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Abstract
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1 Introduction

The problem of calculating inclusive cross sections at leigérgies and high momentum
transfers has become quite important in the last two decddesg which a lot of exper-
imental data on deep inelastic processes have been acdachula particular we refer
to deep inelastic scattering (DIS)[1-12], semi-inclusiis (SIDIS)[13-26], Drell-Yan
(DY)[27-32], eTe~ annihilation into two back-to-back jets[33], while anatap experi-
ments have been planned recently[34-39]. One of the aimgybfdnergy physicists is
to extract from data distribution and/or fragmentationdiions, especially if unknown.
Among them, the transversity[40-43] is of particular il since it is the only twists-2
distribution function for which very poor information[44B] is available till now. But
also transverse momentum dependent (TMD) functions - edpethe T-odd ones - are
taken in great consideration; for instance, knowledge efGbllins fragmentation func-
tion[46] or of the Boer-Mulders function[47] could help extting transversity, which is
chiral-odd and therefore couples only with chiral-odd fiwres. Moreover, TMD func-
tions are involved in several intriguing azimuthal asynmiest like the already mentioned
Collins[46] and Boer-Mulders[47] effects, or the Sivei&[9], Qiu-Sterman[50-52] and
Cahn[53,54] effects, which, in part, have found experiraecdnfirmation[19-23,25,33]
and, in any case, have stimulated a great deal of articlefp5Lastly some questions
remain open, among which the parton interpretation of tHarped structure function
9-[65,66]. Obviously, all of these data and kinds of probleme @nfronted with the
QCD theory and in this comparison short and long distanckeseae interested, so that
the factorization theorems[67-70] play a quite importaé lin separating the two kinds
of effects. Strong contributions in this sense have beeangby Politzer[71], Ellis, Fur-
mansky and Petronzio[72,73](EFP), Efremov, Radyushkih Beryaev[74,75], Collins,
Soper and Sterman[76,77,69], and Levelt and Mulders[78)(L

In the present paper we propose an approach somewhat stmile¥P’s and to
LM'’s, but we use more extensively the Politzer theorem oraéiqus of motion (EOM[71]).
We consider in particular the hadronic tensor for SIDIS, DMda‘e~ — m7X. We also
consider energies and momentum transfers high enoughdomasg one photon approx-
imation, but not so large that weak interactions be compeanaith electromagnetic ones.
As regards time-like photons, we assume to be far from magsestor resonances, like
J/¥, T or Z°. Lastly, we do not consider the case of active (anti-)quarkgnating from
gluon annihilation.

Our starting point is the "Born” approximation[78] for thadronic tensor, which



reads, in the three above mentioned reactions, as
P%dRmHamZCQ:%/@ffmTTPXM%@%ﬂWQ- (1)

HereC' is due to color degree of freedor@, = 1 for SIDIS and1/3 for DY ande*e™
annihilation.p andp’ denote the four-momenta of the active partons, such that

pFr =4q 2)

¢ being the four-momentum of the virtual photon and thsign referring to SIDIS, the
+ to DY or toete™ annihilation.®, and®y are correlators, relating the active partons
to the (initial or final) hadrons 4 andh gz, whose four-momenta are, respectivehy, and
Pg. We restrict ourselves to spinless and spin-1/2 hadranandb are the flavors of
the active partons, with = u,d, s, 4,d,5 andb = a in SIDIS,b = a in DY andete~
annihilation;e, is the fractional charge of flavat. In DY ¢, and®z encode information
on the active quark and antiquark distributions inside tiigal hadrons. In SIDISP is
replaced by the fragmentation correlatdg, describing the fragmentation of the struck
guark into the final hadrohg. In the case oé*e~ annihilation, both correlators , and
® 5 have to be replaced ¥, andA g respectively.

