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1 Introduction

The problem of calculating inclusive cross sections at highenergies and high momentum

transfers has become quite important in the last two decades, during which a lot of exper-

imental data on deep inelastic processes have been accumulated. In particular we refer

to deep inelastic scattering (DIS)[1-12], semi-inclusiveDIS (SIDIS)[13-26], Drell-Yan

(DY)[27-32], e+e− annihilation into two back-to-back jets[33], while analogous experi-

ments have been planned recently[34-39]. One of the aims of high energy physicists is

to extract from data distribution and/or fragmentation functions, especially if unknown.

Among them, the transversity[40-43] is of particular interest, since it is the only twists-2

distribution function for which very poor information[44,45] is available till now. But

also transverse momentum dependent (TMD) functions - especially the T-odd ones - are

taken in great consideration; for instance, knowledge of the Collins fragmentation func-

tion[46] or of the Boer-Mulders function[47] could help extracting transversity, which is

chiral-odd and therefore couples only with chiral-odd functions. Moreover, TMD func-

tions are involved in several intriguing azimuthal asymmetries, like the already mentioned

Collins[46] and Boer-Mulders[47] effects, or the Sivers[48,49], Qiu-Sterman[50–52] and

Cahn[53,54] effects, which, in part, have found experimental confirmation[19–23,25,33]

and, in any case, have stimulated a great deal of articles[55-64]. Lastly some questions

remain open, among which the parton interpretation of the polarized structure function

g2[65,66]. Obviously, all of these data and kinds of problems are confronted with the

QCD theory and in this comparison short and long distance scales are interested, so that

the factorization theorems[67-70] play a quite important role in separating the two kinds

of effects. Strong contributions in this sense have been given by Politzer[71], Ellis, Fur-

mansky and Petronzio[72,73](EFP), Efremov, Radyushkin and Teryaev[74,75], Collins,

Soper and Sterman[76,77,69], and Levelt and Mulders[78](LM).

In the present paper we propose an approach somewhat similarto EFP’s and to

LM’s, but we use more extensively the Politzer theorem on equations of motion (EOM[71]).

We consider in particular the hadronic tensor for SIDIS, DY and e+e− → ππX. We also

consider energies and momentum transfers high enough for assuming one photon approx-

imation, but not so large that weak interactions be comparable with electromagnetic ones.

As regards time-like photons, we assume to be far from massesof vector resonances, like

J/Ψ, Υ orZ0. Lastly, we do not consider the case of active (anti-)quarksoriginating from

gluon annihilation.

Our starting point is the ”Born” approximation[78] for the hadronic tensor, which
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reads, in the three above mentioned reactions, as

Wαβ(PA, PB, q) = C
∑

a

e2a

∫

dp−d2p⊥Tr
[

Φa
A(p)γαΦb

B(p′)γβ

]

. (1)

HereC is due to color degree of freedom,C = 1 for SIDIS and1/3 for DY and e+e−

annihilation.p andp′ denote the four-momenta of the active partons, such that

p∓ p′ = q, (2)

q being the four-momentum of the virtual photon and the− sign referring to SIDIS, the

+ to DY or to e+e− annihilation.ΦA andΦB are correlators, relating the active partons

to the (initial or final) hadronshA andhB, whose four-momenta are, respectively,PA and

PB. We restrict ourselves to spinless and spin-1/2 hadrons.a and b are the flavors of

the active partons, witha = u, d, s, ū, d̄, s̄ andb = a in SIDIS, b = ā in DY and e+e−

annihilation;ea is the fractional charge of flavora. In DY ΦA andΦB encode information

on the active quark and antiquark distributions inside the initial hadrons. In SIDISΦB is

replaced by the fragmentation correlator∆B, describing the fragmentation of the struck

quark into the final hadronhB. In the case ofe+e− annihilation, both correlatorsΦA and

ΦB have to be replaced by∆A and∆B respectively.

In the approximation considered we define the distribution correlator (commonly

named correlator) as

Φij(p;P, S) = N
∫

d4x

(2π)4
eipx〈P, S|ψ̄j(0)ψi(x)|P, S〉. (3)

HereN is a normalization constant, to be determined in sect. 4.ψ is the quark1 field of a

given flavor and|P, S〉 a state of a hadron (of spin 0 or 1/2) with a given four-momentum

P and Pauli-Lubanski (PL) four-vectorS, whilep is the quark four-momentum. The color

and flavor indices have been omitted inψ for the sake of simplicity and from now on will

be forgotten, unless differently stated. On the other hand,the fragmentation correlator is

defined as

∆ij(p;P, S) = N
∫ d4x

(2π)4
eipx〈0|ψ̄j(0)a(P, S)a†(P, S)ψi(x)|0〉, (4)

wherea(P, S)[a†(P, S)] is the destruction (creation) operator for the fragmented hadron,

of given four-momentum and PL four-vector.

The hadronic tensor (1) is not color gauge invariant. Introducing a gauge link is

not sufficient to fulfil this condition, but EOM suggest to addsuitable contributions of

1For an antiquark eqs. (3) and (4) should be slightly modified,as we shall see in sects. 2 and 6.
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higher correlators, involving two quarks and a number of gluons, so as to construct a

gauge invariant hadronic tensor.

We adopt an axial gauge, obtaining for the correlator agM/Q expansion, whereg

is the coupling,M the rest mass of the hadron andQ the QCD ”hard” energy scale, gen-

erally assumed equal to
√

|q2|. We examine in detail the first two terms of the expansion.

The zero order term corresponds to the QCD parton model approximation. As regards

the second term, it concerns the T-odd functions; in particular, we discuss an interesting

approximation, already proposed by Collins[79]. In both cases we obtain several ap-

proximate relations among ”soft” functions, which surviveperturbative QCD evolution,

as a consequence of EOM. Our approach allows also to determine theQ-dependence of

some important azimuthal asymmetries and to draw conclusions about the Burkhardt-

Cottingham[80] and Efremov-Leader-Teryaev[65] sum rules.

Section 2 is devoted to the gauge invariant correlator (moreproperly to the distri-

bution correlator), whose properties are deduced with the help of EOM. In particular, we

derive an expansion in powers ofgM/Q, whose terms can be interpreted as Feynman-

Cutkosky graphs. In section 3 we give a prescription for writing a gauge invariant sector

of the hadronic tensor which is of interest for interactionsat highQ. In sects. 4 and 5 we

study in detail the zero order term and the first order correction of the expansion, deduc-

ing approximate relations among functions which appear in the usual parameterizations

of the correlator[55,81]. Sect. 6 is dedicated to the fragmentation correlator. In sect.

7 we illustrate the azimuthal asymmetries involved in the three different deep inelastic

processes. Lastly sect. 8 is reserved to a summary of the mainresults of the paper.

2 Gauge Invariant Correlator

The correlator (3) can be made gauge invariant, by insertingbetween the quark fields a

link operator[76,77,55], in the following way:

Φij(p;P, S) = N
∫

d4x

(2π)4
eipx〈P, S|ψ̄j(0)L(x)ψi(x)|P, S〉. (5)

Here

L(x) = Pexp [igΛI(x)] , with ΛI(x) =
∫ x

0(I)
λaA

a
µ(z)dzµ, (6)

is the gauge link operator, ”P” denotes the path-ordered product along a given integration

contourI, λa andAa
µ being respectively the Gell-Mann matrices and the gluon fields. The

link operator depends on the choice ofI, which has to be fixed so as to make a physical

sense. According to previous treatments[55,79,82,83], wedefine two different contours,

I±, as sets of three pieces of straight lines, from the origin tox1∞ ≡ (±∞, 0, 0⊥), from
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x1∞ tox2∞ ≡ (±∞, x+,x⊥) and fromx2∞ tox ≡ (x−, x+,x⊥), having adopted a frame,

whosez-axis is taken along the hadron momentum, withx± = 1/
√

2(t± z). We remark

that the choice of the path is important for the so-called T-odd2 functions[47]: the path

I+ is suitable for DIS distribution functions, whileI− has to be employed in DY[82,83].

For an antiquark the signs of the correlator (5) and of the four-momentump have to be

changed.

In the following of the section we investigate some properties of the correlator.

2.1 T-even and T-odd correlator

We set[82]

ΦE(O) =
1

2
[Φ+ ± Φ−], (7)

whereΦ± corresponds to the contourI± in eqs. (6), whileΦE andΦO select respectively

the T-even and the T-odd ”soft” functions. These two correlators contain respectively the

link operatorsLE(x) andLO(x), where

LE(O)(x) =
1

2
P
{

exp
[

igΛI+
(x)
]

± exp
[

igΛI−(x)
]}

(8)

andΛI±(x) are defined by the second eq. (6). Eqs. (7) and (8) imply that the T-even func-

tions are independent of the contour (I+ or I−), while T-odd ones change sign according

as to whether they are involved in DIS or in DY[79,82]. In thissense, such functions are

not strictly universal[79], as already stressed. It is convenient to consider an axial gauge,

A− = A+ = 0, (9)

with antisymmetric boundary conditions[55]. Here we have adopted the shorthand nota-

tion Aµ for λaAµ
a . In this gauge - proposed for the first time by Kugut and Soper[87] and

named KS gauge in the following - we have

ΛI+
(x) = −ΛI−(x) =

∫ x2

x1

dzµA
µ(z), (10)

wherexi is a shorthand notation forxi,+∞, i = 1, 2. Therefore, in the KS gauge,

LE(x) = Pcos
[

gΛI+
(x)
]

, LO(x) = iPsin
[

gΛI+
(x)
]

(11)

and the T-even (T-odd) part of the correlator consists of a series of even (odd) powers of

g, each term being endowed with an even (odd) number of gluon legs. As a consequence,

2More precisely, one should speak of ”naive T”, consisting ofreversing all momenta and angular mo-
menta involved in the process, without interchanging initial and final states[84–86].
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the zero order term is T-even, while the first order correction is T-odd. This confirms

that no T-odd terms occur without interactions among partons, as claimed also by other

authors[57–59,79]. Gauge invariance of the correlator implies that these conclusions hold

true in any axial gauge, such that conditions (9) are fulfilled. From now on we shall work

in such a type of gauge[88,89].

