (p) + 2 'f (p) = a 
(k-2n+l}(2p-k+2n) 3 n-l n 

and therefore 'f~)1 = 0, and so on, The solution of the system is therefo
re the trivial one, This shows that no irreducible tensor ca n be construe
ted in this case, and this completes the proof, 

6, EVALUATION OF THE '5 -COEFFICIENTS FOR THE CASE B 

The general form of the tensor of order p+1 /2 built from a tenso r T 
of order m and a tensor :t of order n+l/2 is given by 

w;... r{3 

(58) W(p) _ z.. '"{ (p) V(pt) L rep) v(pt) 
aI'" a p - t=O O\t 0<.. aI' "ap + t=O ;3t f.,a 1", ap 

where the first sum refers to 0< -type tensors, which are of the form 

v(pt) = '" '6 (s) T 
o(a 1",ap 1> bl, .. b s bs+l, .. bs+m_),.cl'" c>. ' 

(59) 

, Xbs +m _ X +1'" bp c l '" c). 

this sum extending over all the combinations of the indices aI", " • a p ac
cording to the partition (s. m- X ,n- >. ); this sum contains 

p[ 
s ! (m - X )! (n - >. )! 

terms, The second sum in Eq, (58) refers to f-> -type tensors which are of 
the form 

6'd Tb ' , , b -' 
s s+m_~_2cl'"c~a 

(60) 

, X b + ~ 1'" b c I' " c,), s m- " - p 

the sum extending over the 

(s -1) ! (m - "-1)! (n - A )! 

combinations of the indices al" ' " • ap according to the partition (s-l. 
m· X-I. n- \ ), 

The condition of irreducibility of the tensor, because of the symme
try of its components. amounts to setting equal to zero a contraction of W(P) 
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with oa, that is 

= 

(61) = 2. s (p) v(pt) 2 ~(p) v(pt) = 
cI- t d..a

2 
••. a + );., t f'> a

2 
•.. a 

t p t P 

= 1 S(p) s- v(pt) + Z --t'(p) 6": v(pt) _ t o(t a l o(a 1a 2···ap t :-,/-'t a 1 t!>a l a
2
···ap -O 

In analogy with Sec. 5, let us call first group the indices of the factor ~ (s), 
2nd group the free indices of T, 3 rd group the free indices of X . Each 
sum in Eq. (61) splits therefore into three parts, with a1 in the 1st, 2nd and 
3rd group. Let us see them separately: 

a) d.. - type term - a 1 in the 1 st group. 

By direct application of the Eq. (A5) of the Appendix we get 

(62 ) 
{ 

s } V(p-1. t) 
s + 2 oI..a2• •• ap 

b) oZ - type term-a 1 in the 2nd group. 

(63) 

Use of Eq. (AB) of the Appendix gives 

V(p-1.t-i.) 
('Ja

2 
••• a

p 

2 (m- l\ ) v(p-1, t) _ V(p-1, t- i. ) 
0( a

2 
••• a

p 
f'>a

2 
••• a

p 

where t · = 0, 1 according that m> n, m ~ n respectively. 

c) rf.. - type term-a1 in the 3rd group. 

By the same procedure as (63) we have 

(64) 
{ 2 'n- ":~~'.~ .• p 1 

d) /'.J - type term-a1 in the 1st group. 

{ 
s + 1 1 V(p-l, t) 

1 ~ a 2• •• a s - p 

e) " - type term-a1 in the 2nd group. 

11.' 
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(66 ) 

f) (i:J - type term-a 1 in the 3rd group, 

2(n- ~ ) V(p-1, t) 
Ih2", a

p 

2 V (p - 1, t -1+ .£ ) 
/3 a

2
, , , a

p 

(67) 

(p-l,t-1+t) 
- 2 V . 

D( a
2

, , , a
p 

In expressions (62) to (67) the upper line refers to even (k+ ,M. ) , th e l ower 
line to odd (k+,M.), (Note that s has the same parity as k+ r), 

By summing expressions (62) to (64) we obtain, for the 0< - part of 
W (the variable s has been substituted with t, as defined by Eq, (30): 

V(pt) = 1 k6( - 2t } v(p-1 , t) + 
0( a

2
" ,a

p 
l 2p-kot. +2t+2 0( a

2
, , ,a

p 

+5 11 v(p-I,t-E.) 1-1 (h2 , , , a p 

(68) 

and summing from (65) to (67) we obtain for the /'J -part of W 

:y(pt) = {-21 v(p-1, t-1+~) + 
i3a

2
, , , a

p 
+2 5 "'-a

2
, , , a

p 

+ {2P -kl!> +2t+2 l V(p-I, t) 
k,; -2t 5 !1a

2
, , , a

p 

(69) 

Substitution of expressions (68) and (69) into Eq, (pI) gives the equati on 
(tensor indices in the V's are omitted) 

(70) 

r .... 

