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Abstract, 

It is proved that the analyEc continuation of Wightman fun­
ction, the vacuum expectation value of produc t of field operators, due to 
local commutativity is single-valued in the union of the extended tubes 
which correspond to the Wightman functio'ts obtai.ne d by permuting the 
order of the field operators in ~he product, and t1'<1t th(' extended tubes, 
the union of them and tile intersection of any two ~u'e simply-connected , 

1. Introduction, 

In the systematic analysis of the I'l'anle of '1"antum field th~ 

ory, the investigation of the analytic propeJ"ty of the vacuum expectation 

value, called Wightman fLlllction (delloted W-function hereafter), of pl'O­

duct of field operators turned out to be impor~aJlt: Wightman has shown( 1) 

that a set of analytic functions with certain propel'lies, such as suitable 

invariance properties and bOlilldcciness, is equivalent to quantum field th~ 

ory with certain axioms (see belo w) , idellLfyillg the boundary values of 

these analytic functions w;.th the W -functions of the theol'y, 

We takc the foLlowing axioJ1)s(2) as tlle basis of the theory: 

(I) Invariance uncleI' the pl'oper(3) inhomogeneoL1s Lorentz group; 

(II) Spectl'al condition, i, e" cxistellce uf tile Hilbert space spanned by 
the physical state vectol's, J1oll- negat ivJty of the energy spectrum 
of these states and tIl<' "xisteJ1C''' of tbp vaCLILIm as the lowest ener 
gy state; 
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(III) Existence of field operators as temperate distribution operators; 

(IV) Local commutativity, i. e . , field operators commute or antic om ­
mute for space-like separation. 

From axioms (I) - (III) it follows t ha the W -function 

N 't? _ < 1"./0) 1J1) ("1)/ I > 
(1) W)) (:s l ' .. ... . , -rN) - 0 ~u (xo ) TV, (Xf) ' " '1f1{ lXA/) 0 ) 

where '(j = Xj - Xj_1 (j = 1, 2 , . .. , N), ~y)(Xj ) are field operat ors , Vj 

are the spin indices and Y stands for the set ))0 ' VI '" ... , 'YN , 

is a temperate distribution which is t he boundary value of a func tion a­

n alytic in the forward tube '7 N = (f )j] ; 1m ~j €= V +], whe re V + is t he 

forward cone. The Bargmann- Hall- Wight man Theorem (4) enables us to 

enlarge the analyticity domai n of t he W -function: WN ( '>1' ... .. , > N) 

is a single-valued analytic func tion i n t he extended tube 

where L+(C ) is the totality of t he prope r homogeneous complex Lorentz 

transformations (with de terminant +1) . 

Local commutativit y (axi om I V) then relates t he W -functions 

which correspond to various permutati ons of t he field operators in the 

product, and gives us analytic continuation i n t he union U P(g) ".:r~ of 
gcSN+1 

the extended tubes P( g) ~~ . 

= ( 0,1, ...... , N ) 1 
g ., . 'I' 

10 ,1 1, .. . .. J IN 

Here we adopt t h e following notation: 

is an element of t he symmetric group of 

degree N+1, SN+1 ; the set {~j} = P(g) [f) = {P( g) 'f j 1 is the set 

of the transformed variables of tfj} induce d by t he permutation g op~ 

rating on the suffix of (x O' Xl ' . .... , xN), i. e . , 

N 
= ~ Pjk(g) l' k = 

(2 ) 

={ 'fij + )\- 1 + .. . .. + i'i j _1+1 ' 

-(fij_1 + 'f ij_r 1 + . . . . . + 1\+ 1) , 
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Similarly we write L? j J = P(g) b} = f P(g) )j5 ; the permuted for­

ward tube P(g) '7N and the permuted extended tube P(g) '7~ are defi­

ned as follows, writing the variables [5'j ~ explici+ly, 

(3a) P(g) ';7-'N ( i>; ~) = '1-N (P(g) f >j t) = {[ '5jJ; Im(P(g) >j)~ V +} 

and 

(3b) 

P(g)~~( {:>}) =[P(g)'7-N](!)j~) = ~~(P(g) {>jt) = 

= f P(g) t>l P(g) Yj = L+(C)P(g) >;, Im(P(g) )";) <t- V + 

= {FYjI: >j = L+(C)Y/, !>/Sc=P(g)"l-N} ' 
where L+( C )P(g) 1'. = P(g)L+( C) T (if we write 1'J' = -> f1, f1 denoting 

J J J 
the component of the 4-vector (f1 = 0,1,2,3), P(g) operates only on j 

and L+(C) operates only on f1). 

The aim of this article is to prove that the analytic conti-

nuation of the W -function due to local cummutativity, mentioned above, 
I 

is single-valued in U P(g) "7"'N (Sect. 2), where S is an arbitrary 
gcS":SN+1 

subset of SN+l' and that the domain U P(g)~~ is simply-connec 
gcSESN+1 -

ted(5) (Sect. 3). It is also proved that the intersection P(gl)1'-~/lP(g2)""~ 

is simply-connected (Sect. 4), 

2. Single-valuedness of the analytic continuation of the W-function. 

The set I N of the real points If
j
l, called the Jost points, 

of the extended tube ~~ is characterized by the following condition (9,10) 

( 4) 

for 

(5 ) 

N 2 
( 2. /\ . r) > ° 

j = 1 J J 

N 
2.'\.=1, 
j = 1 J 

>.. ~ ° . J 

The set P(g)JN of the Jost points of the permuted extended tube P(g)o)-~ 
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is given by 

P(g)JN ( {rjS ) = I N (P(g) tfj J ) = 

(6) 

= IffjJ ; (~ AjP(g) r/> 0 ; 
J-1 

\~ oj . 

Lemma 1. 

n P(~)JN is non-empty for V/kE SN+1 ' (eX. = 1, 2, 3). 
0(=1 , 2, 3 

Proo f. 

Take a se t Q(gl ' g2 ' g3) of poi nts J'fj~ ' such that 

Q(gl , g2 ,g3) = ([fjr 'fjo = 0 , p(~)rj(\o for V j 

(7) 
or < 0 for Vj , 

w hich is non- empty because PIg) [ f} affords a representation( 11 ) of 

SN+1 ' and thus the eq. (2) is sOlvabl~ i n t erms of [fj 1 (or see eq. (2 ' ) 

after Lemma 3) . Since 

N 2 3 N li2 
(LA P(&,z) 'f .) = 2: (~ /\.P(go<,) t ·) > 0 
j=l J />=1 j =l J J 

(8) 

for a point ifj j6 Q (gl ' g2 ' g3) ' for c< = 1,2, 3, and for t .\] satisfy­

ing (5), we get 

(9 ) (q. e. d . ) 

I 
Now, P(g)J

N 
C PIg) ':'7-

N
, and so we have the following Theorem: 

Theorem 1. 

The intersec tion of any three of the permut ed extended t':'c 

bes PIg) '7-~ is non-empty. 

