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Abstract.

It is proved that the analytic continuation of Wightman fun-
ction, the vacuum expectation value of product of field operators, due to
local commutativity is single-valued in the union of the extended tubes
which correspond to the Wightman functions obtained by permuting the
order of the field operators in the product, and that the extended tubes,
the union of them and the intersection of any two are simply-connected,.

1, Introduction,

In the systematic analysis of the frame of quantum field the
ory, the investigation of the analytic property of the vacuum expectation
value, called Wightman function (denoted W-function hereafter), of pro-
duct of field operators turned out to be important: Wightman has shown( b
that a set of analytic functions with certain properties, such as suitable
invariance properties and boundedness, is equivalent to quantum field the
ory with certain axioms (see below), identifying the boundary values of
these analytic functions with the W-functions of the theory.

We take the following axioms(2) as the basis of the theory:

(3)

(1) Invariance under the proper inhomogeneous Lorentz group;

(II)  Spectral condition, i,e,, existence of the Hilbert space spanned by
the physical state vectors, non-negativity of the energy spectrum
of these states and the existence of the vacuum as the lowest ener
gy state;
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(III) Existence of field operators as temperate distribution operators;
(IV) Local commutativity, i.e., field operators commute or anticom-
mute for space-like separation,
From axioms (I) - (III) it follows that the W-function

PR
(1) WE (?1, ...... 3 \?N) = <0 W{:)Cxo) 1/’]):)(’\,7) "F;;T)(XN) | 0>)

= - (3) -
where fj = xj = Xj-l (=1;25:..:N); ’}Lj (xj) are field operators, Vj
are the spin indices and ¥ stands for the set \JU, Vl,, ..... ’ VN,
is a temperate distribution which is the boundary value of a function a-

t’fjév+}, where vV, is the

nalytic in the forward tube 77 ~(f{ 33? . Im
(4)

forward cone, The Bargmann-Hall-Wightman Theorem' ' enables us to
enlarge the analyticity domain of the W-function: WN( 3’1, ..... , SN

is a single-valued analytic function in the extended tube

Mo lisds O3] fxietn ]

where L+(C) is the totality of the proper homogeneous complex Lorentz
transformations (with determinant +1),

Local commutativity (axiom IV) then relates the W-functions
which correspond to various permutations of the field operators in the

product, and gives us analytic continuation in the union U P(g) @I,N of
SESN+1

the extended tubes P(g) ".'5"1\’1 . Here we adopt the following notation:

9,1, ...... , N )'L

g= ( is an element of the symmetric group of

degree N+1, Sy, ; the set {%J} - Plg) { §,} - s P(g) fj} is the set
of the transformed variables of {}OJ} induced by the permutation g ope

rating on the suffix of (xO, Xds sawes s XN), i.e.,
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Similarly we write {f‘]} = P(g) {‘fJ} = {P(g) \53} ; the permuted for-
ward tube P(g) %“N and the permuted extended tube P(g) 0\7‘}? are defi-

ned as follows, writing the variables {5‘3} explicitly,
(3a) Pl Py (f3h = Py i3] ={{'3°j}; Im(P(g) $PE V., §

and

P K S5 P =[P Ex D - Hirw 55D -

(3b) -{Pe) 55} Pla) 3y = LUCP@ F], (P F)eV,

= ({,5)‘3} 3 L+(c)‘}‘3’, Z/Tfslé”(ﬂwi\rj ,

where L (C)P(g) }‘i = P(g)L_,JC)}"‘_j (if we write }"j = _5;1 , p denoting
the component of the 4-vector (p = 0,1, 2,3), P(g) operates only on j
and L_(C) operates only on p).

The aim of this article is to prove that the analytic conti-

nuation of the W-function due to local comunutativity, mentioned above,

/
is single-valued in U . P(g) VN (Sect. 2), where S is an arbitrary
subset of Sy, and that the domain U P(g) ?}‘1\'} is simply-connec

ted(5) (Sect. 3). It is also proved that the intersection P(gl)‘?"I:TnP(gz)?'ﬁ

is simply-connected (Sect, 4),

2. Single-valuedness of the analytic continuation of the W-function,

The set AN of the real points g‘fj}, called the Jost points,

of the extended tube ".‘)"”N is characterized by the following condition(g’lo)
N 2
=1
for
N
(5) Z A1, A =0
j:l o

The set P(g)JN of the Jost points of the permuted extended tube P(g)"}f\I

§ o



is given by

(Z(?jsz) = Iy (Ple) 3393; ) =
A 20y = -
- {5] 2 Arw 1> 0 = A1 Azl

(6)

Lemma 1,

ol = p2 ; (go()JN is non-empty for Io—go(é SN+1 ¢ (K=1,2,3),

Proof.

Take a set Q(glo g9: g3) of points?‘f’j}j such that
Qg1 89> g3) = {{ﬁ}: ‘;jo" 0, P(g,) 39;()0 for ¥j

(7)
or £ 0 for Vj , (A= 13233)};

which is non-empty because P(g) {f f affords a representa*ion(ll) of
Sn+1 » and thus the eq, (2 ) is solvable in terms of {‘f } (or see eq. (27)
after Lemma 3)., Since

3

N
(8 (= APlg) ¥§) ZZ?\ngfz 0
j=1 72=1 j=1

for a point gfj}éQ(gl, g9, gs)j for X=1,2,3, and for f/\j} satisfy-
ing (5), we get

(9) Qg gy 25) < /17 Plgg )iy (a.e. d.)
2,3
Now, P(g)J..C P(g) ‘5"/ ., and so we have the following Theorem:

N
Theorem 1.
The intersection of any three of the permuted extended tu

bes P(g) 9"& is non-empty.