~ ~~)t 
toO > 

+ 1"1' (p) 
toO 51!> t 

[{
kol-2t } V(p-1, t)+ { 1} V(p-1, t- E) 
2p-ko!. +2t+2 d... -1 ~ 

[{
-2} V(p-I, t-1+ t)+ {2P -k/,> +2t+2l V(p-I, t) 

2 0<. k/,> - 2t J I'> 

+ 

=0 

After rearrangement of the four terms in Eq, (70) and a change of indices in 
the 2nd and the 3rd sums, we obtain 

r.: 1f',-1+~ 

(71) [
.; ~ (p) {kol.. -2t } + ' :e(p) 
;';-0 :s "'-t 2p-ko( +2t+2 ~=O > (,>, t+I-z. 

1 . ,.. 
10 

t~ 11 vl- 1
, t) + 
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+ f ~z 1'(p) 5 11 + ~ ~ (p) (2p-k",. +2t+2 7J v(12- 1, t) =0 
L~o 30(,t+£ L- 1J ~o'>/'>tt k(! -2t S I~ 

(p) (p) 
Eq. (71) is equivalent to a set of linear equations in the variables f ol. t, 'f h t. 
We shall obtain the upper bound of p, that is the largest order of the tensor 
that can be constructed from T and "X , from the solvability condition of such 
a system. 

It is immediately seen that the number of unknowns is N1 = ro( + r~ + 
+ 2, where r.,( , r~ are defined by Eq. (31). The number N2 of independent 
equations which can be furnished by (71) is given by 

(72) N2 = min (£kw4 -1)/i},m,n)+min(&<I'>-I)/y,m-l,n)+2 

By the comparison of N2 with N l' as given by 

N1 = min ([jo<./2:J,m,n)+min({kA/2J,m-1,n) +2 

it is possible to see that N2 can be only less than or equal to N 1 but not less 
than N 1-1. If N 1 = N 2 there is only the trivial. solution. If N 2 ~ N 1, i. e. N 2 = 
= N 1 - 1, a system of r if)t' f~)t can be constructed which is unique apart 
for an arbitrary multiplicative factor. 

We shall now discuss what N2 = N 1 implies for the value of p. Let us 
define (see Eqs. (28), (29)). 

A=minl[p-lm-nq mn) 
2 - I .. 

. (rp - 1m - n \ 
C =mm L' 2 , m .. n) 

B = min t[p-lm-n-111 ) _ . ([p-lm-n-1l 
\ 2 _,m-1,n D-mm 2 m-1, n) 

It is immediately seen that A ~C, B ~ D. The condition N2 = N 1 reads, with 
this notation, as 

A+B=C+D 

and this relation can be satisfied only if A=C, B=D. These conditions can be 
satisfied only if the following pairs of relations hold 

1) [ p_Im - nl] 'I 2 > min (m,n) and p - m-n-1 is odd 

2) [p - 1m - n - 1~ 
2 'J>min(m-1,n) and p - , m - n' is odd 

3) [
p - 1m - nl] 

2 > min (m, n) [
p-Im-n-lI] and 2 >min(m-1,n) 

Relations 1) and 2) give the strongest conditions. These are 

1) p~m+n+2 2) p~m+n+1 

119 
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This shows that only if p :!O m + n the system derived from Eq. (71) has non
trivial solutions and therefore a tensor W can be constructed. 

The simplest way to find a solution to that system is to split the ca
ses m'> n, m "!on: in such a way the index ~ can be given a fixed value and the 
system simply reduces to a system of linear equations, with all indices com
pletely defined. 

Case m'> n: 

In this case ko( ~ P - 1 m - n 1 ~ p - m + n ~ h; kf'> = p- I m - n - 11 ~ 

~p-m+n+l~h+l 

and the system is 

'$'(p) {h-2t } + ~(p) {-21 ~O 
~o(t 2p-h+2t+2 3 l'>t+ 1 2) 

't'(p) { 1 1 + >,(p) {2P - h + 2t + 11 ~ 0 
),0( t - 1 ~ (!. t h - 2t + 1 J 

(73) 

The solution is immediately found (with the condition "5 J
o 

~ 1) and is 

(74) 

(75) 

't'(p) ~ (_1/2)t 
)o(t 

h!!(2p - h + 2t + 1)!! 
(2p - h + I)!! (h - 2t)!! 