Lemma 2. 

Any arbitrary poi nt belonging t o P(gl) ~~ (1 P(g2) ~~ is 

connected by a p ath inside P(gl) '7~ (JP(g2)"~ t o a point belonging to 
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Proof. 

Take a point ();J 6 P(gl) '7-~(J P(g2)~N' By the definition 

of the extended tube, we can find complex Lorentz transformations 1\ l' 

112 G L+(C) such that 

(10) ~) . 

Since L+(C) is a connect"LI so', we can lind C" l,j 

that 

;)~ (t) 6 L+(C) , 
(11 ) 

/10<. (0) = 1 , ( ..>\=l,'~ ). 

From the invarianc e of P(I") ~~ llncler the opet'Gt".on of L+(C)' and f:" 11 

eqs. (10) and (11) it follows ihat t1« COl'tinlloW; Clll'V(!S 

(12 ) 
f 'l (~) . \ ( 

.1 ) 

1.1 ... 1,2, 

give the required paths to connect the poi.nts of the Lemma. (q.e.d.) 

According to this L emma, the questi.on of' the connectedness 

of P(gl)'7~!7P(g2)"~ was reduced to that of P(gl)'7i.(7P(g2)'7'N' 

Clearly it is sufficient to discuss the case with f"(" 1, and g2=g a n ar­

bitrary permutation of SN+1' since 

(13 ) 

and we can take P(gl)! )'j] as the set of new vaJ.'idbles. Hel'e we have 

used the definition (3) of the pel'l11l.!ted forw:ll'cl ,mel pxtended tllblCS, and 

the relation 

(14) 
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or 

(14 ') 

which follows from the fact that P(g)! )j} affords a representation(ll) 

of SN+1 . 

Lemma 3. (Jost(9 » 

'7~ = P(g1 ) ~~ , where g1 = g; 1 = ( 0, 1, . . )i . 
N,N- 1, . . , O 

Proof. 

gr induces t h e t ransformation {>j1 ---? P( g1) [>j1 = { - )j)' 

Take 1\ (- 1) = (-1
0 

-1 - 1 0 )t::L+(C). 
- 1 

Using L+(C) 1\ (-1) = L+(C) , and eq. (3), we have 

P(g1)~~ = { {>jf ; 

= (f/j] ; 
= 0;-1 

N 

;. = L +(C);I , 1m( - ,>1) E- v+J 
J J J 

>j = L +(C) (1\ (-1»';), 1m(;\(-1)7~)e- VJ 

(q. e. d. ) 

According to this Lemma we nee d t o disc uss t he connectedness of 

'7'~ (J P( g) ~N only for the cases g f 1, gr. 

A point f)jJ6"'~(l P(g)'7-N has t he following properties : 

:3 
a) A 6 L+(C) such t h at 1m ( 1\ 't.) Eo V + ' N 

~ ~ J _ 
b) 1m >j C V + where >j = P(g)"fj = f;-1 Pjk(g)?"k 

(see eq. (2) ). 

Using 
= ( 0, 1, ..... , N ) I 

g . , . '\' 
10' 11 J ••• • • IN 

= (10 , 11, ... .. . , IN)~ , t he i nverse of 
0, 1, ... .... , N 

eq. (2) (with ~ . ~ ?) is given by 
.5 J J 

N 

?j = p(g-l)?j = ~ Pjk(g- l) Yk = 

(2' ) 

{

'"" A. 
= > l j +:>\- l + ....... + 

-(fl' 1 + 9\. 1-1 + .. . . . 
J - J-

4(; 
1. < 1. 1 J J-



- 7 -

According to the property b) and the relation (2'), 

suffix of the component 4-vector 

two classes Zt(g) as follows: 

1'. of the point 
J 

we can clas sify j, the 

f>"j l6-P(g) o/-N into 

(l5 ) or ZJg) if Pjk(g-l) ~ 0 or ~ 0 , 

( k = 1, 2, . . . , N) . 

Thus a necessary condition of the property b) is tha t 

( 16) 1m '5'. E V + J _ for 

according to eq. (2') and the fact that the V± are convex sets. Inciden­

tally both sets Zt(g) are non-empty unless g = 1, gI' 

A complex Lorentz transformation 116 L+(C) can be ex ­

pressed in the normal form 

(17) 

where L 1, 

group) a nd 

l' l' L2 ~ L+ (L+ being the proper homogeneous real Lorentz 

M 6 L+(C) has one of two possible forms (4) 

cos 'f i sin)V 0 0 

(lSa) M 1<)V,Z) i sin Y' cos\<, 0 0 
~, ;!' real = 

0 0 cos h,t i sinhZ 
, 

0 0 - i sin hl coshl 

or 

1 0 -C- iC' 
+ + 0 1 -C- i'C 

(lSb) M; ("C) = , 't real . 
'C -c 1 0 
i't - i't 0 1 

Since Lt+ is conncted and leaves 
. I 

P(g)'7N and P(g)~N in-

variant, we can ignore L1 and L 2. (There exists a continuous curve 

,;hi ch connects [>j1 and f L2 )j} inside ~~ n P(g) ';"7" N' We write 

1 L2 '>j 1 as f)' :? for simplicity. As for L l' if {,,)". 5 E '7'N' then 
. J J 

{Li
1

/\ j j!C '}-oN' 
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Lemm a 4 . 
+ 

The second normal form Mii ( Z-) cannot t ran sform an y 4 -
I 

- v ec tor )j with Im>jEV", into~ , I.e. , in+oa4-vec t or >j 

with 1m '5~ EV+. 

Proo f. 
... 

readily get(4) 

T a k e th e case of M 2 ('Z" 1 and 1m7j = "7 j e:v_. Wecan 

( 19 ) 

(20a) 

(2 0b ) 

1{C) = M;('l"'l)j ~ Jl'() + i 1FL ) , 

''7 0
(?'") = 1°'" 'L('?)~+ ~3) 

J J {J JJ ' 

Since 1;(0 ) = 1'2~ < 0 , the conditi on 1;( '2:' ) > 0 gives t he range 't'>?;;> 0 

or 7:: < 7:0< 0 according t o whe t her 'Z;', '> 0 o r Lo < 0 , where 
o 2 7/'2;;) = O. On t he ot her hand - (-11tZ' )) < 0 for (:,>'{;,>O or 'C< '2;; < 0 

respec tively, s i nce - ( '7 j ( '2:))2 i s at mos t a qu a dratic function of?: in 

which t h e c oefficient of '2::2 
is <: 0, and - ( 1/0 )) 2 ,> 0 and - (~ /z;,) )2 ~ 0, 

Thus 
for V?: real a nd V II? , c=- V . 

L J -

T h e case of M ;(?: ) and ,1,1j&V ... can be prove d quite s i-

milarly. 

C oroll ary. 

T he second normal form MI( 'C") cannot t ransform a poi nt 

[ 5j} c P( g) 'j--N i nt o ;7-N for g t- 1, gl' 

Pr o o f. 