2.2 Power Expansion of the Correlator

We considerΦ+, which, as explained before, refers to DIS. As regards DY, the T-odd

terms will change sign, as follows from the choice of the path- I− instead ofI+ - and

from the first eq. (10) and from the second eq. (11). We rewriteL(x) as

L(x) =
∞
∑

n=0

(ig)nΛn(x). (12)

HereΛ0(x) = 1, while forn ≥ 1 one has, in the KS gauge,

Λn(x) =
∫ x2

x1

dzµ1

1

∫ z1

x1

dzµ2

2 ...
∫ zn−1

x1

dzµn

n [Aµn
(zn)...Aµ2

(z2)Aµ1
(z1)] , (13)

where thezi ≡ (∞, z+
i , zi⊥), i = 1, 2, ...n, are points in the space-time along the line

throughx1 andx2. Substituting eq. (12) into eq. (5), we have the following expansion of

Φ in powers ofg:

Φ =
∞
∑

n=0

(ig)nΓn, (14)

with

(Γn)ij = N
∫

d4x

(2π)4
eipx〈P, S|ψ̄j(0)Λn(x)ψi(x)|P, S〉. (15)

As already noticed,Γn is T-even for evenn and T-odd for oddn.

Now we invoke the Politzer theorem[71], concerning EOM. This states that, if we

consider the matrix element between two hadronic states of agiven composite opera-

tor, constituted by quark and/or gluon fields, each such fieldfulfils EOM, no matters if

the parton is off-shell and/or renormalized. We show in Appendix A that, owing to the

Politzer[71] theorem, the termΓ0 fulfils the Dirac homogeneous equation,i. e.,

(p/−m)Γ0 = 0, (16)

wherem is the quark rest mass. The corresponding Feynman-Cutkoskygraph is repre-

sented in fig. 1.

Forn ≥ 1 we have instead

(ig)nΓn = N
∫

dΩnS
µ1...µnΦ(n)

µ1...µn
(p, k1, k2...kn). (17)
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Figure 1: Feynman-Cutkosky graph for zero order term of expansion (14).

Here we have set

dΩn =
n
∏

l=1

d4kl

(2π)4
, (18)

Sµ1...µn =
ig

p/−m+ iǫ
iγµ1

ig

p/− k̄/1 −m+ iǫ
iγµ2 ...

× ig

p/− k̄/n−1 −m+ iǫ
iγµn , (19)

k̄l =
l
∑

r=1

kr. (20)

Thekr (r = 1, 2, ...n) are the four-momenta of then gluons involved in the quark-gluon

correlatorΦ(n)
µ1...µn

, defined as

[

Φ(n)
µ1...µn

(p, k1, k2...kn)
]

ij
= N

∫

d4x

(2π)4
ei(p−k̄n)x

× 〈P, S|ψ̄j(0)P′[Bµn
(kn)...Bµ1

(k1)]ψi(x)|P, S〉, (21)

with

Bµ(k) = Âµ(k) + Ãµ(k), (22)

Âµ(k) =
∫

d4z

(2π)4
Aµ(z)e

ikz , (23)
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Figure 2: Same as fig. 1 for first order correction in the coupling.

Ãµ(k) = δ(k+) lim
M→∞

∫

dκe−iκMÂµ(k
−, κ,k⊥), (24)

the reference frame being the one defined at the beginning of this section. Moreover the

operator productP′ is defined according to the following rules:

- anyÂµ(k) is at the left of anỹAµ(k);

- theÃµ(k) are ordered as̃Aµ1
(k1)Ãµ2

(k2)...Ãµl
(kl);

- theÂµ(k) are ordered aŝAµm
(km)...Âµ2

(k2)Âµ1
(k1).

Lastly the quark-gluon correlatorsΦ(n)
µ1...µn

fulfil the following homogeneous equa-

tion:

(p/− k̄/n −m)Φ(n)
µ1...µn

(p, k1, k2...kn) = 0. (25)

Each term of the expansion (14) - somewhat similar to the one obtained by Collins

and Soper[76,77] - may be interpreted as a Feynman-Cutkoskygraph. It corresponds to

an interference term between the amplitude

”nucleon → quark + spectator partons” (26)

without any rescattering, and an analogous one, wheren gluons are exchanged between

the active quark and the spectator partons.

In particular, the interference term is such that the gluons(for n > 0) are attached

to the left quark leg, see figs. 2a and 3a. An important result,deduced at the end of
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Figure 3: Same as fig. 2 for second order correction.

Appendix A, is that such a term turns out to correspond to any interference term between

two amplitudes, such thatk andn − k gluons respectively are exchanged between the

active quark and the spectator partons, with0 ≤ k ≤ n. The situation is illustrated in figs.

2 and 3 forn = 1 and 2.

It is worth noting that a radiation ordering similar to the one established here is

found in semiinclusive processes at largex[90] and in totally inclusive DIS at smallx[91].

Moreover the terms (21) consist of quark-gluon-quark correlations, analogous to the one

introduced by Efremov and Teryaev[75] and by Qiu and Sterman[50–52].

As a consequence of the Politzer theorem, formulae (14) to (21) hold for renor-

malized fields, provided we take into account the scale dependence of the couplingg, of

the quark massm and of the correlatorsΦ(n)
µ1...µn

(p, k1, k2...kn)[92]. Moreover one has

to observe that the four-momenta appearing in the propagators are highly off-shell:p2

and (p − k̄r)
2 are of orderQ2[77,78], because the uncertainty principle demands hard

interactions to occur in a very limited space-time interval, corresponding to the condition

|p2| ≫M2. (27)

Therefore we havep2 ≈ 2p+p− andp+ = O(Q), whence

|p−| = O(Q) (28)
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and it follows that the coefficientsΓn are of orderQ−n, up to QCD corrections, consisting

of terms of the typeg2k(lnQ)m, with k andm integers andk ≥ m[93]. For the same

reason, the couplingg, which appears in expansion (14), assumes small values, corre-

sponding to short distances and times.

To summarize, we have found that the T-even and the T-odd correlators, given by

eqs. (7), may be written as expansions ingM/Q, i. e.,

ΦE(p) =
∞
∑

n=0

(

igM

Q

)2n

Γ̄2n, ΦO(p) =
∞
∑

n=0

(

igM

Q

)2n+1

Γ̄2n+1, (29)

whereΓ̄n = ΓnQ
n/Mn depend still onQ, as told above. As explained above,ΦO changes

sign when involved in DY. Stated differently, T-odd terms present an odd number of quark

propagators, see eq. (19) for oddn: in the limit of negligible quark mass, quark four-

momenta in DIS are spacelike, whereas in DY they are timelike[82].

The first two terms of expansion (14) will be studied in detailin sects. 4 and 5

respectively.

3 Hadronic Tensor

In the present section we refer indifferently to the hadronic tensor of the three processes

introduced, which may involve one or two fragmentation correlators; in fact, as we shall

see in sect. 6, this object requires only minor modificationswith respect to the treatment

of last section.

If we substitute the gauge invariant correlator (5) into thehadronic tensor (1), this

latter does not fulfil the requirement of electromagnetic gauge invariance: only the term

of zero order in the coupling satisfies this condition. In order to get a complete gauge

invariance at any order, we have to recall the interpretation given above of the correlator.

For example, at first order in the coupling in SIDIS, we see that the ”hard” scattering

amplitudeqγ∗ → q′g̃ - where we have denoted byq andq′ the initial and final quark and

by g̃ a gluon - consists not only of the graph of fig. 4a, encoded in the first order term of

the correlator, but also of the one represented in fig. 4b, which interferes coherently with

it. This guarantees electromagnetic gauge invariance for the first order graph[94].

Furthermore, convoluting ”hard” graphs with the ”soft” factors, these two ampli-

tudes give rise, among other objects, to asymmetric Feynman-Cutkosky graphs (fig. 5),

related to interference terms. These are observables - necessarily gauge invariant - and

therefore assume real values. This procedure, already suggested in ref. [78], can be gen-

eralized to the three kinds of hadronic tensors considered in the present article, at any

order ing, so as to obtain sets of graphs corresponding to observable,and therefore gauge
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Figure 4: Graphs for ”hard” amplitudes interfering coherently, first order correction in the
coupling.

invariant, quantities. We show how to construct them at any ordern, corresponding to the

overall number of gluons exchanged between active quarks and spectator partons. The

procedure consists in following steps, for a givenn:

- Consider then + 1 possible combinations of gluons occurring in the hadronic

tensor (1), say,s for hadronA andn− s for hadronB, with s = 0, 1 ...n.