Lemma 2.
Any arbitrary point belonging to P(g;) ?‘& 1 P(gy) CO“D; is
/
connected by a path inside P(gl)oy'{\T ﬂP(gZ) ?N to a point belonging to

b &
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P(gl)?'f\rﬂ P(gz)‘?‘N and to a point belonging to P(gl ;’7P (g5) -’"{T :

Proof,
o { D / o f . eigie
Take a point {‘fjfé P(gl) ?’Nﬂ P(gz)’?“i\f . By the definition
of the extended tube, we can find complex Lorentz transformations /\ 1

/‘2 & L_,_(C) such that

(10) - faderen Ty .

jJ(S A IN . :
Since L,(C) is a connected set, we can find coaicous paths f"-“._.,(‘f"i:') ich
that
At () € Ly () , 0<£ts1,
(11)
A0y =1, Ag)=~Ay , (X=1,2).

From the invariance of P(g) ’f}""f under the operation of L (C), and from

. (10) and (11) it follows that the continuous curves

{31. CINE f (%) 3157 € Plgy) P4 1 Ple,) Ty

] L}{" h 1: 2 3

(12)
0£1 21
give the required paths to connect the points of the Lemma, (g.e.d.)
According to this Lemma, the question of the connectedness
4 / e / O
of P(gl)?}-‘NﬂP(gz) ?’N was reduced to that of P(gl)‘f}*Nﬂ P(gz) /i
Clearly it is sufficient to discuss the case with gy =1, and 8578 an ar-

bitrary permutation of Sy.q, since

Ple) O (£5D) NPe)In({558) =

(13)

29", P(gy) 2{5"} n (Plgq) {7?

and we can take P(gl)gf'j? as the set of new variables, Here we have
used the definition (3) of the permuted forward and extended tubes, and

the relation
(14) Plgogi) 7w = Plag) Pley) Ty

P
e



or
(147) P(gzgl)"')*'l'\T = P(gz)P(gl)‘?’ﬁ

which follows from the fact that P(g) f }"'J} affords a representation(u)
of SN+1 »
Lemma 3, (Jost(g))

r / o=k 01
‘?“N P(gI)‘?“N_, where g = g (N,N=1,..,O)L‘

Proof,
g1 induces the transformation {3"]} — P(gI){S“j} = g— T’J} "
. -1
Take /\(-1) = ( 0-l 40 l)éLJr(C)_
Using L+(C)/\ (-1) = L(C), and eq. (3), we have

{fsd % =105 mespev,f
{{}"j}* 5, L+.(c>(/\c-1)‘f]'.'), Im(/\(-l)‘i’g)é%}

= ‘?‘1; g (q.e.d.)

1
li

Ple) Py

According to this Lemma we need to discuss the connectedness of
GPU’N /1 P(g) 9‘1\}- only for the cases g 7 1, gr.
. ] ’ : e
A point f}"‘] }é?N /1 P(g) ‘?‘N has the following properties:

L)
a) A e L+(C) such that Im(/\\}oj)év_'_, -
~ ~ =
b) Im i3 EVy where 'fj = P(g) ;’j = kZ=1 pjk(g) fk
(see eq. (2) ).
0, 1 N Tl 1;
. = 3 3 s = 8 = » K] = 0; 1: ------ K] N -
USlng g (iOJ 1]_: P lN)‘I/ ( O: 1.- ....... a N )\1, ’ oK EER ORI

= -1 e = =1 = =
g = ‘f\_ L
(2') = ?1.] + §1J_1 S A, + fl]—1+l E 1.] > 13_1 3
(§1j~1 - ?13 1-1 S SR + f'l +1), 1. < lJ_l
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According to the property b) and the relation (2'), we can classify j, the
suffix of the component 4-vector ’fj of the point {‘_‘fj g& P(g) ’%N into

two classes Z,(g) as follows:

(15) jé_—.Z+(g) or Z (g) if pjk(g'l)l‘: 0 or = 0,
(k=1,2,..:: N},

Thus a necessary condition of the property b) is that
(16) Im S’j&Vi_ for i€zg) .

according to eq. (2') and the fact that the V'l‘ are convex sets, Inciden-
tally both sets Z.,(g) are non-empty unless g = 1, g1 -
A complex Lorentz transformation A< L, (C) can be ex-

pressed in the normal form

(17) A =1 ML,

1

where L,, L, & I_T_i_ (L'P_l_ being the proper homogeneous real Lorentz

group) and M & L _(C) has one of two possible forms'®

cos isinly 0 0
2y - |isinl cosy 0 0 3
(18a) MI(V,Z) 0 0 coshil  datniit ¥, ¥ real
0 0 ~-isinhZ coshZ
or
1 0 o i
‘3 _ o+ 0 1 T {3
(18b) Mz(?) = 7 ) o I T real .
: -iT 0 1

Since LL is conncted and leaves P(g) ?;“'N and P(g) '0‘14_ in-
variant, we can ignore I—'l and Lz. (There exists a continuous curve
: A a Y 5
\ivhlch connects {5"3} and {L2 ?J} inside %N nP(g)?N . We write
i_L21$’j} as f‘f.]g for simplicity. As for L,, if {/\‘fj;é‘}’N , then
{ri'a 5 ide PN

"



Lemma 4,

ok
The second normal form Mé( ') cannot transform any 4-

_ /
-vector Tj with Im }“j éV_3F into °}‘1 , 1,e,, into a 4~-vector }"J-
with Im 33 &V,.
Proof,

= 5

Take the case of My(?") and Im 5= 7€ V_. We can

(4) !

readily get
(19 F{T) - M;(Z‘\)"j - F(T) 174

0 g P ) 2 s 3
(202)  ZHT) = 2+ TP+ E)

2 _ 0 Pt o ok i 2 3 0 a1y _
AT = Y2 - (G = -7y + 25 b

3 L | 2 o .12 0 1.2
- 1555 % -’] ' T[(ﬂ?r?j) +(5,-Fy) 1.

Since ’2;(0) = 42;( 0 , the condition /f;(?."l > 0 gives the range T>7 >0

(20b)

-

or T< T,<{0 according to whether & >0 or o < 0, where
/?;( %) = 0. On the other hand -=('/’?J-(T) \25 0 for LSO or TLLLE
respectively, since -( “7].( ‘Z))z is at most a quadratic function of Z in
which the coefficient of el TP 0, and -( /’fj(Ol )2 > 0 and —(’7j(?b))2é 0.
Thus
YJAT)VEV, . for VT real and V¥ Y&V
The case of Mé(?} and f?je\/’_!_ can be proved quite si-

milarly,

Corollary.