In the approximation considered we define the distributiometator (commonly
named correlator) as

059 P.5) = N [ Gz (PS5 0)us(a)|P.S). ©

HereN is a normalization constant, to be determined in sect: ¥.the quark field of a
given flavor and P, S) a state of a hadron (of spin 0 or 1/2) with a given four-momentu
P and Pauli-Lubanski (PL) four-vectaf, while p is the quark four-momentum. The color
and flavor indices have been omitted/irior the sake of simplicity and from now on will
be forgotten, unless differently stated. On the other htmefragmentation correlator is
defined as

Byl P.S) =N [ S O 0u(P SR S0 @

wherea(P, S)[a'(P, S)] is the destruction (creation) operator for the fragmentaditn,
of given four-momentum and PL four-vector.

The hadronic tensor (1) is not color gauge invariant. Iniddg a gauge link is
not sufficient to fulfil this condition, but EOM suggest to aslgitable contributions of

IFor an antiquark egs. (3) and (4) should be slightly modifisdye shall see in sects. 2 and 6.



higher correlators, involving two quarks and a number ofoghj so as to construct a
gauge invariant hadronic tensor.

We adopt an axial gauge, obtaining for the correlatgn8/) expansion, where
is the coupling, M the rest mass of the hadron ag@dhe QCD ”"hard” energy scale, gen-
erally assumed equal n\gf@. We examine in detail the first two terms of the expansion.
The zero order term corresponds to the QCD parton model appation. As regards
the second term, it concerns the T-odd functions; in pdefcwe discuss an interesting
approximation, already proposed by Collins[79]. In botlsesawe obtain several ap-
proximate relations among "soft” functions, which survperturbative QCD evolution,
as a consequence of EOM. Our approach allows also to detetiméd)-dependence of
some important azimuthal asymmetries and to draw concigsabout the Burkhardt-
Cottingham[80] and Efremov-Leader-Teryaev[65] sum rules

Section 2 is devoted to the gauge invariant correlator (mpooperly to the distri-
bution correlator), whose properties are deduced with éhe &f EOM. In particular, we
derive an expansion in powers oi//(), whose terms can be interpreted as Feynman-
Cutkosky graphs. In section 3 we give a prescription foringita gauge invariant sector
of the hadronic tensor which is of interest for interactiahkigh@. In sects. 4 and 5 we
study in detail the zero order term and the first order coweatf the expansion, deduc-
ing approximate relations among functions which appeahénusual parameterizations
of the correlator[55,81]. Sect. 6 is dedicated to the fragpawgon correlator. In sect.
7 we illustrate the azimuthal asymmetries involved in the¢hdifferent deep inelastic
processes. Lastly sect. 8 is reserved to a summary of theremiits of the paper.

2 Gauge Invariant Correlator

The correlator (3) can be made gauge invariant, by inselietgzeen the quark fields a
link operator[76,77,55], in the following way:

d*x

(27T)46ipx<P, S|1/71j(0)£(x)¢i(x)|P7 S). (5)

®ii(p; P, S) :N/

Here
L(x) = Pexp ighz(z)], with  Az(z) = /( | Ao Ay (2)d2", (6)
0

is the gauge link operator, "P” denotes the path-orderedymioalong a given integration
contourZ, \, andAj, being respectively the Gell-Mann matrices and the gluoddieThe
link operator depends on the choiceZqfwhich has to be fixed so as to make a physical
sense. According to previous treatments[55,79,82,83e@ime two different contours,
7., as sets of three pieces of straight lines, from the origimto = (+00,0,0, ), from



P10 10 T2 = (00, 21, x, ) and fromzy,, tox = (2, 2, x, ), having adopted a frame,
whosez-axis is taken along the hadron momentum, with= 1//2(t & z). We remark
that the choice of the path is important for the so-calledd@®dunctions[47]: the path
7, is suitable for DIS distribution functions, while_ has to be employed in DY[82,83].
For an antiquark the signs of the correlator (5) and of the-foamentunyp have to be
changed.

In the following of the section we investigate some progsrdf the correlator.