- For a givens (n− s), consider all possible correlators, according to the definition

given in subsect. 2.2: as seen at the end of last section, these amount tos+ 1 (n− s+ 1)

correlators equal toΓs (Γn−s).

- Add each such correlator all those graphs whose ”hard” parts interfere coherently

with it, as shown in fig. 5. In practice, one has to do this for the correlator whose gluons

are attached to the ”left” quark leg and to multiply by the number of gluons of each

correlator.

Then we have, up to QCD corrections at each order of the expansion,

Wαβ(q) =
∞
∑

n=0

W
(n)
αβ (q), (30)

with

W
(n)
αβ = C

∫

dp−d2p⊥

∫

dΩn

n
∑

r=0

n
∑

s=0

TrM
(n)
αβ , (31)
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Figure 5: Feynman-Cutkosky graphs corresponding to ”hard”amplitudes of fig. 4. Also
the complex conjugate graphs, which amount to specular images of these two, contribute
to first order corrections.

M
(n)
αβ =

n
∑

s=0

(s+ 1)(n− s+ 1)
[

Γ̃(s,0)
α Φs,0

A Γ̃
(n,s)
β Φn,s

B

]

, (32)

Γ̃(l,r)
ρ =

l
∑

m=r

Sm
r γρS

l
m. (33)

Here we have used the following shorthand notations:

Sm
r = Sµr+1,µr+2,...,µm, Φn,s = Φn,s

µs+1,µs+2,...,µn
, (34)

moreover we have setSm
r = 1 form = r.

For each term of expansion (30) we have to take into account three kinds of effects:

a) gluon radiation by scattered partons;

b) perturbative QCD corrections;

c) higher correlators, such that the active quarks exchangegluons with quark-antiquark

pairs or gluon pairs or triplets belonging to spectator partons.

The first two effects may be calculated according to the algorithm suggested in refs.

[76,77]. As to the contributions c), they can be included in the basic term of expansion

(30), since they have the same (T-even or T-odd) behavior. Lastly we recall that, unless

we integrate over some final transverse momentum [of the lepton pair in the case of DY,
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of a final hadron in SIDIS ore+e− annihilation], the phase space of the final gluons

emitted undergoes a restriction[93], expressed by a doublylogarithmic form factor; this

is more and more sizable at increasing energy, resulting in the well-known Sudakov-like

damping[76,95].

4 Zero order term: the QCD parton model

In this section and in the following one we shall be concernedwith the hadronic tensor

for DY process, but our results may be trivially extended to the other two deep inelastic

processes, with a slight difference for the fragmentation function, to be discussed in sect.

6.

Let us consider the hadronic tensor (31) at zero order,i. e.,

W
(0)
αβ = C

∫

d2p⊥dp
−Tr

[

γαΓA
0 (p)γβΓB

0 (p′)
]

, (35)

where theΓ0’s are given by eq. (15) forn = 0 and fulfil the homogeneous Dirac equation

(16). The tensor (35), T-even, corresponds to the Born approximation considered in the

introduction. As appears from eq. (35), the study of this tensor amounts to analyzing the

correlatorΓ0, which is itself T-even and gauge invariant at zero order ing. In Appendix

B we show that

Γ0(p) =
N

4P (p/+m)
[

f1(p) + γ5S/
q
‖g1L(p) + γ5S/

q
⊥h1T (p)

]

2p+δ(p2 −m2). (36)

Heref1(p), g1L(p) andh1T (p) are functions of the four-momentump of the active quark,

which, in this case, is on shell,p ≡ (E,p), with E =
√

m2
q + p2. Sq

‖ andSq
⊥ are the

components of the quark PL vector, respectively parallel and perpendicular to the hadron

momentum. Moreover we have set

P =
1√
2
p · n−, (37)

having defined the dimensionless, light-like four-vectorsn± in such a way that

n+ · n− = 1 (38)

and their spatial components are along (+) or opposite (-) tothe hadron momentum. It

is important to notice that, if integrated overp−, the expression obtained for the zero

order correlator turns out to be proportional to the densitymatrix of a quark confined

in a finite volume, but free of interactions with other partons[96]. Therefore we fix the

normalization constantN so as to obtain, after integration, just the density matrixi. e.,

N = 2P. (39)
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Lastly, it is convenient to expressSq
‖ andSq

⊥ in terms of the components of the PL vector

of the hadron. As shown in Appendix B, one has

Sq
‖ = λ

(

p̄

m

)

− η̄⊥ +O(η̄2
⊥), Sq

⊥ = S⊥ + λ̄⊥
p̄

m
+O(η̄2

⊥). (40)

Here

λ = −S · n+ + n−√
2

, S⊥ = S − λ
n+ + n−√

2
, (41)

p̄ ≡ (|p|, Ep̂), p̂ = p/|p|, η̄⊥ = p⊥/P, (42)

λ̄⊥ = −S · η̄⊥, p⊥ ≡ (0, 0,p⊥) (43)

andp⊥ is the transverse momentum of the active quark with respect to the hadron mo-

mentum.

Equation (36) has important consequences on TMD T-even functions, as we are

going to illustrate in the two next subsections. To this end we compare that equation

with the naive parameterization of the TMD correlator in terms of Dirac components,

without introducing any dynamic conditions[55,56,81]. Wegive such a parameterization

in Appendix C, up to and including twist-3 terms. The twist-2, T-even sector, which we

study in subsect. 4.1, corresponds to quark distribution functions which survive when

interactions with gluons are turned off. As regards the twist-3 functions, we distinguish

among the T-even, the T-odd and the ”hybrid” ones, these lasts deriving contributions both

from T-even and T-odd terms.

4.1 Twist-2, T-even Correlator

If quark-gluon interactions are neglected, the correlatoris usually parameterized as[97,98]

Φf
E =

P√
2
{f1n/+ + (λg1L + λ⊥g1T )γ5n/+ +

1

2
h1Tγ5[S/⊥, n/+]

+
1

2
(λh⊥1L + λ⊥h

⊥
1T )γ5[η/⊥, n/+]}2p+πδ(p2 −m2). (44)

Here the Dirac operators considered are purely T-even, as can be checked; moreover

η⊥ = p⊥/µ0, λ⊥ = −S · η⊥ (45)

andµ0 is an undetermined energy scale, introduced for dimensional reasons, in such a

way that all functions embodied in the parameterization ofΦ have the dimensions of a

probability density. This scale[97] determines the normalization of the functions which

depend onη⊥. In particular, as is well-known, the 6 twist-2 functions, which appear in the

parameterization (44), are interpreted as TMD probabilitydensities:f1 is the unpolarized
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quark density,g1L the longitudinally polarized density in a longitudinally polarized (spin

1/2) hadron,g1T the longitudinally polarized density in a transversely polarized hadron,

h⊥1L the transversity in a longitudinally polarized hadron and

h′1T = h1T + |η2
⊥|h⊥1T (46)

is the TMD transversity in a transversely polarized hadron.

Now we compare the parameterization (44) with the correlator (36). To this end we

consider projections of both matrices over the various Dirac components,i. e., for a given

Dirac operatorΓ,

ΦΓ =
1

2
TrΓΦ, (47)

possibly taking into account eqs. (40).

First of all,Γ = γ5γ
+ andγ5γ

+γi (i = 1, 2) yield, approximately in the limit ofm =

0,

h⊥1L ≈ −µ0

P g1L, g1T ≈ µ0

P h1T , h⊥1T ≈ µ2
0

P2
h1T . (48)

These relations hold up to terms of order(gM/Q)2, since, as we have seen, the T-even

Dirac components ofΦ derive contributions only from even powers ofgM/Q. Moreover,

the Politzer theorem implies that the relations are not modified by renormalization effects,

and therefore hold also taking into account QCD evolution.

In order to determineµ0, we observe that the functions involved on both sides of

eqs. (48) are independent ofP. Therefore we must setµ0 = C0P, C0 being a dimen-

sionless numerical constant, independent of momentum. Butsince these functions are

quark densities, they should be normalized adequately, setting C0 = 1. Then, neglecting

the quark mass,

µ0 = P =
1√
2
p · n−. (49)

This result differs from the treatments of previous authors[55,81], who assumeµ0 = M .

By comparing CLAS[26] and HERMES[20] results, at not too high values ofQ2

(1.5 to 3GeV ) the first relation (48), together with eq. (49), is verified for x < 0.35[96],

discrepancies at largerx being attributed to higher twist contributions.

4.2 Twist-3, ”Hybrid” Correlator

Now we consider a sector of the correlator which, as already explained, has both T-even

and T-odd contributions. In particular, here we focus on that part of ”hybrid” correla-

tor which comes from the so-called ”kinematic” twist-3 terms. In Appendix C we find,
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according to the usual notations[55,81],

Φf
H = {1

2
(f⊥ + λg⊥Lγ5 + λ⊥g

⊥
T γ5)p/⊥ +

1

4
λ⊥h

⊥
T γ5[S/⊥, p/⊥]

+
1

2
xM

(

e+ g′Tγ5S/⊥ +
1

2
(λhL + λ⊥hT )γ5[n/−, n/+]

)

}2p+δ(p2 −m2). (50)

Comparing the projections of the operators (36) and (50) over Γ = γi (i = 1, 2) yields the

approximate relation

f⊥ ≈ f1, (51)

which corresponds to the Cahn[53,54] effect and is approximately verified for sufficiently

largeQ2 and smallx[45]. Also this equation, like eq. (48), survives QCD evolution. As

we shall se in the next section, eq. (51) holds up to terms of ordergM/Q, sincef⊥ derives

also (T-odd) contributions from one-gluon exchange.