For g t- 1, gr the classes Z ±(g) are non-empty. Accor-

di n g t o Lemma 4 and the definition (16), Yj where j c::-Z±(g) cannot be 

t r an sforme d int o "1 by M~( 7: ), Thi s est ablishes the s a t ement (q. e . d. ). 
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Thus a point {>j} (; '7 ~ () P{g) 'TN ' ( g r 1, gIl , must be 

transformed into ~N by the first normal form(12) M 1{t ,X). 

Lemma 5. 

Assume that {M l ( ~, X) >j}<5 ~N for a point 

{ .:)jS.s ")'-~ (7 P{g) 7N and for a particular ( If, X ). Define 

(21 ) 

Then 

(22 ) 

Proof. 

(23 ) 

and since 

we get 

tory: 

(2 5) 

0 

p 5j 

'1 jl 
5/5') = + i 

2 
prj 

P~ 

(Sj{p)j ~ ,)-~!7 P{g) 'TN 

{M1 ( }", :t' ) :5'/p) J e::- 'j--N 

Since 

~j 
1 

P"l . 
J 

2 
p '7 j 

3 
p1 j 

and 

for -1 ~ P -s 1 

r---.." rv......... /'../ 

~j{p) = P{g»/p) = '5/p) = 't/ p ) + i 1/p) 

rv /V 

1/: v+ ' » 1j {p) &v+ for -1:0:: po<:. 1 , 

The following formul ae and definitions are self - explana-

49 

a 
'1{os)p 

1;cosY 

'2 
'jCOS h;t 

~o .. \Ll + 3 .-sm! 
J -

+ ~~sin hi!: 

~~cos h:t' - f~sinhX 
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(27) 

(28 ) 

and 
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? j (t',1 ;P) = M 1(!",X))j(p) = "fj(P,X;p) +it/P, if;p) 

1/!',;r; 1) = ')t'!,;() 

_ ( "{)Ii,;(; p) 2 
= - ( '2 j ( y, ;r ) ) 2 

+ (1 - p 
2

) \1/ yo, ;( ) ) 2 

(29) 

> _(1'j(y,;{'))2, for - l :!O.p< l . 

The n , using eqs . (28) and (29) it follows from the condit ion 

T hat is to say 

for -l"<:p<'l 

T h e eqs. (24) and (30) establish the Lemma. 

L emma 6. 

The set C of the points ['3j 1, which are of the fo r m 

0 ~~ 
J~ 0 

(3 1 ) >j + i 
0 0 

0 0 

and have the properties 

( 32a) 1m (P( g) J'j ) 
and 

(3 2b) 

for V j 

is a connected subset of ';7-~ /J P(g) ':I'-N. 

50 
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Proof. 

Clearly C is connected (actually it is c onvex), and it fol­

lows from (32a) that C = P(g} '6'-N' To prove tha t C c ~~ we opera­

te with M l ( Y, X) on [5') getting , 

o 

1lcos,\<? - 'fsinY' . J J / 

,01 
+i sin!' J 

(33 ) 
o 

o 

+i 
o 

o 
o 

which does not depend on ;r. According to (15), (16) and (32a) we have 

~; ~ 0 for j GZ±(g}. Defining Y'j such that 

(34) 

we have that 

(35a) 

and 

(35b) 

rr/2 < '/. < rr 
J 

according to (32b). Since 

when 

( 36a) 

and 

for j~Z-'g} 

(36b) 0 L 'tj < 1::;'rr and - rr .:S'I<'1j - rr <: 0 for j ~ Z _ (g) 

we conclude that 

(37) 

for 
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(38) max Y'j.,( /< 
j '"' ZJg) 

;:r arbitrary . 

We note that the domain of (y ,:t) given by eq. (38) is non-empty ac­

cording to eq. (35). This establishes that C = ~~ and so the L emma 

is proved. 

Lemma 7. 

A point {3j~ ~"""~() P (g) 7-N is connected, inside 

'j'-~ () P(g) '7-W to the set C, C being defined i n Lemma 6. 

Proof. 

It is sufficient t o consider the point [3j 1 ~ ~~ () P(g) J'-N 
which satisfies [M1 ( )t' , r) ) j}6 "j-N for a ('t , X) according to the 

explanation given just before Lemma 4, and the Corollary of L emma 4 

(The Lemma is trivial fo r g. = 1 and gI' since C = P( g) '7-N C" "j-~ for 

g = 1 and gr. Assuming g f 1, gr ' t he above statement is correct). 

Thus we can apply Lemma 5: For L)j(p)} , which is de­

fined by eq. (21), eq. (22) is valid. Changing P of :>'j(p) from 1 to 0, 

we get a continuous curve which connects ~ 5j~ = t '$ j( 1 )} and t) j} 
= {:»O)} inside cj>~ (J P (g) ':TN' where .:7; = J; + i 7; is of the 

form (31) and satisfies (32a), and 

i. e. 

(39) 

( 40a) 

or 

(40b) 

o 1 . '7 j cos 't + 'f j sm 't > 0 for Vj and for a 't . 

The allowed domain of 'f of eq. (39) can be either 

o .,( max 1j < '/ 
j ~ Z Jg) 

.<.. min 'f. < 
j eZ+(g) J 

1T 

- 1T .,( max (if· - 1T) < 'I <:. min ( 'f. - 1T) < 0 , 
j E-Z+(g) J j EZ _ (g) J 



depending on whether 

( 41a) 

or 

(41b) 

max Yj 
j 6 Zjg) 

max Yj 
j 6 Z+(g) 

< 
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min y. 
j6Z+(g) J 

where }OJ is defined by (34). However, the case (41b) can be reG.teed 

to the case (41a): Operating with the s pace rotation R 3 (TT) of angl e TT , 

around the third axis, on {·>/1, the sign of all rt i s invert ed (the 

point being denoted by \ :fj 1 ahd Yj is~ changed into ;;V; = TT - Yj which s~~ 

sfies eq. (41a). Since the space rotation R leaves <?!-~ () P(g) ~N in­

variant, and R is connected, i ~/S and t 5' j 1 are connected inside 

~~/7 P(g)')-N. Thus we need to consider only the case (41a) . 
. f· -1 ft'j0 ~1 Now j = tan (- t/ "3 j) is a increasing or decrea-

sing function of f3 for jcZ+G?) or j 6. Z jg) respectively. Thus for a 
. l' 1 ny"f? > f we have 
~j fj' 

-1 ( 4)0/ .~1') y o < max tan - t· ~ . < max f j 
j 6Z_(g) J J j 6.Z_(g) 

(42 ) 
-1 11-1" l ' < min tan (- t.f f . ) 

j <6 Z+(g) J J 
< TT 

< min 'f. <­
j ~ Z+(g)J 

This means that the increasing r~ in ~>/ J of the form (31), in 

the case (41a), does not change the property that [>j'~ c::.,...~. The 

condition f>"H <£ P(g) '7N is invariant under the change of Re -:)'j 
since the above condition is relevant only to Im 5{. Therefore the con 

tinuous curve which is given by increasing .~] can connect i >/ } 
\ "} 1" 1 ' 1 with the point 1 >j G C , where Re "5'j > max (Re?j = >j' 0) 

and 1m :?r' = Im '?f = .I'1"j' and is inside '7 I
N /) P(g)'-;r'N. This 

establishes the Lemma. 