(h - 1)!!(2p-h+2t)!! 
(h -2t-1)!!(2p- h)!! 

h!! (2p - h + 2t - I)!! 
(2p - h + I)!! (h - 2t)!! 

(h - 1)!!(2p-h + 2t)!! 
(h - 2t + 1)!!(2p-h)!! 

It is worth while to remember that the first line of Eqs. (74) and (75) refers 
to even values, the second line to odd values of LP - (m - n)J. 

CasemSn: 

In this case k"" = P - \ m-n' ~ p-n+m ~ h'; k/\ = P - \ m-n-ll ~ 
~ p-n-l + m ~ h' - 1. Eq. (71) gives the following system 

(76) 

-$(p) {h l -2t } ~(p))-21 ~O 
3""t 2p-h'+2t+2 +Ji't"l2) 

(p) {I } 
$0<.. t+l -1 

+~ (p) 
~,1t 

5 2p - h' + 2t + 31.. = 0 
1 h' - 2t - 1 5 

2C 
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The solution of system (76) is given, with the condition f~~ = I, by 

h'l!(2p - h' + 2t + 1)l! 

(77) 

and 

(78) ~(p) = (_ 1/2)t+l 
~ f1 t 

(2p - h'+ 1)l!(h' -2t)!! 

(h' - 1)!!(2p-h'+2t)!! 
(2p-h')!!(h' - 2t-1)!! 

h'!!(2p - h' + 2t + I)!! 
(2p - h' +1)!! (h'-2t-2)!! 

(h' -1) ! ! (2 P - h' + 2 t + 2)!! 
(2p - h')!!(h' - 2t - I)!! 

the first line referring to even values, the second to odd values of p -n+m. 

7. EVALUATION OF THE ~ - COEFFICIENTS FOR CASE C. 

As explained in Sec. 4, the case C can be splitted into two parts, ac 
cording to the parity of p-m-n which is the difference between the order of 
the composed tensor and those of the component tensors. 

1) p-m-n even. The form of the general tensor is a sum of e-type terms 
and reads 

(79) 

where 

c>, 
(80) 

• Ub + '1" . b c l' .. c.1\ . s m-A - p 

The condition of iTreducibility of tensor W is the vanishing of its trace. We 
can divide the indices of the V's into three groups, according to the partition 
(s, m- )I. ,n- A ) and call these groups 1st, 2nd and 3rd group. 

a) both indices are in the first group. The contribution of this part is 

s (s + 1) V(p - 2, t) 

b) one index in the first and one in the second group: 

2 s (m-)..) v(P-2, t) 
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c) one index in the first and on e in the third group: 

2 s (n _ >. ) v{p - 3, t) 

d) one ind ex in the second and one in th e third group: 

2 V (p - 2 , t - 1) 

Summing th e contributions from a ) to d) and e xpressing s through th e varia
ble t on e g e ts 

(81 ) 

)" l' ~p) [ (k - 2t)(2p - k + 2t + 1) V{p-2, t) -I

t . 

+ 2 v{p - 2, t - 1) ] = 0 

which is equivalen t to a set of min (m, [tk - Z) /2]) equa lions in the min (m,Ll< /2}) 
unknowns qp). The s ystem has nontrivial solution only if 

/]./2_7 <. m 

The prece ding inequality gives 

2 Lk/2J ~ 2m, that is k~ 2m 

and therefore p ~m+n. In this case we have the system 

(82) (k - ~t)(~p - k + 2t+1) -;j?{p) + 2 -S{p) = 0 
~ t t - 1 

With the condition '1 (p) = 1, the solution of system (82) is 
o 

(83) s (p) = (- 1/2)t 
t 

~~ - k + 2t - I)!! 
(k-2t)!!{2p - k-1)!! 

It is worth while to remember that, in this case, k = p+m-n. 

2 ) p-m-n odd, The general tensor W is a sum of o-type terms. It can be 
written 

(84) 

where 

t f • e g 

(85) 
• T Ub b 

bs+1···bs+m_X_1c!' •. c-\f s+m-}..··· pc1···c>,g 

By a procedure quite similar to the one of case (1), a syste m of linear e qua
tions for th e unknowns rip) can be writt en which has nontrivial solution on-

1. 2Z 



ly if p:S m+n. The system is the following 

(86) (k - 2t + 2}(2p - k + 2t + 1) ! ~p) + 2 r ~~ 1 = 0 

With the condition l' ~p) = 1, its solution is 

(87) 

(Note that in this case k = p+m-n-l). 