The projections of the same operators overΓ = γ5γi (i = 1, 2) yield (after integration

overp⊥)

gT (x) ≈ m

xM
h1(x), (52)

where

gT (x) =
∫

d2p⊥g
′
T (x,p2

⊥) (53)

and

h1(x) =
∫

d2p⊥
[

h1T (x,p2
⊥) + |η2

⊥|h⊥1T (x,p2
⊥)
]

, (54)

as obtained by integrating eq. (46) over transverse momentum. In this case the contribu-

tion of the QCD parton model is very small:m is negligible foru- andd-quarks, while for

s-quarksh1 is presumably small, because the sea is produced mainly by annihilation of

gluons, whose transversity is zero in a nucleon. Therefore the contribution of quark-gluon

interactions, neglected in the approximation considered,becomes prevalent in this case,

as well as forΓ = 1 andγ5γ+γ−, corresponding respectively toe andhL. The effect of

such interactions will be discussed in sect. 5.

4.3 Remarks

To conclude this section, we sketch some consequences of ourtheoretical results.

A) In the expression (46) or (54) for transversity, the second term is due to a rela-

tivistic effect. To illustrate this, consider a transversely polarized hadron. The longitudinal

polarization of the quark, due in this case to the transversemomentum, is magnified by the

boost from the quark rest frame. This additional polarization, along the quark momentum,

has again a transverse component with respect to the nucleonmomentum.
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B) Eq. (54), together with the last two eqs. (48), suggests a method for determining

approximately the transversity of a hadron. Indeed,g1T can be conveniently extracted

from double spin asymmetry[99–101] in SIDIS with a transversely polarized target. This

asymmetry is expressed as a convolution of the unknown function with the usual, well-

known fragmentation function of the pion. Therefore the method appears complementary

to the one usually proposed[16,102], based on the Collins effect[46] in single spin SIDIS

asymmetry; in this latter case one is faced with the convolutive product ofh1T with the

Collins function, which is poorly known[63,64].

C) Eq. (52) establishes a relation between transversity andtransverse spin. Indeed,

the two quantities are related to each other. But, unlike transversity, the transverse spin

operator is chiral even and does not commute with the free hamiltonian of a quark[42]: in

QCD parton model it is proportional to the quark rest mass, which causes chirality flip.

D) We note thatg1T , h⊥1L andh⊥1T are associated with ”twist-2” Dirac operators[42,

43], and yet, in our treatment, they are multiplied by inverse powers ofQ (Q−1 for the

first two functions,Q−2 for the third one). This would be unacceptable for common dis-

tribution functions, but, when transverse momentum is involved, also the orbital angular

momentum plays a role. To illustrate this point, we recall that the quark distribution func-

tions may be regarded as the absorptive parts ofu-channel quark-hadron amplitudes[44].

For example,g1T corresponds to an amplitude of the type〈++ |−+〉, denoting by|Λλ〉 a

state in which the nucleon and quark helicities are, respectively, Λ andλ. The amplitudes

corresponding to the functions in question involve a change∆L = 1 (for g1T andh⊥1L) or

∆L = 2 (for h⊥1T ) in the orbital angular momentum, therefore they are of the type

A = A(sinθ)∆L, (55)

whereθ = arcsin|p⊥|/|p| is the angle between the nucleon momentum and the quark

momentum, whileA is weakly energy dependent. Since|p| is of orderQ and |p⊥| of

orderM , our result can be understood3.

5 First Order Correction

The first order correction ing of the hadronic tensor reads [see eqs. (31) and (32)]

W
(1)
αβ = −2gC

∫

dp−d2p⊥

∫

d4k

(2π)4
TrNαβ, (56)

with

Nαβ = 2[hµ
α(p, p′, k)Φ

(1)
Aµ(p, k)γβΓB

0 (p′) + γαΓA
0 (p)hµ

β(p′, p, k)Φ
(1)
Bµ(p′, k)] (57)

3This observation is the fruit of a stimulating discussion with Nello Paver.
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and

hµ
α(p, p′, k) = γα

1

p/−m+ iǫ
γµ + γµ 1

p/′ − k/−m+ iǫ
γα. (58)

Moreover theΦ(1)
µ ’s are given by eq. (21) forn = 1 and fulfil the homogeneous Dirac

equation

(p/− k/−m)Φ(1)
µ (p, k) = 0. (59)

In Appendix B we show that, according to the Politzer theorem, and adopting, as in the

previous sections, an axial gauge,Φ(1)
µ (p, k) is parameterized as

Φ(1)
µ (p, k) = Ψµ(p, k)δ

(

p−1 − m2 + p2
1⊥

2p+
1

)

. (60)

Here

p1 = p− k, with p2
1 = m2 (61)

and

Ψµ(p1, k) ≈
1

2
(p/1 +m)L̂[Cµ + ∆Cµγ5S/

q
‖ + ∆TCµγ5S/

q
⊥ + ∆TC′

µγ5S̄/⊥]. (62)

Moreover we have
√

|p2
⊥|S̄⊥α = ǫαβρσn

β
+n

ρ
−p

σ
⊥, (63)

L̂ =

√

P
P1

[

coshϕ+ γ0γ3a
sinhϕ

2ϕ

]

, (64)

whereP1 = p+
1 /

√
2, whileϕ anda are defined in Appendix B. Lastly

Cµ = p1⊥µC1 + ǫµνρσn
ν
−(C2S

qρ
‖ p

σ
1⊥ + C3MSqρ

⊥ n
σ
+), (65)

∆Cµ = ∆Cp1⊥µ, (66)

∆TCµ = ∆TCp1⊥µ, (67)

∆TC′
µ = ∆TC′p1⊥µ. (68)

HereCi (i = 1, 2, 3), ∆C, ∆TC and∆TC′ are correlation functions, theCi being unpolar-

ized, while the others are polarized. More precisely,∆C and∆TC, which are, respectively,

longitudinally and transversely polarized, are related toan overall nucleon polarization.

On the contrary,∆TC′ is a transversely polarized correlation function connected to quark-

gluon interaction, for example, to a spin-orbit coupling[57–59].

5.1 Approximate Factorization

The second term of eq. (58) is not factorizable, in agreementwith the observations of var-

ious authors[57–59,103,104], who have shown failures of universality[103,104] at large
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tranverse momentum. However, for sufficiently largeQ, and adopting an axial gauge,

this term is negligibly small[94] in comparison with the first one, which instead is factor-

izable. In fact, the gluon corresponding to the first term hasa smaller offshellness than

the one involved in the second term. This approximation is especially acceptable, even

for relatively smallQ, provided we limit ourselves to small transverse momenta[79] of

the initial hadrons with respect to the direction of the momentum of the virtual photon

in the center of mass of the DY pair. However, as already explained in sect. 2, also in

the case when factorization is approximately satisfied, theT-odd distribution functions

change sign from SIDIS to DY. We shall illustrate phenomenological implications of this

change of sign in sect. 7.

In this approximation eq. (57) simplifies to

Nαβ = 2
∫

dp−d2p⊥γα[ΓA
1 (p)γβΓB

0 (p′) + ΓA
0 (p)γβΓ

B
1 (p′)], (69)

with

Γ1(p) =
1

p/−m+ iǫ
γµ
∫

d4k

(2π)4
Φ(1)

µ (p, k). (70)

Then, in an axial gauge, under the kinematic conditions above described, the tensorW (1)
αβ

can be written [see eqs. (56) and (69)] in a form similar toW
(0)
αβ , giving thus rise to an ap-

proximate[57] factorization of T-odd functions. Our conclusion is quite analogous to the

one drawn by Collins[79] and presents some similarity with the Qiu-Sterman assumption

about the quark-gluon-quark correlation functions[50].

Moreover, eqs. (65) to (68), together with eqs. (40), inducefor Γ1 the following

parameterization, at twist-3 approximation:

Γ1(p) ≈ 2p+

π(p2 −m2 + iǫ)

1

2
γ−γ+[p/⊥f

⊥
o + γiǫiνσρn

ν
−(pσ

⊥S
ρ
‖g

′
L

+ Mnσ
+S

ρ
⊥g

′
T,o) + γ5S/⊥p/⊥hT,o + γ5S̄/⊥p/⊥h+ λγ5p/⊥f̃

⊥
L ]. (71)

Here

p̄0 ≡
(

|p|,p
√

p2 +m2

|p|

)

. (72)

Moreover

f⊥
o = −

∫

dΩ̃C1, g′T,o =
∫

dΩ̃C3, hT,o = −
∫

dΩ̃∆TC, (73)

h′ =
∫

dΩ̃∆TC′, f⊥
L =

∫

dΩ̃(C2 + r∆C), (74)

dΩ̃ = π
d3k̃

(2π)4

p−p+
1

2p+
L(−), r =

k−p̄+
0

p+
1 p

−

L(+)

L(−)
, (75)

L(±) =
P
P1

[

coshϕ± a
sinhϕ

2ϕ

]

and d3k̃ = 2p+
1 d

4p1δ(p
2
1 −m2). (76)

19



The notations for the functions are somewhat similar to those introduced by refs. [55,81].