+
The second normal form Mé( Z°) cannot transform a point

{B’j}ép(g)?—N into %N for g# 1, g;.

Pragt,
For g# 1, g1 the classes Z.(g) are non-empty. Accor-
ding to Lemma 4 and the definition (16), }"J where j é'ZjT(g) cannot be

. N .
transformed into ‘?“'1 by Mz(’tlo This establishes the statement (q. e. d, ).

43
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Thus a point {-s:j}é‘??”}gﬁ P(g)‘?‘N , (g#1, gl) , must be

transformed into ‘?"N by the first normal form(12) Ml()ﬂ - 23

IlLemma 5,

Assume that {Ml( }ﬂ, Z) ?j 526 @"N for a point
{jj}é °§"1r\T () P(g) ?JN and for a particular ( ¥, % ). Define

ﬁffg ﬁ;
1 21
5 ity
(21) gy = 4§
J 2 2
"L &
3
PE; p/?j
Then
{Spj(p)}é ?}_Nn P(g) %N and
(22)
‘[Ml( }‘9, X) fl(p)}é%’N for -1 =2p=<1
Proof.
Since
T ) ~r o a4
(23) S1(p) = Ple) Bilo) = Slo) = 3i(p) +17740)
and since
~ v
/?J.é vy —_— /?j(p)é“’\/_+ for -1<p=1,
we get
(24) {gj}ép(g) . @é}’j(p)}é P(g)7 for -1£p<1,
The following formulae and definitions are self- explana-
tory: "’f‘_(j)cosy +f}sih%
0 ..
. /7-1005}1’: + .sin}”
(25) (£ =ImB(R,X) = IO (LF) = | i}“
] ' ?jcos hl + gjsinhz
-’??cos hY - fzjsinhl’




10
(26) TP A50) = My(PX)Fj0) = 5P X50) + 1P 0)

(21 LR = 55820
(28) /?;(V,Z;p) = '?:(}ﬂ,Z) = /7;005}” + }fjl sin Y

~(/?j(}"’,l/ 7 }02’ l—p) }‘”/{/
-(/?j(y),;f))z, for 1% p®1 ,

(29)
Then, using egs. (28) and (29) it follows from the condition

/?j(;ﬂ,z)é\@ that %(}ﬂ,z’;p)é V, for -1=p=1 .
That is to say

; ‘ s
(30) {Ml(yi,k)fjié s {Ml(ﬁﬁ,Z)fj(p)}é?’”N
for =p=1

The egs. (24) and (30) establish the LLemma,

LLemma 6,

The set C of the points {3"}}, which are of the form

f 73

1
‘;’. 0
(31) Eaj = OJ +1i "
0 0

and have the properties

(32a) m (P Y = 45 > 0
and
(32b)

‘gji > 0 , for ¥j

is a connected subset of 9‘”1'\1 /1 P(g) @“N.

HRY
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Proof.
Clearly C is connected (actually it is convex), and it fol-

lows from (32a) that C <= P(g) "\’5‘"N . To prove that C c:.‘”&"‘l\fI we opera-
te with M1(>”,l’) on {5’3} getting

Kt i
1 g . |
 Fin ol s 0
(33) M (P.X)3) = F(PX) = : » |
’ | 0

which does not depend on A . According to (15), (16) and (32a) we have
’7; Z 0 for j€Z,(g). Defining ff’J such that

(34) 0< P - tan-l(-fz§/“§g)<.n,

we have that

(35a) /2 < yj < m for j&2Z,.(g) ,
and
(35b) 0 < yj < /2 for j&Z (g

according to (32b). Since

0 0 {
/?j(}ﬂ,lh /?jcos}"-f-fjsinf = 9

when

(36a) Vi-m < P< for j&Z,(g)

and

(36b) 0 < Yj< YY<m and -Tr__g)"<>”j-w<o for j& Z (g)

we conclude that
(37) Im(M, (2, X)5) = Z4F.X) €V,

for

ai
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(38) max VJ 474-( min VJ y A arbitrary .

i€z _(g) i€z (g
We note that the domain of (}‘;,/}f) given by eq. (38) is non-empty ac-
cording to eq. (35). This establishes that C<—= ‘?5"& and so the Lemma

is proved,

Liemma: -1 ,
A point {3‘3% é%JN ;Q P(g) ?UN is connected, inside
?“ ﬂ P(g N to the set C, C being defined in Lemma 6.

Proof,.

It is sufficient to consider the point {/JJ & % ﬂ P(g N
which satisfies £M1( >”, & 3 ljﬁj}é %N for a ( P,X according to the
explanation given just before Lemma 4, and the Corollary of Lemma 4
(The Lemma is trivial for g =1 and gy since C CP(g)‘?‘NC_—??‘B}I for
g = 1and g;. Assuming g #1, g1 » the above statement is correct).