8. CONCLUSION 

(k + 2) !! (2p - k + 2t - 1)!! 
(k - 2t + 2)!!(2p - k - 1)!! 

23. 

This paper solves one side of the complete Clebsch-Gordan problem, 
that is the building up of irreducible tensors from the product of two irredu
cible tensors of any order. 

Inspection of Section 4 is sufficient to make clear that it is pos sible 
to give dummy rules for the explicit construction of the irreducible tensors. 
These rules are quite straightforward and will be given in a abridged ver
sion of this paper which will be submitted to 11 Nuovo Cimento. We hope 
that these rules will be of practical use in any case where a physical pro
blem will be of easier solution in terms of a cartesian point of view. In Ta
ble I we give therefore, as an example and for easy reference, a list of the 
first few cases of composed irreducible tensors. 

The solution of the complete Clebsch-Gordan problem requires ano~ 
ther step, that is the construction of the series equivalent to the inversion 
of Eq. (2). This problem is easily solved for the irreducible tensorial sets 
thanks to the orthogonality of Clebsch-Gordan-Wigner coefficients. 

In our scheme, this is not the case. We must find anew how the direct 
product of two tensors of any order can be written in terms of its irreduci
ble components. The main difficulty lies in the following: the cartesian re
presentation for an irreducible tensor is redundant, since it involves more 
than 2n + 1 components for a tensor of order n. So the set of cartesian irre
ducible tensors is not a true basis in the vector space of all tensors. The 
way out of this difficulty should be in a clever use of the isotropic tensors, 

& ab and .f. abc' and of the isotropic "vector" O"a' 

Another related part not settled so far is the normalization of our ten
sors. The difficulty is the same as before: since we do not have a natural 
orthonormal basis, a separate definition of the metrics must be given, CO!! 

sistently with the usual one. Research on both problems is under way. 

The techniques developed in this paper could possibly be extended to 

2£ 
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the similar problem for the Lorentz Group. In that case the usual group the£ 
retical approach is not so straightforward(4); we believe that the cartesian 
method could better exhibit its usefulness in that connection. 

Thanks are due to Miss. M. Hatini for checking all the formulae and 
working out the examples of Table 1. The authors are also indebted to L. 
Lovitch for helpful comments. 

FOOTNOTES 

(1) - Notations are as in Fano-Racah's book: Irreducible Tensorial Sets. 
(Academic Press PUbl. New York, 1959). 

(2) - We mean complex numbers: hereafter this will always be understood. 
(3) - On account of Eq. (9), €-a is a kind of isotropic vector matrix; it is 

the only one, to within a factor. 
(4) - See, for instance, A. J. Mcfarlane, Revs. Modern Phys. 34, 41 (1962). 
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APPENDIX 

We want to collect h el'e some of the properties of symmetrized 
products of (5' -matrices which have been used in this paper. We define the 
1:, symbol by 

{AI} "b 
s 

where the sum goes over the s! permutations of the indices a1" ...• as' 

It is immediately evident that 

s 
{A2} 2-

i = 1 

Let us now show the result of the contraction of a 6"' with a 1:,. We want to 
calculate sa LI {s} . The result must be proportional to the 1:, {s-l} 

aag ... . as 
and the therefore we set 

{A3} 

We us e now Eq. (A2) separating the contribution of -0-. We have 
a 

s-l 
S'(z. 
a. 1 F 

,6. (s-l) + 
€"a

1
· a .•• (a.} ... a 1 

1 s-

,6, (s-l) 
s 

6 {s-l} +3 L\ (s-l) =2(s-l} ? ~ €' 
aa l .. (a.} ... a 1 a r ·· a s _1 i= 1 a. a a 1••• a s _1 1 1 s-

f" (s-l) 
s-l 

.6. (s-2) =(2s+l) - c 2:. S-
a 1·•· a s _1 s-l i=l a. a 1···(a.} ••. a 1 = 

1 1 s-

=(2s+1-c ) Ll{s-l} 
s-l a

1 
... a

s
_

1 

We obtain therefore 

(A4) c = 2s + 1 - c 
s s-1 

The preceding equation can be iterated to yield 

= 
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which has the solution 

c = c + 2 
s s-2 

c = s + x 
S 

where x must be fixed by comparison with some known case. It is easily 
shown that c 1 = 3, c

2 
= 2 and therefore 

even s 

odd s 

Eq. (A3) then has the form 

(A5) s-
a 

By the symmetry of the ,1's, the anticommutation properties of the o-ma
trices and the use of Eq. (A5) one gets also 