The suffix”o” in f⊥
o , gT,o andhT,o denotes T-odd contribution to these three functions,

classified as ”hybrid” in sect. 4, since they have T-even counterparts, see eq. (50). These

functions are normalized coherently with their counterparts: indeed, if the quark is on-

shell,

[π(p2 −m2 + iǫ)]−1 → −iδ(p2 −m2), (77)

the (−i)-factor being compensated by thei−factor in expansion (14). This constrains

also the normalization of the other functions included in eq. (71). Moreover, as already

noticed in connection with correlation functions, the function h′ describes a quark trans-

verse polarization induced by quark-gluon interactions: this polarization, present also in

spinless or unpolarized hadrons, is somewhat similar to theBoer-Mulders function[47],

although it is twist-3 and not twist-2.

5.2 Twist-3, T-odd correlator

Now we compare the parameterization (71) with the naive parameterization of the twist-3,

interaction dependent correlator. This reads, according to Appendix C,

Φi = Φi
H + Φi

O. (78)

whereΦ
(i)
H is given by eq. (50), substitutingδ(p2 −m2) by [π(p2 −m2 + iǫ)]−1. On the

other hand

Φi
O =

2p+

p2 −m2 + iǫ
{ǫijSi

⊥(pj
⊥e

⊥
T +MγjfT ) + ǫijS̄

i
⊥p

j
⊥e

′⊥
T + γ5(xMeLλ

+ eTp⊥ · S⊥ + e′Tp⊥ · S̄⊥) + ǫijγip
j
⊥(f⊥

L λ+ f⊥
T λ⊥ + γ5g

⊥)

+ γ5p/⊥S̄/⊥h
′ +

1

2
γ5[γ+, γ−]p⊥ · S̄⊥h

′⊥}. (79)

Comparison between parameterization (78) and result (71),component by component,

yields the following approximate relations:

g⊥ ≈ f⊥
o , f⊥

L ≈ g⊥L , fT ≈ g′T,o, (80)

eT ≈ −e⊥T ≈ h⊥T,o ≈ hT,o, (81)

e′T ≈ −e′⊥T ≈ h
′⊥ ≈ h′, (82)

eL ≈ f⊥
L ≈ g⊥T,o ≈ eo ≈ hL,o ≈ 0. (83)

Also these equations survive QCD evolution, like eqs. (48) and (51).
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5.3 Remarks

A) From most of the above relations one can see that a unique function represents both

unpolarized (f ore) and polarized (g orh) distribution functions, independently of the fact

that the nucleon is polarized or not. This is a consequence ofthe spin-orbit coupling[57]

in gluon-quark interactions. For the same reason, the parameterization ofΦ(1)
µ includes

5 independent functions and not only 3, despite the fact thatit fulfils the homogeneous

Dirac equation likeΓ0.

B) Among eqs. (80) to (83), those which concern only T-odd functions hold up

to terms of order(gM/Q)2. On the contrary, those which involve ”hybrid” functions -

including eq. (51) - hold up to terms of ordergM/Q. Analogous approximate relations

of this latter type have been found in ref. [105].

C) By integrating the correlator (71) over the transverse momentum of the quark, we

obtain interesting results as regards twist-3 common functions. First of all, the fourth eq.

(83) implies thate(x) derives just T-even contributions, and therefore, apart from the (neg-

ligible) term illustrated in the previous section, it is essentially of order(gM/Q)2. On the

contrary, the main contributions togT andhL are of ordergM/Q and are T-odd, therefore

they change sign according as to whether they are involved inDIS or DY reaction. These

last predictions could be tested by confronting the DIS double spin asymmetry[4,5,10]

with the DY one[106,107]. In the case of DY one has to integrate over the transverse mo-

mentum of the virtual photon; moreover, if possible, it may be more promising to detect

τ+τ− pairs, whose polarization is perhaps less problematic to determine[108].

D) Lastly, it is worth noting that, unlike previous authors[47,56,81], we find that

the functions related to longitudinal and transverse polarization are associated to the same

inverse power ofQ. For example,g⊥ andh′ describe, respectively, the longitudinal quark

polarization in an unpolarized nucleon. Similarly,f⊥
L andfT are unpolarized quark densi-

ties in a longitudinally and transversely polarized nucleon. Conversely, the twist-2 T-odd

functionsh⊥1 , corresponding to transverse polarization in an unpolarized nucleon, and the

unpolarized distribution functionf⊥
1T [47] in a tranversely polarized nucleon find no place

in parameterization (71).

5.4 Consequences ong1 and g2

Now we examine some consequences of our results on the DIS structure functionsg1(x)

andg2(x), whose properties have been studied by various authors[65,66,109]. To this

end, here, and only in this subsection, we re-introduce the flavor indices, dropped out in

formula (1), in order to recover the usual definitions of those functions. Recalling that

ga
T (x) = ga

1(x) + ga
2(x) (a = u, d, s), (84)
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and setting

gi(x) =
∑

a

e2a[g
a
i (x) + ḡa

i (x)] (i = 1, 2), (85)

gT,o(x) =
∑

a

e2a

∫

d2p⊥[g′
a
T,o(x,p

2
⊥) + ḡ′aT,o(x,p

2
⊥)], (86)

eq. (52) implies

g1(x) + g2(x) = gT,e(x) + gT,o(x) +O(M2/Q2), (87)

where [cfr. eq. (52)]

gT,e(x) =
∑

a

e2a
ma

xM
[ha

1(x) + h̄a
1(x)]. (88)

Since, as discussed in subsect. 4.2,gT,e is negligibly small for a nucleon, result (87) is in

contrast with the Burkhardt-Cottigham[80] (BC) sum rule,i. e.,
∫ 1

0
g2(x)dx = 0. (89)

Indeed, integrating both sides of eq. (87) between 0 and 1, and assuming relation (89),

implies
∫ 1

0
g1(x)dx ≈

∫ 1

0
gT,o(x)dx, (90)

which is impossible, sinceg1(x) is a T-even function, whilegT,o is, by definition, T-odd.

Furthermore eq. (89) implies, together with the operator product expansion[65],

g1(x) + g2(x) =
∫ 1

x

dy

y
g1(y) + g

(3)
T , (91)

whereg(3)
T is the twist-3 contribution togT [65], to be identified, according to our results,

with gT,o. Then eq. (87) would yield
∫ 1

x

dy

y
g1(y) = gT,e(x) +O(M2/Q2), (92)

which appears in contrast with data ofg1(x)[1,2,9], enforcing arguments against the BC

rule (See ref. [65] and articles cited therein). An experimental confirmation of the viola-

tion of the BC rule was found years ago in a precision measurement ofg2(x)[10]. Also

the Efremov-Leader-Teryaev (ELT)[65] sum rule,i. e.,
∫ 1

0
dxx[g1(x) + 2g2(x)] = 0, (93)

is in contrast with our result. Indeed, it gives rise, together with eq. (87), to the approxi-

mate relation
∫ 1

0
dxxg1(x) ≈

∫ 1

0
dx2xgT,o(x), (94)

which, again, relates a T-even function to a T-odd one.
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6 Fragmentation Correlator

The fragmentation correlator (4) can be made gauge invariant analogously to the distribu-

tion correlator,i. e., for a quark,

∆ij(p;P, S) = 2P
∫

d4x

(2π)4
eipx〈0|L(x)ψ̄j(0)a(P, S)a†(P, S)ψi(x)|0〉, (95)

whereL(x) is given by eq. (6). Object (95) may be treated analogously tothe distribution

correlator, according to the previous sections. Indeed, also in this case, for an antiquark

one has to change the four-momentum fromp to−p and to put a minus sign in front of the

correlator. Moreover one has to choose the pathI+ for quark fragmentation frome+e−

annihilation, whereas the pathI− refers to fragmentation in SIDIS. The only important

difference with the distribution correlator is that one hasto take into account also the

nonperturbative interactions among the final hadrons produced. However, as we shall see

in a moment, this does not involve any change in the parameterization.

We treat only the case of pions, adopting for T-odd terms an approximation anal-

ogous to the one discussed in subsection 5.1, valid for smalltransverse momenta of the

final hadron with respect to the fragmenting quark. Under this condition, we have

∆(p) = 2p+{∆̄(f)(p)δ(p2 −m2) + ∆̄(i)(p)[π(p2 −m2 + iǫ)]−1}, (96)

∆̄(f)(p) =
1

2
(p/+m)Dπ, (97)

∆̄(i)(p) = γ−γ+[p/⊥D
⊥
π + p/⊥H

′]. (98)

HereDπ is the common fragmentation function of the pion,D⊥
π is defined as in ref. [55]

andH ′ assumes the role of the Collins[46] function, describing the asymmetry of a pion

fragmented from a transversely polarized quark.

Final state interactions give rise to terms - for instance interference terms - which

decrease as inverse powers ofQ, independent of the nature of the interactions themselves.

To show this, we observe that these interactions may producean azimuthal asymmetry

in a pion fragmented from a transversely polarized quark[46,110]. Analogously to the

distribution functions illustrated in remark D at subsect.4.3, such an asymmetry may be

regarded as the absorptive part of an amplitude of the type〈+|−〉, where± denotes the

helicity of the fragmenting quark. This kind of amplitude - atypical helicity flip one -

behaves as

〈+|−〉 = Bsinθ, (99)

whereB is a given function, weakly dependent on the quark momentum,due to pertur-

bative QCD corrections. Analogously to eq. (55), we conclude that interference terms
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decrease at least asQ−1, just like the second term in eq (98). Our result agrees with the

approach by Collins and Soper[76], who do not include ”soft”final state interaction in the

leading term of (almost) back-to-back fragmentation ine+e− annihilation.