Thus we can apply Lemma 5: For E;j(p)} . which is de-
fined by eq. (21), eq. (22) is valid. Changing p of 3" from 1 to O,
we get a continuous curve which connects 4 S’J} %f )} and {3"]’} =
= {jj(o)} inside ‘7“ ) P(g ) 73> Where fj’ = 2’3 +i /7315 of the

form (31) and satisfies (32a), and
§ (¥, 7) 3035 SIVANE
i.e. ,
(39) '/?(;cosy/ + ?ﬁ sin >0 > 0 for ¥j and for a )‘9 .

The allowed domain of ¥ of eq.(39) can be either

(40a) 0<max%<>ﬂ< min Y. « v
jez (g j&€Z,(g)

or

(40Db) -7 < max (}”j-n)< Y< min  (Y.-m <0,
i€z, (g) iez (g) °
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depending on whether

(41a) max 'f'j < min (.,tl ,
jez_(g) jeZ,(g)
or
(41Db) ~ max Lf;j < ' min }93. ,
j&Z(g) i€z (g)
where }”j is defined by (34). However, the case (41b) can be reduced

to the case (41a): Operating with the space rotation RS(Tr) of angle =,
around the third axis, on {?’ } the sign of all \::“31 is inverted (the
point being denoted by St;' } and ¥ ischangedinto- (/771 - (/’3 which sati
sfies eq. (41a). Since the space rotation R leaves ‘O“N /] P(g) O}‘N in-
variant, and R is connected, {S’J’E and %-?J} are connected inside
?‘ﬁ /1 P(g) ?N . Thus we need to consider only the case (41a),

Now 7’3 = tan (- /?J}/ §§ ) is a increasing or decrea-

sing function of $ for jeZ,(@ or j<= Z_(g) respectively. Thus for a

ny ?j > ?’j’ we have

0 < max tan_l(- ?o/ g

: j )<max7‘° <m1n)’<
ez (g)

] JCZ(Q J&ZAQ

(42) ,
< min tan (—’?/51)<—rr
JCZ.].(g)

This means that the increasing }95 in 53‘;} of the form (31), in
the case (41a), does not change the property that {S‘J’E & 7‘& . The
condition {;’5} & P(g) OJ'“N is invariant under the change of Re ?j,
since the above condition is relevant only to Im "5’3' . Therefore the con
tinuous curve which is given by increasing 'gl can connect {‘5‘]—:}
with the pomt {}’J } € C , where Re 3“ > max (Re ‘sJ ‘§Jl s ]
and Im ? \50{ f? i and is inside ?}—N /7 P( )‘?"N . This

estabhshes the Lemma,

Carollary.
Pilgy )‘?7’}'1 /) P(g,) ‘?‘N is connected,

®an
93
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Proof.
Lemma 6 and 7 show that any point {FJ} & °\7'1<T ) P(g) %N
is connected to the connected set C C—VJ“& /7 P(g)?}"’ , inside
/

(13) generalizes it accordingly,

which proves the connectedness of ?“'Nﬁ P(g) Ty - Ea.

Theorem 2,

P(gl}ay% /)P(gz)@"ﬁ‘ is connected.

Proeoof,

It follows from LLemma 2 and the last Corollary.

Theorem 3.
The analyiic continuation of W-funciion due to local com-

mutativity is single-valued in the domain ) U P(g) ‘O‘ﬁ where S

is an arbitrary subset of the symmetric group Sy .

Proof.

IFrom Theorem 1, 2 and Lemma 1 it follows that
/ ’/) / -
P(gl)‘??’N P(gz)o?’N for ¥gqs g9 & SN+1

is a non-empty connected domain, and contains P(gl)JN f)P(gz)JN which
is non-empty. The latter forms a real environment(13), since the setof
Jost points is an open set in the real 4N-dimensional Minkowski space,
Thus local commutativity equates (up to a sign) the W-functions at
P(gl)JNf) P(gz)JN and gives the single-valued analytic continuation in
P(gl)%"liI /) P(gy) %y Since P(gl)‘?"ﬁ /) Plgy) ?{V‘ is connected. Apply
ing this process to all the pairs of éP(g)‘?‘ﬂT}g €S < Syep’ the state-

ment of the Theorem follows.

3. Simply-connectedness of the union of the extended tubes,
First we prove the simply-connectedness of an extended tu
be itself. To this end it is convenient to use the covering group (the uni

versal covering group) E+(C) of L4(C) ( T+(C) is isomorphic to

9%
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SL(2,C)®SL(2,C) and is simply-connected, where SL(2,C) is the
complex unimodular group of 2 dimension, Clearly T_;_|_(C)‘f7"‘N 237‘1% =
= L,(C)¥ , since i+(C)f7“N covers "\'7'111 twice as does L+(C)‘§“1T).

Lemma 8,

If a point {3’3}6 @‘I(T can be expressed by

where
(43b) AveTye)  and {05365 (« = 0,1),

then there exist continuous curves

A e L) and  { ¥ WF < Ty
(dea) 2581
with
(44b) A (R) = Ax and  5(4) = (T, (®=0,1),
such that
(44c) S AWT®  for  0<t=1
Proof.

From the conditions (3‘3)1 = (7\‘1)_1 XO(?j)O . {(Baj)o} s

{(?J‘)lg & Ty and (Al)_lﬁoéi+(C) , it follows that there exist cur

ves

AW<L (C) and Fe®ic Iy .
(45a) * {;] }

0st=1 ,

with '

A0) =1, Ay = (A)TA,
(45b)

T =5 » ZW =05
such that
(45¢) T i) - X’(t)(}’j)o , 0<t<1 ,

5e
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according to a Lemma of Hall and Wightman included in Lemma 1 of
ref, (4).
Then we have
i R oA y &
(46) ‘S’j = Aol 550 =/ (t)’j’j(t), 0=2t=<1 ,
where we put

(47) Aw= 7 (A"

It is easy to see that /T(t}C f_l_(c) and g'f‘j(t)}c_' D}'N , (0= 1= 1),

as defined by (47) and (45c) respectively, are the required curves,

Lemma 9.