(A6) ~ (s) - {S(S+l) 1 
aaa l' .. as _ 2 (s -1)(s +2) 

By a procedure similar to the preceding one it is not difficult to arrive to 

(A 7) s-1 

~ 
i= 1 

6,. (s-2) 
b 1· .. (b.) ... b 1 

1 s-

Two other properties of the 6,. -symbols are ~f interest in this pa
per. The first :Is the commutation property of 6. s with~. The re
BUlt is 

<;;- -
a 

(A8) s 

2-
i = 1 

r fj, (s-l) 
abo bl ... (b.) ... b 

1 1 s 
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saying that for even s the two factors c~lr-rp,ute. If s is odd, the anticom-
mutator reduces to a function of the Co • 

The second property is a reduction property of the Ll's. By using 
the Eq. (A2) twice, one easily obtains 

(A9) 
1, s 

= 2 2: 
i(j 

Co (s -2 ) 
a

1 
•.• (a.) •.. (aJ ... a 

1 J s 

Eq. (A9) shows that for even s, a t; can be reduced to the direct product 
of a symmetrized function of the Kronecker d's and the spinor identity; 
this property has been used in Sec. 7. 

12,' 
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TABLE I 

(All tensors are defined up to an arbitrary multiplicative factor and are 
not normaliz ed. The factor has been disposed of in order to make all 
coefficients integral numbers (a direct application of formulae in Sect. 5 
would give som e fractional coefficients). The expression Symm [ ... . ] 
means the complete symmetrization on the free indices of the expression 
in brackets. Partial symmetries must be taken into account. 
Ex.: Symm [-ua .r bc 1 = i;"a J' bc + 0-b d ca + t)c J' ab). 

A: ~inor - spinor coupling 

m n p Irreducible compound tensor 

0 0 0 U:::, '/) 

0 0 1 6"'a ( X, 'P ) 

1 0 1 ( X a' If ) 

1 0 2 t;-a( A b , yo )+ c b ( X a , Y') 

1 1 0 ( Z a' Y' a) 

1 1 1 6'a ( ;t b' Y; b) 

1 1 2 2 dab ( I(,c' 'f c)-3Symm C( x: a' Y'b)} 

1 1 3 2 Symm [ 6'a dcb 1 ex d· "I d) - 5Symm [oa(X b' If c)] 

B: tensor - spinor coupling 

m n p Irreducible compound tensor 

1 0 0 {la Ta'X. 

1 0 1 TaX 

1 1 0 Ta ta 



29. 

Table I - (continued; case B). 

m h p 

1 1 1 

1 1 2 

2 1 0 

2 1 1 

2 1 2 

2 1 3 

1 2 1 

1 2 2 

1 2 3 

Irreducible compound tensor 

2 (laTb X b -3 6'"bTb):::a 

2 S ab Tc X c - 5 Symm [TaX bJ + Symm [0-a ~ c T c "X J 
\)a Tab I(. b 

3 Tab X b - S-a <> b Tbc X c 

2Symm [f>aTbcXcl+2dab6cTcdXd

- 5 Symm [E>c T ac X bl 

10 Symm [cl ab T cd X dl - 35 Symm [Tab ;<. c] -

- 2 Symm [dab 0-cl b d T de X e + 5 Symm [b"a S- d Tbd 0-cl 

Tb Xab 

2 Symm (f> a T c X bcl - 5 E>c T c X ab 

Symm [<5"-a6'dTdibcl +2Symm LfabTdXcd}

- 7 Symm I T a X bc] 

c; tensor-tensor coupling 

m n p Irreducible compound tensor 

1 1 0 

1 1 1 Eabc Tb Uc 

1 1 2 2 J' abTc Uc - 3Symm [Ta Ub] 

2 1 1 Tab Ub 

2 1 2 Symm [~· acdTbc Ud] 

2 1 3 2Symm [OabTcdUdJ -5Symm[TabUcl 

2 2 o 

29 
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Table I - (continued: case C). 

m n p Irreducible compund tensor 

2 2 1 ~abc Tbd Ucct 

2 2 2 .2 cf ab Tcd Ucd - 3 Symm [Tac Ubc 1 
2 2 3 2Symm [dab [. cde Tdf Uef 1- 5Symm [E ade Tbd UceJ 

2 2 4 4Symm [J ab cl cd 1 T ef Uef - 10 Symm L d' ab Tce Ude] + 

+ 35 Symm [ Tab Ucd ] 