Corollary. 

P (g 1 )~~ /i P(g2) ""'N is connected. 
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P roof. 

Lemma 6 and 7 show that any point £ >j 1 G oy-~ () P(g) 'r N 

is connecte d t o the connected set C c:.. ":)'-~ (J P (g):r
N

, i ns i de 

"7~ n P(g),," N which proves the connectedness of 'i7"~ () P(g) ':I-N . Eq. 

(13) generalizes it accordingly. 

Theorem 2. 

P(gl )7~ ()P(g2)7~ i s connected. 

Proof. 

It follows from Lemma 2 and t he last Corollary. 

Theorem 3. 

The analyti c continuation of W -function due t o local com-

mutativity is s i ngle- valued in t he domain U P() 0,...1 where S 
S 

C" g vN 
g c - SN+1 

is an arbitrary subset of the symmetric group SN+1 . 

Proof. 

From Theorem 1,2 and L emma 1 It follows that 

for 

is a non-empty connected domain, and c ont ains P(gl)JN () P(g2)JN which 

is non-empty. The l atter forms a real environment( 13) , since t he set of 

Jost points is an open set in t he real 4N-di mensional Minkowski space. 

Thus local commutativity equates (up t o a sign) t he W -functions at 

P(gl)JN f7 P(g2)JN and gives the single -valued analytic continuation in 

P(gl)'7~ () P(g2) OJ~ since P(gl)')-~ (J P(g2) ':I~ is connected. ApplZ 

i n g this process to all the pairs of ~ P(g)'7~ 1 S S ,the state-[ 5 g e- < N+1 
ment of the Theorem follows. 

3. Simply-connectedness of the union of the extended tubes . 

First we prove t he simply - connectedness of an extended t~ 

be itself. To this end it is convenient to use the covering group (the uni. 

versal covering group) L +(C ) of L+(C) ( L +(C) is isomorphic to 
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SL(2, C)(i)SL(2, C) and is simply-connected, where SL(2, C) is the 

complex unimodular group of 2 dimension. Clearly L+(C)'7-"N ='7~ = 

= L+(C)'TN , since L+(C)~N covers ";;r~ twic e as does L+(C) ')'-N) . 

L emma 8. 

(I} I 
If a point L >j 6')-N can be expressed by 

(43a) 
I - .-

>j = 11 ° (·)j)O = III (>j) 1 

where 

(43b) 

then there exist continuous curves 

(44a) 

with 

(44b) 

such that 

(44c) 

ves 

(45a) 

with 

(45b) 

such that 

(45c) 

- I 
11(0)=1 

for O:5t<l 

and { >/t)] c ~ N 

/\'(1) = (11
1
)-1/10 

')P) = ()'h 

(0< = 0,1)' 

(0<= 0, 1), 
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according to a Lemma of Hall and Wightman included in Lemma 1 of 

ref. (4). 

Then we have 

( 46) 

where we put 

(47) 

It is easy to see that 11 (t) c L+(C) and [>/t)} c '7-N ' (0 :'5. t ~ 1), 

as defined by (47) and (45c) respectively, are the required curves. 

Lemma 9. 

For a continuous closed curve 

(48a) 

with 

(48b) 

we can find continuous closed curves 

(49a) 

with 

(49b) ,1(0)=1\(1) and 

such that 

(50) O~s~l, 

with a suitable parametrization by s, where t(s) is a non-decreasing cog 

tinuous function of s with t(O) = 0 and t(l) = 1. 

Proof. 

From the facts that ~~ = _ U X ~N ' that /f<j-N is 
A6L+(C) 

an open set, and that the curve (48) is an image of the compact set [0,11 

due to a continuous mapping T, it follows (14) that there exists ad> 0 

such that the image of J -neighbourhood of each point t E (0, IJ due to 

5C 
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T is found in a suitably chose n if "7-N' Therefore we can find a finite 

number of open sets /1,(9'-N (01..= 1,2, .... ,n), which covers the curve 

(48) entirely in such a way that for a suitable division 0 = to < tl < .. 

. .. -< tn = 1 of [0, 11 and images Q..!z = f >;(to(,)1 of to(, (r,,( = O. 1, .. 
.....----... -

... ,n), the arc Q~ -1 ~ of the curve is contained in /\,{'rN' (0( = 

= 1,2, .... , n). Since 1<.6 L+(C) is a homoeomorphic mapping of ",:, 

onto 1z ":TN' the mapping (/\c,(J-l of 0~c. -V-{, gives a conti ­

nuous curve. 

( 5la) Q(o() Q(o()={(l"'(o()(t)1. <:. 1C':r 
0( -1 0<. U J 5, to( -1 - t S. to() N 

with 

(51b) ~ = /I_,Q~:<) = !L+ 1 Q~C'''(+I) (0<. ) ~ '" '" '" = 1, 2, ... ,n , 

where we put I\n+1 = ;\1 and Q~n+l) = Qbl ) The relation (51) 

enables us to apply Lemma 8 to find curves 

( 52a) 
;\ (oZ, 0( +1) ( '''l:A ) c L +(C) and Q(:X.' 0( +1)( Z() = ')--N 

with 

(52b) 

such that 

(52c) 

for cI-- = 1,2, ... ,n. Now we introduce the parameter s, 0 -5: s ~ 1 

and with the partition 

( 53a) 

we put 

( 53b) 

O = sO < 1 2 n-l sn = s 1 < S < s 2 < s -<...... < s < sn-< 

to<. -1 <: tis) ~ to( , 
0(-1 

for s ~ s ~ So( , 

tis) = to( and 0";': GtJ( (s) ::: 1 

5, 

for s ,<: s ~ so<.. 
t7<,-

0<.. = 1,2, ... ,n 

1 , 



- 18 -

where the parameters t (s) and ,t (s) are non- decreasi ng c ontinuous 

functions of s . The continuous closed curves Z;;-; (t(s))l = t);(s)F-7~ 
I I I I ..-. -- -

connecting Q O I Ql' .. . . , ~ = 't ' 1\ (s)=L+( C) connecting 1\ l ' 
- - - - ~1 
1\2' . ... , /In' /In+1 = 1\ 1 (putting l'1(s ) = 110<. for s - L.S ~so<) 

( (, d.- . (1) (1) (2 ) (n) (n+1 )_ (1) 
and 1."5"/s)) c: J N connectmg Q O ' Q 1 ' Q 1 ' . .. , Q n , Q n - Q O • 

which were described above , give t he requi red relation (50). 