For a continuous closed curve
/ /
(48a) {fj(t)}cny : o=t<1
with
o /
(48b) S50 = T,

we can find continuous closed curves

(49a) As) <L) and {50} Ty, 0=s =1,
with

(49b) A=A  ad  T0)= ),

such that

(50) TiHs) = Sils) = A (s) Fyls) 0<s=<1,

with a suitable parametrization by s, where t(s) is a non-decreasing con

tinuous function of s with t(0) = 0 and t(1) = 1,

Proof,

From the facts that ".?'1"\1 = _ U A %N , that X?}_N is
| A& Ly(C)

an open set, and that the curve (48) is an image of the compact set [0, 1]
due to a continuous mapping T, it follows(14) that there exists a d >0

such that the image of d -neighbourhood of each point t< [0, 1] due to

-

:fi
® \J
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T is found in a suitably chosen Z@“N . Therefore we can find a finite

number of open sets ;_l;(% (#£=1,2,...,.,n), which covers the curve

(48) entirely in such a way that for a suitable division 0 =15 < t; <.,
. <tn =1 of [,(),’_.}_—‘_"_fnd images Q = f;’;(tok)% of 1. (=0,1,..
.,n), the arc ch(-l Q;( of the curve is contained in /A, 7y, (K =

= 1: 8.0 45:0): BSifice /L(cf t+(C) is a homoeomorphic mapping of /-

iy N

onto Z:,(‘?“N , the mapping (/‘cg)'l of Q‘;( <. ! gives a conti-

1
=1 Qs& — YN
nuous curve,.

(51a) Q{EZ()I Q(E:() : {%,;goc) (t)} ; ot St= to(% s N

with

_ .
pinh @ = Al = A T, mege,., 9,

A i (n+1)

where we put An+1 = /\1 and Qn = le) . The relation (51)

enables us to apply Lemma 8 to find curves

T T W (X, R+1),
M) BIEL©) and Q (T)E=Ty
(52a)
0L L5 1,
with
N, +1)(0) = A, A (o, &+ = Ay
(52b) : o
Q( x,o(+1)(0) s Q;o() , Q(o(, +1)(1) : qu) ,
such that
b o (D{)D<+l) < e
(52¢) Q= N, o41) ) @ (T, 0=T=1,

for A =1,2,...,n. Now we introduce the parameter s, 0<s £1,

and with the partition

(53a) 0=so<sl<sl<sz<sz< ..... <Sn_1<sn< g = 1 r
we put 1

t?(_l_’ t(s)—_tol . for s =858y .,
(53b)

t(s) = t, and 0= Z;((s) <1 for < g= 8™
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i o . o
where the parameters t(s) and ¢,(s) are non-decreasing continuous

functions of s . The continuous closed curves Eﬁj(t(s))} = E-S’ST(S)}C. 9,7”1:}

f !

connecting QB, Q]II P e Q@) A (s)C'E+(C) connecting 7\-13

Zz, ¢ s 8 /Tn, /‘n+1 = '_4_1 (putting /T(s)= A for s <s <8¢ )
and %‘%(S)EC‘?‘N connecting le), Q(ll)s ng)s é ¥ hia Ql(_ln), an+1)= Q(l).

which were described above, give the required relation (50).

Corollary.
For a continuous curve (48a), we can find continuous cur-

ves (49a) such that (50) is satisfied with a suitable parametrization by s.

Proof,
This follows from Lemma 9 and from the fact that any con

tinuous curve can be considered as a part of a continuous closed curve,

Theorem 4.

The extended tube ‘;?“& is simply-connected,

Proof.

‘3’7*1’\T is connected since 1_4__((3) and ‘7"N are connected
and “D"’N is a continuous image of f+(C) ® ”}"N . According to Lemma 9,
any continuous closed curve (48) belonging to ”J'“‘I'\T can be expressed by
eq. (50) in terms of the continuous closed curves (49) belonging to I+(C)
and ?N‘ Since E+(C) and ?“N are simply-connected (note that Ty
is convex), we can let the curves (49) shrink to points inside each do-
main, Therefore the curve (48) shrinks to a point inside ‘?‘bg . Thus
the Theorem is established, (q.e.d.).

For proving the simply-connectedness of U P(g) 77, we

N
prove the following LLemmas,

Lemma 10,

If the simply-connected domains Dl‘ Dy, ..., Dy have

n
a non-empty common intersection () Dj and the intersection Dy N D1 s
J:

n
(k,1,=1,.....,n), of any two is connected, then the union U Dj is sim
J:

ply-connected,

&) O
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Proof.
Ry
ji:‘l Dj is connected, since any point of it is connected to
n n
N Dj . Take a curve belonging to |J Dj which runs through domains
j=1 3=1
Dil’ Djgs vuvus Dim where (i7,15,....1 ) is a set of integers taken from

the set of integers (1, 2,....,n) with repetition allowed but i, F iy o
(k =1,2,,..,m-1), Since the curve necessarily must pass through

Dikn Dik+1 befors leaving Dik , we carlﬁloose a set of points,

Ql, Bighers SRS Qm—l, i on the given curve QlQm such that Q& 1 Jil ;

Qk; k+1 (f:; Dikn Dj.k_l_l (k = 1: LI R | m_l): Qmé Dim 3 and

—
QlQl, 3 C:Dil s Qk—l, ka, k+1C"Dik PO o B [P s 1 5
e
Q1 QOC Dim’ and where Q 4 ka‘ k+1 1s the portion of the curve

' I
between Qk-1,k and Qg 41 . Taking a point Oe& 'ﬁl Dj , we can draw
(] J=
the continuous curves joining 0 and Q's in such a way that OQ1 il ) /A
11
Foamme. AN et .
A . = - L G '
OQk,k+1CD1kn D1k+1' (k=1,...,m-1), and 0Qp, Dlm , since
=
Dy, N Dy, (k,1=1,...,n), is connected. Thus all the curves OQ_; .