2.1 T-even and T-odd correlator
We set[82] .
Ppo) = §[q>+ +o_], (7)

whered_. corresponds to the contofk in egs. (6), whileb; and®, select respectively
the T-even and the T-odd "soft” functions. These two cotekacontain respectively the
link operatorsCg(z) andLo(x), where

Lpo)(r) = %P {eap [ighs, ()] + exp [ighs (2)]} (8)

andAz (z) are defined by the second eq. (6). Egs. (7) and (8) imply tleaf-#aven func-

tions are independent of the contofr, (or Z_), while T-odd ones change sign according
as to whether they are involved in DIS or in DY[79,82]. In teense, such functions are
not strictly universal[79], as already stressed. It is @ment to consider an axial gauge,

A~ =AT =0, 9)

with antisymmetric boundary conditions[55]. Here we hastefgied the shorthand nota-
tion A* for A*A%. In this gauge - proposed for the first time by Kugut and S&@8rhnd
named KS gauge in the following - we have

Az, (2) = ~Ar_(2) = [ dzuA"(2), (10)
wherez; is a shorthand notation faf; ;. 7 = 1, 2. Therefore, in the KS gauge,
Lp(x) = Pcos [g/\z+ (x)} , Lo(z) = iPsin [g/\z+ (x)} (11)

and the T-even (T-odd) part of the correlator consists ofri@s®f even (odd) powers of
g, each term being endowed with an even (odd) number of glugs s a consequence,

2More precisely, one should speak of "naive T”, consistingesiersing all momenta and angular mo-
menta involved in the process, without interchangingahiind final states[84—86].



the zero order term is T-even, while the first order correci® T-odd. This confirms
that no T-odd terms occur without interactions among pa:itas claimed also by other
authors[57-59,79]. Gauge invariance of the correlatotigsphat these conclusions hold
true in any axial gauge, such that conditions (9) are fudfillerom now on we shall work
in such a type of gauge[88,89].

2.2 Power Expansion of the Correlator

We consider®,, which, as explained before, refers to DIS. As regards D¥, Thodd
terms will change sign, as follows from the choice of the path instead ofZ, - and
from the first eq. (10) and from the second eq. (11). We rewfite) as

[e.e]

L(z) =D _(ig)"An(z). (12)

n=0

HereAo(z) = 1, while forn > 1 one has, in the KS gauge,
M) = [aepr [T [T A (A () A () A ()], (23)
x1 T x1

where thez; = (00, 2;",2;1), 1 = 1,2,...n, are points in the space-time along the line
throughz; andz,. Substituting eq. (12) into eq. (5), we have the followinga&xsion of
® in powers ofy:

® =3 (ig)"T\ (14)
n=0
with
d4l' ipT n
(0ol =N [ e (PS5O @) ()P ). (15)

As already noticed],,, is T-even for evem and T-odd for odch.

Now we invoke the Politzer theorem[71], concerning EOM.ST$tiates that, if we
consider the matrix element between two hadronic statesgwen composite opera-
tor, constituted by quark and/or gluon fields, each such fidfds EOM, no matters if
the parton is off-shell and/or renormalized. We show in Apgpe A that, owing to the
Politzer[71] theorem, the terin, fulfils the Dirac homogeneous equatione.,

wherem is the quark rest mass. The corresponding Feynman-Cutlgrsiph is repre-
sented in fig. 1.
Forn > 1 we have instead
(ig)"T, = N / 9, SP D () ke Ky k). (17)

H1..-Un
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Figure 1: Feynman-Cutkosky graph for zero order term of egjman (14).

Here we have set

n 4
aQ, = l:l_[l (63:)14’ (18)
ST = p— ;i]+ zemm]lf — ¥ Z—gm - z'ewwm
: ¥- kn_fg— m + iewun’ 4
Bo— Sk (20)
r=1

Thek, (r = 1,2, ...n) are the four-momenta of thegluons involved in the quark-gluon
correlator®(” ., defined as

(I)(”) ki ko k - N d'z i(p—kn)z
[ e (P s R ")Lj_ We

X (P SIGOP [By (k). By (E)(0)| P, S), (1)
with

B,(k) = A,(k)+A,k), (22)

A = [ S A 23)
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Figure 2: Same as fig. 1 for first order correction in the cawupli

A(k) = 8(k) lim / dre™ "M A, (k™ 5, kL), (24)

M—o0

the reference frame being the one defined at the beginnirtigso$éction. Moreover the
operator produck”’ is defined according to the following rules:

-anyA (k) is at the left of anyA ,,(k);

-the A (k) are ordered ad ,, (k1)A,,, (ks)...A,, (k;);

-the A, (k) are ordered ad ,, (ky,)... A, (k2)A,, (k).