Corollary . 

For a continuous curve (48a) , we can find continuous c ur -

ves (49a) such t hat (50) i s satis fied with a suitabl e paramet r iz a tion by s . 

Proof. 

Thi s follows from Lemma 9 and from t he fac t that any co~ 

tinuou s curve can be consi dered as a part of a cont inuous closed curv e . 

Theorem 4 . 

The ext ended tube 
, / '7-N i s s i mply - cormected. 

Proo f. 

'7-~ i s c onnect ed s in c e L +(C) and ':IN are connected 

and 7'~ is a continuous i mage of L +(C) @ '7 N. According t o Lemma 9, 

any continuous closed curve (48) belonging t o .,.. ~ can be expressed by 

eq, (50) in terms of the continuous closed curv es (49) belonging to L+(C) 

and ~N . Since L+(C) and ')-'N are simply-connected (note that "7"'N 

is convex}, we can let the curves (49) shrink t o points ins i de eac h do­

main. Therefore the curv e (48) shrinks t o a poi nt i ns i de '7'~ . Thus 

the Theorem is es t ablished. (q. e. d . ). 

For proving the s imply -cormect edness of U P(g) :7"~ , we 

prove the following Lemmas . 

Lemma 10 . 

If the simply-connecte d dom a i ns D 1, D 2, .... , Dn hav e 
n 

a non- empty common int ersection n D , 
j = 1 J 

and t he inters e c tion Dk n Dl ' 
n 

(k, 1, = 1, . . .. , n}, of a ny two is c ormected, t he n t he un i on U D , 
j = 1 J 

is s im 

ply - c onnecte d. 

5[; 



- 19 -

Proof. 
n 

n 
jtd1 D j is connec ted, since any point of it is connected to 

n 
n D .. 
j = 1 J 

Take a curve belonging to U D
J
. whic h runs through domains 

j=1 

Di1 , Di2 , .... , Dim where (iI' i 2 , .... im ) is a set of integers taken from 

the set of integers (1,2, .... , n) with repetition allowed but i k r i k+ 1 ' 

(k = 1,2, ... , m-l). Since the curve necessarily must pass through 

Dik n Dik+
1 

befors leaving Dik , we can choose a set of points , 
;---... 

Q1,2,······Qm-1,m on the given curve Q 1Qm such that Q1C::. T\I' 

Qk,k+1cDiknDik+1 (k=l, .... , m-1), Qm E Dim' and 

.-------. ---
Q1Q1,2CDi1' Qk_Lk Qk,k+lC-Dik , (k = 1, ... m-1), 

---------Qm-l,m Qrif Dim> and where Qk-1, k Qk, k+1 is the portion of the curve 

n 
between Qk-1, k and Qk, k+1 . Taking a point 0 Eo (\ D. 

j=l J 
, we can draw 

..--.. 
the continuous curves joining 0 and Q's in such a way that 0 Q 1 C_ D. , ...---... ____ 11 

OQk,k+1CDiknDik+1' (k=1, ... ,rn-1), and o Qm'=:" Dim , since 
........, 

Dk n Dl , (k,l = 1, ... ,n), is connected. Thus all the curves OQk _l, k' - ~ 
Qk-l, k Qk, k+l and 0 Qk, k+1 are inside Dik . Using the terminology 

of equivalence(15) (denoted by ''-') for the case where two curves with 

same ends can b e deformed continuously to each other, and multiplic~ 

tion (denoted by • ) for joining two curves when the end point of 

the first is the starting point of the second, we have the following equi­

valence relations, s ince Dj is simply connected: 

r 
~ ------. --------Q 1 Ql, 2 

.'V Q10 OQ1 2 , 
I -------- ~ ~ 

( 54) /' Q 1 2 Q 2 3'V Q 1 20 OQ2 3 "-

l 
" , , 

~ - ...--------.-.. -----.. 
Qm-1, m Q m "" Qm-1, m 0 OQm 

By multiplying these successively we get 

~ r--- ..----... 
Q 1 Qm --v Q1 0 OQm 

since (15) .'"""' ""' r--.. r--- .-.. 
AB BA '" 0 and AB 0 '"V AB (Here BA represents 

59 
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~ 

the same curve as AB but with opposite direction). Thus we have pro-
."---' ..---.. 

ved that any curves joining Q 1 and Qm are equivalent t o Q10 ' 0 Qm ' 

and t he refore are equiv alent t o each other. This p roves t he s tatement. 

Lemma 11. 

Let D l ' D 2, .. . . , Dn be simply- connec t ed domains. If any 

three of them has a non-empty c ommon int ersection, and t he int ersection 
n 

of any two of th em i s connected, t hen t he union U D · i s s i mply-connec ­
j= 1 J 

ted. 

Proo f. 
n 
U D. is connected since any t wo poi nt s ~ ~ Di J (0( = 1, 2)' 
J= l J ,... 

are connected t o each ot her through Di1n Di 2 . Take a continuous curve 
n 

contained in U D. which runs through t he domains Di l.-c. Di ~ 
j=l J 2 

~ D1· , and tak e th e point s Q1 , Q1 2"'" Qm - l m' Qm on t he 
m " 

curve, defined i n t he same way as i n t he proof of Lemma 10. For t he 

case n:$ 3 and t h e case n > 3 and m oS 3, t he s t a t ement is tru e ace or -

din g to Lemma 10. Assume n > 3 and m > 3. Si nce Di1 ' Di2 , and 
....---.. .-----.. 

Di 3 satisfy the c onditions of Lemma 10, t he curve Q1 Q1 2 ' Q 1 2Q2 3 
~.....---.... " , 

is equivalent to Q1 Q1 2 3 . Q1 2 3Q2 3 where Q 1 2 3 e Di 1 (\ Di 2n D1· " :JJ, " 3 ------. ________ r----. 

and Q1 Q1 , 2,3 CDi1 ' Q 1, 2, 3 Q2 , 3 c::. Di 3 · Then the curve Q 1 Qm i s -- ---- -....----..... 
equivalent to th e c urve Q 1 Q1 , 2, 3 ' Q1 , 2,3 Q2 ,3 ' Q2, 3 Qm whic h runs 

throu gh Di1 ~ Di3 '-'lo • • •• • • ~Dim ' where t he number of domains 

is reduced by one from t ha t of Ql Qm ' Thus by induc t ion we arrive at 

the statement of the Lemma. 

Th eore m 5 . 

tubes is 

Proof. 

The union U P(g) c:;--~ 
g 6 S SSN+1 

simply-connectea. 

of any number of extended 

According t o Theorem 1, 2 and 4, any subset of 

{P( g),.-~ 5 gc-SN+1 satis fies t he conditions of Lemma 11 . Thus the Theo 

rem is established. 

60 
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4. Simply-connectedness of the intersection of two extended tubes. 

Lemma 12 . 

P(gl }'7~ (I P(g2}':r N is simply-connected. 

Proof. 