—————— ——

Qk-l, Ik Qk, k+1 and OQ}{, k+1 are inside Dik . Using the terminology

Ty

of equivalence(ls) (denoted by v ) for the case where two curves with
same ends can be deformed continuously to each other, and multiplica
tion (denoted by o ) for joining two curves when the end point of
the first is the starting point of the second, we have the following equi-

valence relations, since Dj is simply connected:

#TT - — R
[ Q; Q2 "7 QO+ 0Qy 45
(54) d &0, ~G b BB
S 91,29, 3 1,2 2,3 °
AT —— T —— S~
Qm-l,QO Ve Qm-—l, m® ° OQy

By multiplying these successively we get
. N FTN
Uy ~ QO * 0Q ,

since AB + BA ~0 and AB - 0 ™~ AB (Here BA represents

‘59
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P
the same curve as AB but with opposite direction), Thus we have pro-
TN i
ved that any curves joining Ql and Qm are equivalent to QIO . OQm

and therefore are equivalent to each other. This proves the statement.

Lemma 1.1,
Let Dl’ Dy,....,D, be simply-connected domains, If any
three of them has a non-empty common intersection, and the intersectiion

n
of any two of them is connected, then the union Ul Dj is simply-connec-
‘].‘:

ted.

Ppoel.

n

L Dj is connected since any two points Q & Dix(o(= 1, 2),

j=1
are connected to each other through Diln Diz . Take a continuous curve

n
contained in U Dj which runs through the domains Dil — Di2'—>
J=1
o Dim , and take the points Qi, Ql, G i & 3 Qm—l, m>: @ on the
curve, defined in the same way as in the proof of Lemma 10, For the

case n=<3 and the case n>3 and m=3, the statement is true accor-

ding to Lemma 10, Assume n>3 and m >3, Since Dil 3 Dig , and
s et e
Dj, satisfy the conditions of Lemma 10, the curve @ Ql g * Ql Q
3 ) S22 8
i T T ey
is equivalent to Q1Qq1, 2 3 Q1 g 3Ry 3 where Q1¢233€' Dil N Dian13
FEI ———— ’ ¥ il )
and Q1 Q1 23 CDil " Q1’2,3 Q2,3 C.‘_‘_Di3 . Then the curve Q;Qp, is

— e N
equivalent to the curve Ql Qi 93~ Ql 9 3Q2 g - Q2 3Qm which runs
through Dil*—?‘ Dig i FAE TR = Dim , where the number of domains
is reduced by one from that of QlQm . Thus by induction we arrive at

the statement of the Lemma,

Theoreir 9.
The union U P(g) ?ul\’T of any number of extended

€ S =SN+1
tubes is simply—connecte%. -

Proof.
According to Theorem 1, 2 and 4, any subset of

/ §i.- : s 2
{P(g)‘{]”N§géSNH satisfies the conditions of L.emma 11, Thus the Theo

rem is established.

60
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4, Simply-connectedness of the intersection of two extended tubes,

Lemma 12,

P(gl)‘“’]"l{T £3 P(gz)‘?’N is simply-connected,

Praoot,

It is sufficient to prove the case g;=1 and g9 =g arbi-
trary but g # 1, gy » as mentioned before (see eq. (13) and Lemma 3),
We can prove the Lemma by continuously deforming a continuous clo-
sed curve of O‘T’N f) P(g) ‘Z}"N into a continuous closed curve of the con
vex set CCT ‘?‘ﬁ N P(g)‘?‘N , C being defined in Lemma 6. (C is con-
vex because of the definition (31) and (32), and thus is simply-connec-
ted).

For a continuous closed curve {FE?t)}C‘?‘l\’T N P(g)cﬁ‘N .

0<t<1, we can find continuous closed curves 7\"(3) Cf+(c) and
{fj(s)} C‘?‘N such that

(55) r;f(t(s)) - 3"3.’(5) = A ) Fyts) G g2

with a suitable parametrization by s, according to Lemma 9, A corre-
sponding expression to egs. (17), (18) and the Corollary of Lemma 4 for

(4)

the case of the covering group £+(C) enable us to express H/T(s) by

(56) (A(s)) ™" = Ty(e)My(P(s) , X (s))Tgls)  0s =1,

where —I:l(s), Ez(s) C-FT::P,—I-?_‘_

M (}"(s L X is)) & E+(C) is given by eq. (18a), and fl(s), Iz(s) and

being the covering group of ) -

M (\F(s A (s)), (0<s<1), are continuous closed curves, Without

loss of generality, we can ignore the T,l(s) and —I:z(s) by a similar

reason(16) as described before Lemma 4,
For 3’3(3) = ?g(s) + i -73-(5) , define a set of continuous
closed curves / 04
PS5 (s) 748
1! !
/ j(s) P @J(S
(57) ‘}‘j(S;p) = 9! *4 ent , 0<s=%1 ,
J
! 3! p real .,
p%;(s) p75(s)
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Since {fj'(s)} = {}‘J{(s; 1)% T ?’ﬁ}ﬂP(g)"J‘N and
{3, (Plo), X 0)OF = T+ we get