7 Asymmetries

In this section we consider some important azimuthal and single spin asymmetries, which,

as is well known, may be produced by coupling two chiral-evenor two chiral-odd TMD

distribution or fragmentation functions. More precisely,the terms of the hadronic tensor

which give rise to asymmetries are written as convolutive products of two ”soft” functions

and depend on some azimuthal angleφ, relative to the final hadron (for SIDIS ande+e−

annihilation), or to the final muon pair (for DY). Some of these asymmetries arise from

the first order correction of the hadronic tensor, while others belong to the second order

one, whose complete parameterization is not considered in this paper.

A) Cahn effect
This effect, pointed out for the first time by Cahn[53], has been exhibited by ref.

[45] examining some SIDIS data[13–15] (see also ref. [111]). We consider the asymmetry

corresponding to the ”product”

AC ∝ f⊥ ⊗Dπ + f1 ⊗D⊥
π . (100)

This asymmetry is proportional tocosφ and decreases likeQ−1. To the extent thatf⊥

andD⊥
π can be approximated byf1 andDπ respectively, one speaks properly of Cahn ef-

fect[45]: this amounts to neglecting quark-gluon interactions, see eq. (51) for distribution

functions, an analogous equation holding for unpolarized fragmentation functions. This

approximation is acceptable for relatively largeQ and at smallx, as shown by ref. [45].

However, one has to observe that bothf⊥ andD⊥
π are ”hybrid” functions and in general

their T-odd contributions cannot be neglected.

It is worth considering also the ”product”

AC2 ∝ f⊥ ⊗D⊥
π , (101)

which generates acos2φ asymmetry decreasing likeQ−2, hardly distinguishable from

another one, arising from the ”product” of two chiral-odd functions, as we shall see in

a moment. Under the approximation just discussed, we predict a sort of ”second order”

Cahn effect.

B) Qiu-Sterman effect
An important transverse single spin asymmetry is the one predicted by Qiu and

Sterman[50–52] (QS) (see also refs. [75,112,113,82]). This can be observed both in
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SIDIS and in DY, where one integrates over the transverse momentum, respectively, of

the final hadron detected and of the final pair. This is described by the ”products”

AQS ∝ g′T ⊗Dπ (in SIDIS) and ∝ g′T ⊗ f̄1 + c.c. (in DY), (102)

the ”bar” indicating the antiquark function andc.c. ”charge conjugated”. A similar effect

could be observed ine+e− annihilation, if one of the the hadrons observed were spinning.

This asymmetry decreases likeQ−1. Moreover, sinceg′T is prevalently T-odd, whilef1,

f̄1 andDπ are T-even, the asymmetry is expected to assume an opposite sign in SIDIS

and DY.

C) Sivers effect
According to our treatment, the Sivers asymmetry[48,49] isdescribed by the ”prod-

uct”

ASIV ∝ g′T ⊗D⊥ (in SIDIS) and ∝ g′T ⊗ f̄⊥ + c.c. (in DY). (103)

Therefore this asymmetry - detected by HERMES[20,21] and COMPASS[23] ex-

periments - is described a bit differently than in current literature[47,64,45]; in particular

it results to decrease asQ−2 4. Moreover, comparing eq. (103) with eq. (102) shows a re-

lation between the Sivers asymmetry and the QS asymmetry, asalready noticed by other

authors[82,114–117]. This relation is especially close ifone adopts the approximation

f⊥ ≈ f1, orD⊥
π ≈ Dπ according to the Cahn effect[53,54]. In this approximationone

would observe the already predicted change of sign[79,62] in the asymmetry, similar to

the QS effect; but if quark-gluon interactions - and therefore T-odd components of such

functions - are not negligible, the prediction is not true.

D) Collins effect and Boer-Mulders effect
In the framework of chiral-odd functions, an important single spin asymmetry is

produced by combination of two transversities. In particular, single transverse polariza-

tion gives rise to an asymmetry described by the ”product”

ACOL ∝ h1T ⊗H ′ (in SIDIS), or (104)

ABM ∝ h1T ⊗ h̄′ + c.c. (in DY). (105)

This asymmetry - exhibited by HERMES[20,21] data - is predicted to decrease likeQ−1.

We have also thecos2φ asymmetries

ACL2 ∝ h′ ⊗H ′ (in SIDIS), or (106)

4We obtained a different result in a previous paper[61], since we had started from a parameterization
which is usually assumed for the correlator, but which is notin agreement with the results of the present
paper.
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ABM2 ∝ h′ ⊗ h̄′ (in DY), or (107)

ACL3 ∝ H ′ ⊗ H̄ ′ (in e+e− annihilation), (108)

which decrease likeQ−2. Also the asymmetries (104) to (108) - of whichABM2 has

been detected experimentally[27–29] - are described differently than in other articles[47,

63,118]. As regards theQ2 dependence of the Boer-Mulders asymmetry, our predic-

tion is supported[61] by DY data[27–29]. On the other hand, theQ2 dependence of the

Collins and Sivers asymmetries might be tested in new planned experiments at higher

energies[38].

8 Summary

In the present paper we have studied the gauge invariant quark-quark correlator, which

we have expanded in powers of the coupling and split into a T-even and a T-odd part.

Working in an axial gauge, the Politzer theorem on EOM has allowed us to interpret each

term of the expansion in terms of Feynman-Cutkosky graphs, involving higher correla-

tors and corresponding to powers ofgM/Q. We have also elaborated an algorithm for

writing a gauge invariant sector of the hadronic tensor in deep inelastic processes, like

SIDIS, DY ande+e− annihilation. This gives rise to a rather long and complicate sum of

terms. However, in the gauge considered, and especially at small transverse momenta, the

factorizable terms prevail over the remaining ones, as we have shown explicitly for first

order correction ingM/Q.

The zero order term and the first order correction of the expansion have been ex-

amined in detail. In both cases the Politzer theorem produces a considerable reduction

of independent functions with respect to the naive parameterization in terms of Dirac

components, giving rise to approximate (up to powers ofgM/Q) relations among ”soft”

functions. These relations survive QCD evolution. One suchrelation has been approx-

imately verified against experimental data[26,20], another one suggests a method for

determining approximately transversity, while others could be checked in next experi-

ments[34,35,37,15]. Also an energy scale, introduced in the naive parameterization for

dimensional reasons, has been determined in our approach, leading to predictions onQ2

dependence of various azimuthal asymmetries. One such prediction finds confirmation in

unpolarized DY data[27–29]. The hierarchy of TMD functionsin terms of inverse powers

ofQ is established taking into account not only the Dirac operators, as in the case of com-

mon functions[42,43], but also thep⊥ dependence, since in this case the orbital angular

momentum plays a role as well as spin.

Moreover a relation is found amonggT , the QS asymmetry and the Sivers asym-

metry; in particular, bothgT and the QS asymmetry are found to change sign according
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as to whether they are observed in SIDIS or in DY. Some doubts are cast, instead, on the

predicted analogous change in the Sivers effect. We draw also some conclusions about

the structure functiong2(x), in particular against the BC and the ELT sum rules.

Quark fragmentation involves ”soft” interactions among final hadrons, but this does

not imply a substantial difference with the distribution correlator. Rather, a caveat should

be kept in mind for timelike photons, in DY ande+e− annihilation, whenQ approaches

the energy of a vector boson resonance, like theΥ or theZ0. Since such a resonance

interferes with the photon, one has to take into account its offshellness, quite different

thanQ2. A particular attention has to be paid also to the case when the active quark (or

antiquark) comes from gluon annihilation, as occurs, for example, in DY from proton-

proton collisions. In this case the antiquarks come necessarily from the sea, which may

sensibly change theQ2 dependence of the coefficients of the T-odd functions. Thesetwo

situations deserve a separate treatment.

As a conclusion, we stress that, although other authors already proposed, years ago,

a decomposition of the hadronic tensor in terms of Feynman-Cutkosky graphs[72,73,75,

78], our deduction, based on EOM, leads to strong constraints on the parametrization of

the ”soft” parts of the graphs.
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A Appendix A

We deduce a recursion formula for the terms of the expansion of the correlator. Our

starting point is the Politzer theorem[71], which implies

〈P, S|ψ̄j(0)L(x)(iD/−m)ilψl(x)|P, S〉 = 0. (109)

Here|P, S〉 denotes the state of a hadron (for instance, but not necessarily, a nucleon) with

four-momentumP and PL four-vectorS. ψ is the quark field, of which we omit the color

and flavor index.Dµ = ∂µ − igAµ is the covariant derivative, adopting for the gluon field

the shorthand notationAµ for Aa
µλa. For the sake of simplicity, color and flavor indices

of the quark field have been omitted. Moreover

L(x) =
∞
∑

n=0

(ig)nΛn(x), (110)
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whereg is the strong coupling, whileΛ0(x) = 1. Forn ≥ 1, in an axial gaugeA+ =

A− = 0, we have, according to the notations and definitions of sect.2,

Λn(x) =
∫ x2

x1

dzµ1

1

∫ z1

x1

dzµ2

2 ...
∫ zn−1

x1

dzµn

n [Aµ1
(z1)Aµ2

(z2)...Aµn
(zn)] . (111)

It is worth observing that

∂µΛn = Aµ(x2)Λn−1. (112)

Substituting expansion (110) into eq. (109), we get

∞
∑

n=0

(ig)n
{

ψ̄j(0)Λn(x)(i∂/−m)ilψl(x) − iψ̄j(0)Λn−1(x)[iA/(x)]ilψl(x)
}

= 0, (113)

with

Λ−1(x) = 0 and Λ0(x) = 1. (114)

Eq. (113) is an operator equation, to be intended in weak sense: it holds when calculated

between hadronic states. All equations of this Appendix will be of this type from now on.