It is sufficient to prove the case gl = 1 and g2" g arbi­

trary but g f 1, gI' as mentioned before (see eq. (13) and Lernm8 3}. 

We can prove the Lemma by continuously deforming a continuous clo ­

sed curve of "7' ~ () P(g} c;-N into a continuous closed curve of the con 

vex set C C '7N () P(g}':'r N' C being defined in Lemma 6. (C is con­

vex because of the definition (3l) and (32), and thus is simply-connec­

ted). 

For a continuous closed curve [S;'(t}}C'T~ n P(g}c:J-N , 

0< t ~l , we can find continuous closed curves 1\ (s) CL+(C} and 

b'/s}} c1-N such that 

" 1-
(55) '~)t(s} } = :r/s} = !\ (s) J'/s} , 0 ~ s :S 1 , 

with a suitable parametrization by s, according to Lemma 9. A corre­

sponding expression to eqs. (I7), (I8) and the Corollary of Lemma 4 for 

the case of the covering group L+(C} enable us to express II (s) by(4} 

(56 ) 

- -1' -1' '" 
where Ll (s), L 2(s} C. L+, L+ being the covering group of L~ ; 

Ml (t (s), :t (s)) c.. L+(C} is given by eq. (18a), and Ll (s), L 2(s} and 

Ml ('f(s), X (s}), (0 ~ s S,1) , are continuous closed curves. Without 

loss of generality, we can ignore the ' Ll (s) and L 2(s} by a similar 

reason (16) as described before Lemma 4. 

For 

closed curves 

(57) r;(s;p} = 

" I I ') j(s} = 'f /s} + i ,''t /s} , define a set of continuous 

+i 

61 
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Since f?'}s)} = [:>}S; 1) 1 c: '7~ n P(g) '7N and 

[M1 ( )P (s) , ::t (s))~(S)f C. '1-N , we get 

(58a) [)~(s ; p)}C '7~ n P(g)'YN 

and 

(58b) £ M1 ('t (s), X (s)) 'fj(s;p)] C ~N ' 

for 

(58c) and 0 ~ s ~ 1 , 

according to Lemma 5. Thus a continuous chenge of p from 1 to 0 aJ. 

fords a continuous deformation of [>~(s)} into t he continuous closed 

curve [-;)s; o)} c ~~ f) P(g) ~N ' i~side ':1-'~ (7 P(g))' N . The latter 

curve is of the form of eq. (31), and satisfies the relation 

{Mi( Jt'(s) , :t(s)) >j/(S;O)Sc'7N , O<s~l . Finally t he procedure . 

described in t he proof of Lemma 7 affords a continuous deformation of 

[::\.'(s;O)l into a continuous closed curve contained in the convex set 
J 

C C '7~ () P(g) 'r
N

, inside ';7~ /1 P(g)~N. (A space rotation and in-

creasing of the same amount of t he real part 'f1 of the each compo-
<; I J 

nent 4-vector of l. )/s; O)] as described in Lemma 7 keep the conti-

nuous closed curve inside ~ ~ /1 P(g) ;-N). Since the set C is sim­

ply-connected, we can deform the derived continuous closed curve into 

a point in C C <{;r~ ,I] P(g);-N. Thus the Lemma i s established. 

Theorem 6. 
, / 

P(gl)'7' ~ (J P(g2):TN is simply-connected. 

Proof. 

For a continuous closed curve ['f;h)$ c. P( g l)oj-~()P(g2 )'f~, 
0~t:::01 , we can find continuous closed curves X(s)C L+(C) and 

£>j(s)jc P(gl):J"'~ /7P(g2):7"N such that the eq. (55) is satisfied with a 

suitable parametrization by s , according to Lemma 9. From the fact 

thatL+(C) and P(gl)'j-~(J P(g2)'7N are simply- connected (Lemma 

12), we can conclude the Theorem. 
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5. Discussion. 

5. 1. Theorem 3 follows from Theorem 5, since the analytically 

continued function is connected. We note, howeve r, that the former has 

been derived by a smaller number of pieces of knowledge compared with 

the case of the latter, as seen in the proofs in the text. Similarly Thto­

rem 4 can be considered as a stronger statement than that of the Barg­

mann-Hall-Wightman Theorem(4). 

5.2. According to Theorem 3, the Ruelle Theorem(17)," :lic' 

states that the holomorphy envelope of U P(g) 1'-~ contains the to-
g c-SN+l 

tally space-like points(5) S, turns out to be applicable to the quantum 

field theory which is based on axioms (I)-(IV). The differenc e of the 

contents of the Ruelle Theorem and the Dyson'Iheorem(6) lies in that the 

former is global while the latter is local in character. 

5.3. A continuous mapping(l, 18) 

(59) j, k = 1,2, .•• , N , 

mapps the domain ')-~ (or 7 N ) into a space composed of a symme­

tric complex NxN matrix of rank -<:: 4, the image of the mapping be­

ing denoted by IlrN • Since the mapping (59) is such that an inside point 

of '7~ is mapped to an inside point of lIrN and a boundary point to a 

boundary point, all the Theorem 1- 6 of this article are valid if we re­

place 'T~ by l1tN . 

5.4. The results of this article seem to clarify the statements 

about local commutativity given in the paper of ref. (1). This is due to 

the reason that in constructing a quantum field theory from a set of a­

nalytic functions, following Wightman, we need knowledge of what are 

the domains of analyticity of these analytic functions. 

5. 5. Streater(19) has extended the discussion of the analytic 

properties of the W -function to that of an arbitrary matrix element of 

the product of field operators, getting the same analyticity domain as 
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th at of the W -function. Our results then equally applicable to the case 

of Streater's treatment. (Actually he seems to have assum ed Theorem 

3 of our text in his statement). 
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Appendix A - Some properties of the Jost points and the extended tube(20) 

lows: 

(A. 1) 

and 

G<J [o(]± 
Define the sets of the real points, KN and KN as fol-

[.iJ _ fl ~ 1 f!. -
KN - ~ 5 j 5; 3' j - 0 for f!. f- ~, (J..;1,2,3) 

[oI.]t _ [S 1 ~rJ... f!. _ } 
{A. 2) KN - L$J); :> j ~ 0 , ~ j - 0 for f!. f- 0<. , (o<; 1,2 , 3) . 

Clearly K~] is invariant under the operation P{g) , 

(A. 3) P{g)~~J ( i <rj}) ; K~l (P{g) i~ 1 ) ; K~J (f'r
j 
~ ) 

a nd 

(A. 4) 

If we write as 

(A. 5) 

K~oiJ{'f) is the o\.-th coordinate axis (~; 1,2,3) of the space compo­

nent in the real Monkowski space . The similarly defined K~1r{r) and 

Kr-Cf) stand for the J.-th positive and negative coordinate axes. The 

set Q{gl' g2' g3) defined by (7) in the text can be expressed in terms 
I"'(]+ 

of KN - as follows 

Lemma A 1. 