(582) Pl T NPTy
and

/ =
(58b) EM(P() X () Slip)} & Ty
for
(58¢c) -1p<1 and 0£s<1 ,

according to Lemma 5, Thus a continuous chenge of p from 1 to 0 af
fords a continuous deformation of {‘;’.(s)} into the continuous closed
/ i i
curve {'fj(s;())}C ?‘ﬁ f] P(g) %, inside @"ﬁﬂ P(g]?‘N . The latter
curve is of the form of eq. (31), and satisfies the relation
2 ¥
{M;(Y2(s), X (s)) yj(s;O)gc::%N , 0<s=<1, Finally the procedure .
described in the proof of Lemma 7 affords a continuous deformation of
/
fﬁ%(s;O)g into a continuous closed curve contained in the convex set
¢ =T NPT,
el
creasing of the same amount of the real pari fj of the each compo-

inside ?’N ﬂ P(g)?’N . (A space rotation and in-

U
nent 4-vector of {3}-(8;0)} as described in Lemma 7 keep the conti-
nuous closed curve inside ?’1\; ;/) P(g) %N) . Since the set C is sim-
ply-connected, we can deform the derived continuous closed curve into

a point in C C@“{I ,0 P(g)f}"N . Thus the Lemma is established,

Theorem 6,

P(gl)c?“l\; /-)P(gz)?"l\/T is simply-connected.,

Proof,

For a continuous closed curve .”(t). . Ple )'“j‘/ P(go) f,

j 19N 2’V N
0=t=1, we can find continuous closed curves A (s)< L, (C) and
f?j(s)}C P(gl)?’liT . P(gZ)?_N such that the eq. (55) is satisfied with a
suitable parametrization by s , according to Lemma 9, From the fact
g a /

that L+(C} and P(gl)f?"Nﬂ P(gz)‘y'N are simply-connected (Lemma

12), we can conclude the Theorem,

ba
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5. Discussion,

L Theorem 3 follows from Theorem 5, since the analytically
continued function is connected, We note, however, that the former has
been derived by a smaller number of pieces of knowledge compared with
the case of the latter, as seen in the proofs in the text, Similarly Theo-
rem 4 can be considered as a stronger statement than that of the Barg-

(4)

mann-Hall-Wightman Theorem

17), which

b, 2. According to Theorem 3, the Ruelle Theorem(

states that the holomorphy envelope of CS/ P(g) 1’/‘"1% contains the to-
g EPN+1
(5) S, turns out to be applicable to the quantum

tally space-like points
field theory which is based on axioms (I)-(IV), The difference of the
contents of the Ruelle Theorem and the Dyson T[heorem(s) lies in that the
former is global while the latter is local in character,

5. 3. A continuous mapping(l’ 18)

(59) [}”jf*”ffj-}’k}, hk=1,2,...,N,

mapps the domain ‘?‘1\? (or ?’N ) into a space composed of a symme-
tric complex NxN matrix of rank =4 , the image of the mapping be-
ing denoted by WN . Since the mapping (59) is such that an inside point
of 9"1\; is mapped to an inside point of WN and a boundary point to a

boundary point, all the Theorem 1-6 of this article are valid if we re-
place ?-’IG by mN ;

5. 4. The results of this article seem to clarify the statements
about local commutativity given in the paper of ref, (1), This is due to
the reason that in constructing a quantum field theory from a set of a-
nalytic functions, following Wightman, we need knowledge of what are

the domains of analyticity of these analytic functions.

5. 5. Streater(lg) has extended the discussion of the analytic
properties of the W-function to that of an arbitrary matrix element of

the product of field operators, getting the same analyticity domain ag

i
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that of the W-function, Our results then equally applicable to the case
of Streater's treatment, (Actually he seems to have assumed Theorem

3 of our text in his statement),
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Appendix A - Some properties of the Jost points and the extended tubel20)

A : =] I
Define the sets of the real points, Ky and Ky~ as fol-

lows:

(A. 1) K}i\? = {{F‘]}, ‘glj =0 for u fd\}, (A =1,2,3)

and :
is :
(A- 2) th:{ = {{;}g; ?jz 0 2 gl:; 5 0 for l" jé O(}, ((}(: 1: 2‘: 3} .

oL
Clearly KE\II is invariant under the operation P(g) ,

s re{eh - B eeirh & dgl

T g feh -y e@lsg) -
(A. 4)

= _. ;P(g)‘?{= N?(%O, H=0 for }.Lf‘i’(}.
[958 gy - F 2o,

If we write as
[E ol
(A.5) KE;?( i‘ﬁ}) = Kfq(‘gl)(@l(%(](fz)@. s @KE](“?N) ’

oL :
Kr‘;](‘f) is the of{-th coordinate axis (A= 1,2, 3) of the space compo-

0t
nent in the real Monkowski space, The similarly defined KEI] (?) and
- -
KL]_] ('ga) stand for the « ~th positive and negative coordinate axes. The
set Q(gl, g9, g3) defined by (7) in the text can be expressed in terms

+.
of K%L as follows

B+ -
(A.6)  Qgpr 8y 85) - (Pley)Kny + Plg, Ky ) .
A= 1,2,3

Lemma Al.

] b7 Ll + B3~
(A. T) Ky N P(g)Ty = P(Ky  + P(g)Ky
Prooef,

It is sufficient to prove the case g =1, i,e.,

EY SN -3 L R = 3 B

(A, 7") K N I. =By +ES

since (A, 7) follows from (A, 7') by operating with P(g) and the proper

6 e
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ty (A. 3). First, we have

[+ -
Ky "By &JIx

since

o 2 X 5 el 2
(Zﬂj\g’j) = (ZA5)° > 0
e

for a point { '%6 K and for {/\ satisfying eq..(5). For a point

{ } & ( - > P(g , either at least one component 4-vector
J s=1

‘fj =0 or one such pair '?]1 \%032 have opposite signs. Thus for

both cases, we can find a Z)\ } satisfying (5) which gives Z A }D 0,
j=1
and so

73 J— s B
&y - Z K&y ) Ny = ¢

This completes the proof, {q.e. d.)