Looking for a perturbative solution for the correlator in powers ofg, we set each

term of the series (113) equal to zero,i. e.,

(i∂/−m)On(x) = iA/(x)On−1(x), (115)

where

[On(x)]ij = ψ̄j(0)Λn(x)ψi(x). (116)

By Fourier transforming both sides of eq. (115), and recalling relation (112), we get

(p/−m)Õn(p) = iγµ

∫

d4x

2π4
eipx [Aµ(x2)On−1(x) + On−1(x)A

µ(x)] , (117)

where

Õn(p) =
∫

d4x

2π4
eipxOn(x). (118)

Eq. (117) can be rewritten as

(p/−m)Õn(p) = iγµ

∫

d4k

2π4

[

Ãµ(k)Õn−1(p− k) + Õn−1(p− k)Âµ(k)
]

, (119)

where

Âµ(k) =
∫

d4x

2π4
eikxAµ(x), (120)

Ãµ(k) = δ(k+) lim
M→∞

∫

dκe−iκMÂµ(k
−, κ,k⊥). (121)
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Eq. (119) is a recursion formula for̃On(p), eqs. (114) constituting the first steps. This

formula implies eqs. (16) (forn = 0) and (17) (forn ≥ 1) in the text. In particular, as

regards eq. (17), the quantityΓn results in

Γn = N〈P, S|Õn(p)|P, S〉, (122)

whereN is a normalization constant. The operatorÕn(p) in eq. (119) corresponds to a

graph endowed withn gluons, such that then-th gluon leg is attached to the quark leg on

the left side of the graph (see figs. 2a and 3a).

Taking into account the hermitian character ofÂµ(k)k and the relation[Õn(p)]† =

γ0Õn(p)γ0, eq. (119) implies

Õn(p)(p/−m) = −i
∫

d4k

2π4
[Õn−1(p− k)Ãµ(k) + Âµ†(k)Õn−1(p− k)]γµ. (123)

In this caseÕn(p) corresponds again to a graph withn gluons, but such that then-th

gluon is attached to the quark leg on the right side of the graph. This last result implies

thatΓn represents any graph withn gluons, each gluon leg being attached to the left or

right quark leg.

B Appendix B

Here we deduce the parameterizations of the quark-quark correlator at zero order and of

the quark-gluon-quark correlation, arising from first order correction.

B.1 The Zero Order Quark-Quark Correlator

The matrixΓ0(p), defind by

(Γ0)ij = N
∫ d4x

(2π)4
eipx〈P, S|ψ̄j(0)ψi(x)|P, S〉, (124)

fulfils the homogeneous Dirac equation

(p/−m)Γ0(p) = 0, (125)

wherem is the rest mass of the quark. As shown in Appendix A, this is a consequence of

the Politzer theorem, which implies, at zero order in the coupling,

(∂/−m)ψ(x) = 0. (126)
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Therefore, in the approximation considered, the quark can be treated as if it were on

shell (see also ref. [119]). Then, initially, we consider the Fourier expansion of the

unrenormalized field of an on-shell quark,i. e.,

ψ(x) =
∫ d3p̃

(2π)3/2

1√
2P

e−ipx
∑

s

us(p)cs(p), (127)

wheres = ±1/2 is the spin component of the quark along a given direction in the quark

rest frame,u its four-spinor,c the destruction operator for the flavor considered and

d3p̃ = d4p δ

(

p− − m2 + p2
⊥

2p+

)

, P = p+/
√

2. (128)

As regards the normalization ofus andcs, we assume

ūsus = 2m, 〈P, S|c†s(p′)cs(p)|P, S〉 = (2π)3δ3(p̃′ − p̃)qs(p), (129)

where

p̃ ≡ (p+,p⊥) (130)

and qs(p) is the probability density to find a quark with spin components and four-

momentump ≡ (p−, p̃), with p− = (m2 + p2
⊥)/2p+. For an antiquark the definition

is analogous, except that, in the Fourier expansion (127), we have to substitute the de-

struction operatorscs with the creation operatorsd†s andp with −p in the exponential.

Choosing the quantization axis along the hadron momentumP in the laboratory

frame, and substituting eq. (127) into eq. (124), we get

(Γ0)ij(p) =
N

2P
∑

s,s′

∫

d3p̃′

(2π)3
〈P, S|c†s(p)cs′(p′)|P, S〉

× [us′(p
′)]i[ūs(p)]j δ

(

p− − m2 + p2
⊥

2p+

)

. (131)

But owing to the second eq. (129) we have

Γ0(p) = [Γa
0(p) + Γb

0(p)] δ

(

p− − m2 + p2
⊥

2p+

)

, (132)

where

Γa
0(p) =

N

2P
∑

s

〈P, S|c†s(p)cs(p)|P, S〉us(p)ūs(p), (133)

Γb
0(p) =

N

2P
∑

s

〈P, S|c†−s(p)cs(p)|P, S〉u−s(p)ūs(p). (134)
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Firstly we elaborateΓa
0. We have

us(p)ūs(p) =
1

2
(p/+m)(1 + 2sγ5S/

a
‖). (135)

HereSa
‖ is a four-vector such that, in the quark rest frame,Sa

‖ ≡ (0, λ/|λ|P̂), λ = S · P̂,

P̂ = P/|P| andS is the unit spin vector of the hadron in its rest frame. Therefore

Γa
0(p) =

N

2P
1

2
(p/+m)

[

f1(p) + ∆′q(p)γ5S/
a
‖

]

, (136)

where

f1(p) =
∑

s

〈P, S|c†s(p)cs(p)|P, S〉 (137)

is the unpolarized transverse momentum distribution of thequark, while

∆′q(p) =
∑

s

2s〈P, S|c†s(p)cs(p)|P, S〉. (138)

According to transformation properties of one-particle states under rotations, one has

|P, S〉 = cos
θ

2
|P,+〉+ i|P,−〉sinθ

2
, (139)

where± denotes the (positive or negative) helicity of the hadron and θ the angle between

P andS. Substituting eq. (139) into eq. (138), and taking into account parity conserva-

tion, we get

∆′q(p) = cosθg1L(p). (140)

Here

g1L(p) =
∑

s

2s〈P,+|c†s(p)cs(p)|P,+〉 = −
∑

s

2s〈P,−|c†s(p)cs(p)|P,−〉. (141)

is the longitudinally polarized TMD distribution of the quark, the last equality following

from parity conservation.

Now we considerΓb
0. Eq. (139) yields, forθ = π/2,

| ↑ (↓)〉 =
1√
2
(|+〉 ± i|−〉), (142)

where|±〉 and| ↑ (↓)〉 denote quark states with spin components, respectively, alongP̂

and along

S⊥ = S − λP̂. (143)

Substituting eqs. (139) and (142) into eq. (134), and takinginto account again parity

conservation, we get

Γb
0(p) =

N

2P
1

2
sinθh1T (p)(| ↑〉〈↑ | − | ↓〉〈↓ |), (144)
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where

h1T (p) = 〈P,−|c†+(p)c−(p)|P,+〉 = 〈P,+|c†−(p)c+(p)|P,−〉 (145)

is the TMD transversity of the quark. Returning to the Dirac notation, we have

| ↑〉〈↑ | =
1

2
(p/+m)

(

1 + γ5S/
b
⊥

)

, | ↓〉〈↓ | =
1

2
(p/+m)

(

1 − γ5S/
b
⊥

)

, (146)

whereSb
⊥ is such thatSb

⊥ ≡ (0, n̂) in the quark rest frame and

n̂ =
S⊥

|S⊥|
. (147)

Then eq. (144) goes over into

Γb
0(p;P, S) =

N

2P
1

2
sinθ∆T q(p)(p/+m)γ5S/

b
⊥. (148)

Substituting eqs. (136), (140) and (148) into eq. (132) yields

Γ0 =
N

2P
1

2
(p/+m)

[

f1 + g1Lγ5S/
q
‖ + h1Tγ5S/

q
⊥

]

δ

(

p− − m2 + p2
⊥

2p+

)

, (149)

having setSq
‖ = Sa

‖cosθ andSq
⊥ = Sb

⊥sinθ. Eq. (149) is a solution to eq. (125),

which is a consequence of the Politzer theorem at zero order in g. Since this equation

survives renormalization - which generally implies only a weakQ-dependence[70,93] -

the structure ofΓ0 is not changed by QCD evolution.