(A. 7) K~l n 
Proof. 

g]~ \.,(1-
; _ @ (P{go()KN + P{&x. )K"N ) 

r:I...- 1,2,3 

r.i\r Gz1-
P{g)J

N 
; P{g)KN + P{ g)K

N 

(A. 7 1 ) 

It is sufficient to prove the case g; 1, i. e . , 

K[,(l n J ; rcBl + + K[oI.J-
N N -N N' 

since (A. 7) follows from (A. 7') by operating with P{g) and the propeE. 
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ty (A. 3). First, we have 

K;;+ + K~l- c:= I
N 

N N r;( 

{2.. IV"rj)2 = (~i\ ':fj)2 > 0 

since 

J=1 J=1 

for ' a point f'fj 16 K~± and for t X j 1 satisfying eq.(5). For a point 
. ~ .. ~ Ws 
Cfj 16 (KN - ~± P{g) KN ), either at least one component 4-vector 

1'J': ,:: 0 or one such pair ('f.<><-, 'f~2) have opposite signs. Thus for 
J1 N 

both cases, we can find a [~.J satisfying (5) which gives z::. A . '1: = 0, 
J j=1 J J 

and so 

This completes the proof. (q; e. d. ) 

Define 

(A. 8) 

where Kioil/>J is the {d... ,(3 ) coordinate plane in the space part of the 

Minkowski space. 

L emma A
2

. 

(A. 9) 

where the right hand side stands for the closure of the set P{g)JN. 

Proof. 

Take the case 0< = 1, j3 = 2 for simplicity. Clearly 

(A.IO) U5;1; 1'~=0, P{gff~>O for ¥j or< 0 for ¥j1)c..p(g)JN 

according to Lemma A1 , and such a point can be found in any neighbour-
. . Ll, 2J 

hood of any pomt of KN . 
Lemma A 3. 

The extended tube is concave at any point belonging to 

d K~l!:, the boundary of K~i, which is contained in d'J"'~ () J 'J"'N . 

6C 
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Proof. 

Clearly () K~.£]~tc.:- (? C;~ (7) "fN ' according to Lemma ,A 1• 

First we prove the concavity of '?J~ at the ori gin (01 {; z. K~l ~ Take 

a hyperplane passing through the origin, which is expre s s ed as 

(A. 11) ~ ~ ( v ---'<' v + b'" fh v) 
LLa,~ , '/' j: i » ; 0 J J J J 

= 0 , 

where aV and b"o are real. The n it can be shown that for any choice 
J y J , 

of aj and b
j

, we can find a point belonging to I N c--::rN, which sa 

tisfies the eq. (A. 11), in any neighbourhood of the origin. To prove this, 

take a real point tSj 1 eo I N such that 

(A. 12) 

forVj 

~ ~ 3 j > 0 (or <: 0) for Vj (a) either when 3 aj t- 0 

( ~ ,/!l = 1,2,3) 

(b) or when a';1, = 0 
J ( r = 1,2,3 and for Vj). 

The point (A. 12) can satisfy eq. (A. 11) easily by adjusting '1'1> for the 
J 

case (a) and evidently for the case (bl. Moreover, if a £'11" t of 
( . J 

(A. 12) satisfies eq. (A. 11), then all 11'·f.S does, 1 being arbitrary 
J 

real number. This proves the above 'statement. 
. . _ !,;/J± 

N ext we consider a point l3' j $ eo. a K
N

. For simplicity 

take the case :1.-; 1, + sign in the r. h. s., i. e., ~, satisfies the co,!! 
~1 ' - . J 

ditions 'C', ~ 0 and-e ~ = 0 (~t- 1). Equation for a hyperplane pas 
~ J . ) J -

sing through the point f-~\S is 

(A. 11') 

Take ~j 

(the case, 

N 3 == L- /-:-
j= 1 V=O 

-~ 
= S j for j such that '\ j >- 0 

> 0) for j such that'S' j = O. 

= O. 

and '-f, of the type (A. 12) 
,1 

It is easy to see that this is 

a Jost point and that we can find a solution of (A. 11') from such points in 

any neighbourhood of the point ~r ,%. Thus the Lemma is established. 
J 

6 'j' 
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Appendix B - P roof of the i rreducibility of the represent ation P{ g) . 

Lemm a B 

The set ~r j1,{'fj =Xj - x j _1 ' j = 1, 2, ... , N ) forms a 

basis of the irreducibile representation, of the s ymmetri c group SN+1 

operating on the suffi x of (x O' x l' .... . , x N), which corre sponds to the 

partition ( i\.) = (N, 1). 

Proof. 

mation: 

(B. 1) 

Permutation 

rv 
X 

1 
= A{g) 

g = ( 0, 1, .... , N ,I · d h f .. . !tin uce:; t e trans or 
10 , 11,··, lN -

or for short 

j = O,l, .••.. , N 

where A{g) is a representa tion of SN+1' 

wever A{g) is not irreducible, since 50 
under SN+1 . 

and thus det (A{g)) t- O. Ho-
1 N 

= N+1 ~ x. is invariant 
j =0 J 

Make the following change of variables 

{B. 2) 

where 

(B. 3) B= 

Writing 

(B. 4) 

1 
N+1 

-1 

o 

o 

1 

1 
N+1 

1 

-1 

o 

1 
N+1 

o 
1 

o 

60 

j =O,l, . .. .. ,N J 

1 
N+1 

o 
o 

1 

det B = 1 . 
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N 

(E. 5) 2:. bJok = 0 
j =O 

-1 from E E = 1. 
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(k = 1, .... ,N) 

Now the change of basis, (E. 2), leads to 

(E. 6) j=O,l, .... , N 

where, using eqs. (E. 1) - (E. 5), we get 

1 bi0 1 biON 

A'{g)=EA{g)E- 1 = E 
1 bill bi1N 

(E. 7) 
1 o o 
o 

= P{g) 

o 

= 

Thus we get a representation P{g) of SN+1 ' which basis are t1j 1 ' 
(j = 1, ... ,N), and det (P{ g)) f O. 

Using the relation 

tr{A'{g)) = tr{A{g)) = number of Xo which is not changed by 

the permutalion g e SN+l ' 

we can calculate the character 'X p{ 10( ,2(3 i::::): for the rep~esent~ 
° 0 ° I ° 

tion P{g); ~f the class ~orresponding to a partition in cycles (1"'-, 2i'?>, •• ) 

(for notation see ref. 21). Since X. A' 0< ~ = 0(, we have 
(1 ,2 , ... ) 

(E. 8) 

where 

-y P c( ~ = 0( _ 1 = X (N, 1) 
/\., (1 ,2 , ... ) (lo(,2~, ... ) 

X (N, 1) ~ 
(lc.l.,2, ... ) 

is the character of the class (I"', 2~, ... ) for 

the irreducible representation corresponding to the partition (N, 1), and 

the second equality can be readily obtained by the graphical method(22). 