Define

2]

KNf :KEL]@K?]:{{\%%;\??:O for p#o(,,ﬁ} (o(;lﬂ),

|od ;
where KE ’/5] is the (& ,/.’) ) coordinate plane in the space part of the

(A. 8)

Minkowski space.

LLemma Az.

"
(A. 9) Gl e FPlg)dy

where the right hand side stands for the closure of the set P(g)JN.

Proof;

Take the case «= 1, ﬂ= 2 for simplicity. Clearly

(A, 10) H‘fj%’ EJO =0 , P(g)f?')O for Jofj or < 0 for %ijsC_P(QJN

according to Lemma A, and such a point can be found in any neighbour-

1;2
hood of any point of Kll\:l ]

Lemma AB'

The extended tube is concave at any point belonging to

it i i
qKN] , the boundary of K%q , which is contained in STN 149

n n

04y
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Proof.

5 o JLTE
Clearly o KN & r7’]‘ [) )J?N , according to Lemma. Al'
First we prove the concavity of ”Jl& at the origin € le o ]*LN-l
. a hyperplane passing through the origin, which is expressed as

. N o)
(A.11) > Z( Yw?‘) b‘jf7‘.)) =0,
' Jll)O . ]

5 Take

where a, and b, are real. Then it can be shown that for any choice
of a':].) and bj , we can find a point belonging to Jy; <~ “TN , which sa
tisfies the eq. (A, 11), in any neighbourhood of the origin, To prove this,

take a real point ffji &I such that

v}

‘?j = 0 for Vj

oA
“?j >0 (or <0} for ¥j (a) either when 3af;£ 0 (f#X)
(X,A5 =1,2,3)

(A. 12) (b) or when a’f =10

(ﬂ’= 1,2,3 and for ¥j).

The point (A, 12) can satisfy eq. (A. 11) easily by adjusting ‘g’f for the
case (a) and evidently for the case (b). Moreover, if a {? } of
(A. 12) satisfies eq. (A. 11), then all {l { does, 1 being arbitrary
real number. This proves the above statement.

Next we consider a point %%FJ% é:t SKN . TFor simplicity
take the case A = 1, + sign in the r.h,s,, i.e., %Tj satisfies the con
ditions %; >0 'and_ :%;;L =0 (p#1). Equation for a hyperplane pas

sing through the point %_g‘;s is
N 3

' v vi{ _
(A, 519 J-lv— SL (g_] §) jﬂZjE :

Take "%’J_ = ‘fj for j such that %;; >0, and fi of the type (A. 12)
(the case, > 0) for j such that EJ =0, It is easy to see that this is
a Jost point and that we can find a solution of (A, 11) from such points in

any neighbourhood of the point i?ﬁ . Thus the Lemma is established.

6%
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Appendix B - Proof of the irreducibility of the representation P(g).

Lemma B

The set {'f‘]g ,(?j = X; - xj-l s J=1,2,...,N) forms a
basis of the irreducibile representation, of the symmetric group Sy 4
operating on the suffix of (xo, Xiseaoen s xN), which corresponds to the

partition (A ) = (N, 1),

Prools
Ak e i R .
Permutation:\ ig. =~ { 7, . . Ndinduces the transfor
s lOJ 11.’ 6. p lN

mation:

g x

0 0

~ or for short

Xy X,
B. 1 =l .~
®n | |-a@ | {573~ ata =3 .

X, i =0,1 1

XN XN :] 3 dyeveney N F]
where A(g) is a representation of SN+1’ and thus dth (A(g)) # 0. Ho-

1 . .

wever A(g) is not irreducible, since \{O = N+—1% x, i invariant

under SN+1'

Make the following change of variables

(B. 2) g%} = B{xj}, T T T N,

where
I 1 1 i}
N+1 N+1 N+1 N+1
=1 1 0 0
(B. 3) B= 0 -1 1 0 3 det B =1
0 0 0 1
Writing
1 by Pon
(B. 4) B"'l = 1 bll “ e 8 e blN !

-------------------




= DG s
we have the relations

(B. 5) %bjk=0 3 k=1,....,N)
j=

from B B'1 =1,
Now the change of basis, (B, 2), leads to

(®.6) {%j} - Ao 5,0 j

where, using eqs. (B, 1)-(B.5), we get

0,1:----:N 3

] blol PR blON
Alg)=BA(gB-l=8]1 Pil L 7. N
1 biy1 bj (N
(B.7)
1]o0 0
0
= ; P(g)
0

Thus we get a representation P(g) of Sn41 » Which basis are {‘f,} ,
3

(j=1,...,N), anddet(P(g)) # 0.

Using the relation

tr(A'(g)) = tr(A(g)) = number of x. which is not changed by
the permuta%ion g &€ SN+1

we can calculate the character X 1 zﬁ A ); for fhe repi:esent'a-

tlon P(g), of the class correspondlng to a partition in cycles (1‘>R /J’, )
(for notation see ref. 21). Since X ( u{ ~ ) = & , we have
1 .
P : (N, 1)
ol = ~ = 3
(B. 8) X280 = X-1 =X & ys
where Z (N, 1)/‘5 is the character of the class (10(, 2/‘1’, .o ) fOF

2 2 e 5 ® )
the irreducible representation corresponding to the partition (N, 1), and

the second equality can be readily obtained by the graphical method(zz).

69
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Therefore P(g) = ( pjk(g) ) is the irreducible representation which
P

corresponds to the partition (N, 1). Incidentaly the dimension n~ of

the representation is
P . P -
n- = (1N+1y = N

which is, of course, consistent with the number of %?3} &

- b
oo
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geSyyy o N % gy 2
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N is connected,
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n . BESNH
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point of the connected set K = {{fjg ; ?j = 0, Ej = %~ Xj-1
are real, (.EO’«X,.I’ Be] gg‘N) are all distinct{ is contained in
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