Lastly we deduce the expressions of the four-vectorsSq
‖ andSq

⊥ in the frame where

the quark momentum isp. In the quark rest frame we have

Sq
‖ ≡ (0, λP̂), Sq

⊥ ≡ (0,S⊥). (150)

In view of the Lorentz boost, it is convenient to further decomposeλP̂ andS⊥ into com-

ponents parallel and perpendicular to the quark momentum. We have

λP̂ = λcosαp̂ + Σ‖, Σ‖ = −cosαp⊥

|p| + sin2αP̂, (151)

S⊥ = λ⊥p̂ + Σ⊥, Σ⊥ = |S⊥|cosβ(cosβn̂− sinβk̂), (152)

where

p̂ =
p

|p| , k̂ = n̂× p̂ × n̂

|p̂× n̂| , (153)

α = arccos(P̂ · p̂) and β = arcsin(n̂ · p̂). (154)

The boost which transforms the four-momentum of the quark from (m, 0) to (E,p), with

E =
√
m2 + p2, changes only the components alongp̂ of λP̂ and ofS⊥. In particular,
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the boost transforms the four-vector(0,p) to p̄/m, with p̄ ≡ (|p|, Ep̂). Therefore, since

α andβ areO(|p⊥|/|p|) and|p|/P = O(1), eqs. (150) go over into

Sq
‖ = λ

(

p̄

m
− η̄⊥

)

+O(η̄2
⊥), Sq

⊥ = S⊥ + λ̄⊥
p̄

mq
+O(η̄2

⊥), (155)

whereη̄⊥ = p⊥/P andλ̄⊥ = −S · η̄⊥.

B.2 The Quark-Gluon-Quark Correlator

Now we deduce a parameterization for the quark-gluon-quarkcorrelator, defined by

[

Φ(1)
µ (p, k)

]

ij
= N

∫

d4x

(2π)4
ei(p−k)x〈P, S|ψ̄j(0)[Âµ(k) + Ãµ(k)]ψi(x)|P, S〉. (156)

As shown in Appendix A, the Politzer theorem implies, at order 1 in the coupling,

(p/− k/−m)Φ(1)
µ (p, k) = 0, (157)

which holds also after renormalization. Therefore our lineof reasoning is the same as for

Γ0, that is, we start from unrenormalized fields and we take on-shell quarks, whose field

satisfies expansion (127). Substituting this expansion into eq. (156), we get

Φ(1)
µ (p, k) = Ψµ(p, k)δ

(

p−1 − m2 + p2
1⊥

2p+
1

)

, (158)

Ψµ(p, k) = N
∫

d3p̃′

(2π)3

1

2
√
P1P ′

∑

s,s′
As,s′,µ(p

′, k)us(p1)ūs′(p
′). (159)

Hered3p̃′ andP ′ are defined analogously to eqs. (128),

p1 = p− k, P1 = p+
1 /

√
2 (160)

and

As,s′,µ(p′, k) = 〈P, S|c†s(p′)[Âµ(k) + Ãµ(k)]cs′(p1)|P, S〉. (161)

Moreover the matrix element (161) fulfils a relation of the type

As,s′,µ(p
′, k) = (2π)3Cs,s′,µ(p

′, k)δ3(p̃′ − p̃1 − k̃), (162)

whereCs,s′,µ(p′, k) is a quark-gluon correlator and̃p′, p̃1 andk̃ are defined by eq. (130).

Then eq. (159) yields

Ψµ(p, k) =
N

2
√
P1P

∑

s,s′
Cs,s′,µ(p, k)us(p1)ūs′(p0) (163)
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and

p0 ≡ (p−0 , p̃), p−0 =
p2
⊥ +m2

2p+
. (164)

We rewrite eq. (163) as

Ψµ(p, k) =
N

2
√
P1P

(Ψa
µ + Ψb

µ), (165)

where

Ψa
µ =

∑

s

Cs,s,µ(p1, k)us(p1)ūs(p0), (166)

Ψb
µ =

∑

s

Cs,−s,µ(p1, k)us(p1)ū−s(p0). (167)

Taking into account the appropriate Lorentz transformations for the spinors involved, we

have

us(p1)ūs(p0) =
1

2
(p/1 +m)U(p1, p0)(1 + 2sγ5S/

q
0‖), (168)

us(p1)ū−s(p0) =
1

2
(p/1 +m)U(p1, p0)γ5(cosχS/

q
0⊥ + sinχS̄/⊥). (169)

Here

U(p1, p0) = exp
[

1

2
(φ1p̂1 − φ0p̂0) · ~α

]

, (170)

φ1 = ln
E1 + |p1|

m
, p̂1 =

p1

|p1|
, (171)

p1 ≡ (p1⊥,
1√
2
(p+

1 − p−1 )), E1 =
√

p2
1 +m2, (172)

analogous definitions holding forφ0 andp̂0. MoreoverSq
0‖ andSq

0⊥ refer to the PL vector

of a quark with four-momentump0, directly connected with nucleon polarization; they

can be related to the nucleon longitudinal and transverse PLvectors, using the formulae

elaborated at the end of sect. B1.S̄⊥ refers to the spin caused by spin-orbit coupling,
√

|p2
0⊥|S̄⊥α = ǫαβγρn

β
+n

γ
−p

ρ
0⊥. (173)

Lastly,χ is a real parameter.

We assumeθ0, θ1 << 1, whereθ0 andθ1 are, respectively, the angle betweenp0

andP and the one betweenp1 andP. Then

U(p1, p0) ≈ coshϕ+
1

2ϕ
γ0(γ3a + γir

i
⊥)sinhϕ, (174)
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with

ϕ =
1

2

√

(φ0 − φ1)2 + θ2φ0φ1, θ = θ1 − θ0, (175)

a = φ1 − φ0 −
1

2
(φ1θ

2
1 − φ0θ

2
0), r⊥ =

φ1

|p1|
p1⊥ − φ0

|p0|
p0⊥, (176)

ThenΨµ results in

Ψµ(p1, k) ≈
1

2
(p/1 +m)L[Cµ + ∆Cµγ5S/

q
‖ + ∆TCµγ5S/

q
⊥ + ∆TC′

µγ5S/
s
⊥], (177)

where

L =
N

2
√
P1P

[coshϕ+
1

2ϕ
γ0(γ3a+ γir

i
⊥)sinhϕ] (178)

and

Cµ(p1, k) =
∑

s

Cs,s,µ(p1, k), (179)

∆Cµ(p1, k) =
∑

s

2sCs,s,µ(p1, k), (180)

∆TCµ(p1, k) =
∑

s

cosχCs,−s,µ(p1, k), (181)

∆TC′
µ(p1, k) =

∑

s

sinχCs,−s,µ(p1, k) (182)

are correlation functions. We parameterize these functions with the available transverse

four-vectors, since we operate within an axial gauge:

Cµ = C1p1⊥µ + ǫµνρσn
ν
−(C2S

ρ
‖p

σ
1⊥ + C3MSρ

⊥n
σ
+), (183)

∆Cµ = ∆Cp1⊥µ, (184)

∆TCµ = ∆TCp1⊥µ, (185)

∆TC′
µ = ∆TC′p1⊥µ. (186)

HereC1, C2, C3, ∆C, ∆TC and∆TC′ are ”soft” functions ofp andk. The parameterization

of Φ(1)
µ is obtained by inserting eqs. (177) and (183) to (186) into eq. (158). Again, as

in the case ofΓ0, the Politzer theorem, of which eq. (157) is a consequence, implies that

renormalization effects preserve the structure of that parameterization.

C Appendix C

Here we consider the parameterization of the correlator in terms of the Dirac compo-

nents, up to and including twist-3 terms. This parameterization is similar to the usual
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ones[47,81], also as regards notations, except for an energy scaleµ0, which we leave un-

determined here, and for the twist-2, T-odd sector, which weomit because it has no place

in our procedure. The scaleµ0, usually set equal to the rest mass of the hadron[47,81], is

determined in the sects. 4 and 5.

The parameterization reads

Φ = 2p+

[

(Ψf
E + Ψf

H)δ(p2 −m2) + (Ψi
O + Ψi

H)
1

π(p2 −m2 + iǫ
)

]

, (187)

where

Ψf
E =

P√
2
{f1n/+ + (λg1L + λ⊥g1T )γ5n/+ +

1

2
h1Tγ5[S/⊥, n/+]

+
1

2
(λh⊥1L + λ⊥h

⊥
1T )γ5[η/⊥, n/+]}, (188)

ΨH =
1

2
{(f⊥ + λg⊥Lγ5 + λ⊥g

⊥
T γ5)p/⊥ +

1

4
λ⊥h

⊥
T γ5[S/⊥, p/⊥]

+
1

2
xM

(

e+ g′Tγ5S/⊥ +
1

2
(λhL + λ⊥hT )γ5[n/−, n/+]

)

}, (189)

Φi
O =

2p+

p2 −m2 + iǫ
{ǫijSi

⊥(pj
⊥e

⊥
T +MγjfT ) + ǫijS̄

i
⊥p

j
⊥e

′⊥
T + γ5(xMeLλ

+ eTp⊥ · S⊥ + e′T p⊥ · S̄⊥) + ǫijγip
j
⊥(f⊥

L λ+ f⊥
T λ⊥ + γ5g

⊥)

+ γ5p/⊥S̄/⊥h
′ +

1

2
γ5[γ+, γ−]p⊥ · S̄⊥h

′⊥}. (190)

HereΨH denotes the ”hybrid” term, both interaction free (Ψf
H , T-even) and interaction

dependent (Ψi
H , T-odd): the two terms have the same parameterization, but behave quite

differently. For the ”soft” functions we have adopted notations similar to those employed

in ref. [81]. Note, however, that in the expression ofΦi
O the functionsfT , e

′⊥
T , e′T , h′ and

h
′⊥ do not appear in the parameterization proposed by ref. [81];on the contrary, we have

not taken into account the functionsh andf
′⊥
T , defined in that reference.
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