69 



- 30 -

Therefore P(g) = (( Pjk(g))) is the irreducible representation which 

corresponds to the partition (N, 1). Incidentaly the dimension nP of 

the representation is 

which is, of course, consist ent with the number of t fj} 



- 31 -

Footnotes and References 

(1) - A. S. Wightman, Phys. Rev. 101, 860 (1956) 
(2) - For detail discussion of these axioms and for further referen­

ces, see 
A. S. Wightman in "Les Problemes Mathematiques de la Theorie 
Quantique des Champs" (Colloque Internationaux du CNRS, Lille, 
1957) p. 1; 
A. S . Wightman in "Cours de 1a Faculte des Sciences de l'Univer 
site de Paris (1957-1958); -
A. S. Wightman, Nuovo Cimento Suppl. .!i, 192 (1959); 
A. S. Wightman, J. Indian Math. Soc. 24, 625 (1960); 
R. Hflag, Nuovo Cimento Suppl. 14, 131 (1959); 
G. Kl1llen in "Relations de Dispersion et Particules Elementaires" 
(Hermann, Paris, 1960) p. 387; 
R. Jost in "Theoretical Physics in the Twentieth Century" (Inte£ 
science Pub. Inc., New York, 1960) p. 107; 
R. Jost in "Lectures on Field Theory and the Many Body Pro­
blem" (Academic Press, New York, 1961) p. 127; 
H. Araki, Suppl. Prog. Theor. Phys. (Kyoto) TI. 1 R, R~ (1 fl61); 

R. Haag and B. Schroer, J. Math. Phys. ~, 248 (1962); 
w. Schmidt and K. Baumann, Nuovo Cimento 4, 860 (1956). 

(3) - Here "proper" means "connected component ~ith unit element". 
Sometimes it is called "restricted" or "proper orthochronous". 

(4) - D. Hall and A. S. Wightman, Kgl. Danske Videnskab. Selskab. Mat­
fys. Medd. g, n.5 (1957) ; 
R. Jost, loco cit. 

(5) - It follows from the Dyson Theorem(6) that the analytic continu~ 
tion of the W -function due to local commutativity is single-va­
lued at least in the small neighbourhood of the totally space-like 

points S = {£Tj1; I j = Xj - Xj_1' xk - x16Vs' (k,l = 0,1, ... 

. . ,N; k r 1) S . Araki has concluded(7) the connectedness of 

Us P(g)~~ by showing that Us P(g)J
N 

is connected, 
gE N+1 gc- N+l 

I 
P(g)JNC:P(g)~N being the set of Jost points (for definition, 

see Sect. 2) which is connected. The fact that Us P(g)JN is 
gE N+1 

connected follows from Araki's Lemma(7~ which states that any 

point of the connected set K = [U'
J
' ~ ; 'e. = 0, 1'. = x. - 1'; 1 ) ;> J '-J ~J...,-

are real, (~0'~1""" ~N) are all distinct} is contained in 

It P(g)J
N 

and from the fact that Kf/P(g)JN is non-empty 
g~ N+1 (8) 
for :Vg6SN+ 1 . (It also follows from the existence of the 

non-empty intersection JNn P( (k-l, k) )IN , g = (k-1, k) being 

a neighbouring transposition belonging to SN+l' which seems 

71 



(6) -
(7) -

(8) -

(9) -
(10) -

(11) -

(12) -

(13) -

(14) -

(15) -

(16) -

- 32 -

to be not a direct consequence of that Lemma contrary to Ara­
ki's statement) . Then Araki has stated that the analytic conti­
nuation of W - function due to local commutativity is single-valued 
in a small neighbourhood of Us P{ g)JN , which is the con-

ge N+1 
segue nce of t he connectedness of Us P{g)J

N
. This is, 

g6 N+1 

of course, a weaker conclusion than tha t of the Dyson T heorenl, 

since U P{g)JNCS. 
gEoSN+1 

For the analysis of the analyticity domain of the three - point 
function (N ~ 2), see 
G. Ka'llen and A. S. Wightman, Mat. Fys . SkI'. Kgl. Danske Viden ­
skab. Selskab. 1:., n.6 (1958); 
D. Ruelle, Helv. Phys. Acta..:!i, 587 (1961). 
F, J. Dyson, Phys. Rev. 110, 579 (1958). 
H. Araki, loco cit. (see Sect. 5); 
H. Araki, Ann. Phys. ll, 260 (1960) Lemma 1. 
A. S. Wightman, J. Indian Math. Soc., loco cit., p. 660; 
Y. Tomozawa, Nuovo Cimento~, 543 (1963) Lemma 2. 
R. Jost, Helv. Phys. Acta lQ., 409 (1957) . 2 
We use the metric given by x 2 ~ - x6 +.3l . 

Actually it is the irreducible representation corresponding to 
the partition (A) ~ (N, 1) . (See Appendix B). 
Apart from the real Lorentz t ransformation belonging to L+ . 
(See the discussion given before Lemma 4). 
S. Bochner and W. T. Martin, Several Complex Variables (Prin 
ceton University Press, 1948) Chap. II, § 2 . -
H. Seifert and W. Threlfall, Lehrbuch del' Topologie (B. G. Teu!:: 
ner Verlag, 1934) Kap. 2, § 7 Satz IV; or 
F. Hausdorff, Set Theory (Chelsea Pub. Comp., New York, 
1957) Chap. VI, 26 Theorem III (The Borel Covering Theorem 
for separable spaces) . 
L. Pontrjagin, Topological Groups (Princeton University Press, 
1958) Chap. VIII, Sect. 46. 
The continuous closed curve ~:>;{s)} c:. ')"~ n P{g)'7"N can be 

deformed continuously into the continuous closed curve 

{L 2{S) :>j{s)} c. ~~ f) P{g) ~N' inside ~~ () P{g) ~ N' since 

L: leaves '(!~ () P{g) '7N invariant, and since it follows from 

the simply-connectedness of i,: that we can deform continuously 
the continuous closed curve L2{s)C r:: into the unit element of 

i~, inside L:. For the continuous closed curve r:>/S)Sc,'7'-N ' 

the continuous closed curve t Li
1

{s) '>/s)5 is contained in 

~N· 
(17) - D. Ruelle, Helv. Phys. Acta~, 135 (1959) 



(18) -
(19) -
(20) -

(21) -

- 33 -

A. S. Wightman, J. Indian Math. Soc. , lac. cit., p. 640. 
R. F. Streater, J. Math. Phys. ~, 256 (1962). 
These properties were not used in the text, but it might help in 
discussing the structure of the extended tube. For systematic 
analysis of the boundary, see 
A. S. Wightman, J. Indian Math. Soc., lac. cit. 
H. Hamermesh, Group Theory and its Applications to Physical 
Problems (Addison-Wesley Publ. Camp. Inc. , Reading, 1962) 
Chap. 7 . 

(22) - H. Hamermesh, lac. cit. , p. 206 (Problem (3a) ). 