Lastly the quark-gluon correlators”)  fulfil the following homogeneous equa-
tion:

¥ - Zén - m)q),(ﬁ)...un (p, k1, k2...ky) = 0. (25)

Each term of the expansion (14) - somewhat similar to the dt&imed by Collins
and Soper[76,77] - may be interpreted as a Feynman-Cutlgrsiph. It corresponds to
an interference term between the amplitude

"nucleon — quark + spectator partons” (26)

without any rescattering, and an analogous one, whegkions are exchanged between
the active quark and the spectator partons.

In particular, the interference term is such that the gluéorsrn > 0) are attached
to the left quark leg, see figs. 2a and 3a. An important reseitluced at the end of
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Figure 3: Same as fig. 2 for second order correction.

Appendix A, is that such a term turns out to correspond to atgriierence term between
two amplitudes, such thdt andn — & gluons respectively are exchanged between the
active quark and the spectator partons, With £ < n. The situation is illustrated in figs.
2and 3forn =1 and 2.

It is worth noting that a radiation ordering similar to theeoestablished here is
found in semiinclusive processes at laxg®0] and in totally inclusive DIS at smatli[91].
Moreover the terms (21) consist of quark-gluon-quark datiens, analogous to the one
introduced by Efremov and Teryaev[75] and by Qiu and Stefftab2].

As a consequence of the Politzer theorem, formulae (14) 1p §ald for renor-
malized fields, provided we take into account the scale didgese of the coupling, of
the quark mass» and of the correlator@fj;)m“n (p, k1, ka...k,)[92]. Moreover one has
to observe that the four-momenta appearing in the propegate highly off-shell:p?
and (p — k,)? are of orderQ?[77,78], because the uncertainty principle demands hard
interactions to occur in a very limited space-time intereafresponding to the condition

p?| > M>. (27)
Therefore we havg? ~ 2p*p~ andp™ = O(Q), whence

P~ =0(Q) (28)



and it follows that the coefficients, are of ordei)~", up to QCD corrections, consisting
of terms of the typey®*(InQ)™, with k andm integers and: > m[93]. For the same
reason, the coupling, which appears in expansion (14), assumes small valuese-cor
sponding to short distances and times.

To summarize, we have found that the T-even and the T-odeletors, given by
eqgs. (7), may be written as expansiongii/Q, i. e,

>, [igM mn_ > [igM il
o) =3 (1) Ta o) =3 (U0} Taa (9
o\ @ o\ @

wherel',, = I',Q"/M™ depend still orQ, as told above. As explained abode, changes
sign when involved in DY. Stated differently, T-odd termsgent an odd number of quark
propagators, see eq. (19) for odd in the limit of negligible quark mass, quark four-
momenta in DIS are spacelike, whereas in DY they are tim@iKe

The first two terms of expansion (14) will be studied in detaikects. 4 and 5
respectively.

3 Hadronic Tensor

In the present section we refer indifferently to the hadrdaansor of the three processes
introduced, which may involve one or two fragmentation etators; in fact, as we shall
see in sect. 6, this object requires only minor modificatiwith respect to the treatment
of last section.

If we substitute the gauge invariant correlator (5) into hlaelronic tensor (1), this
latter does not fulfil the requirement of electromagnetiagginvariance: only the term
of zero order in the coupling satisfies this condition. Inesrtb get a complete gauge
invariance at any order, we have to recall the interpretajiven above of the correlator.
For example, at first order in the coupling in SIDIS, we sed tha "hard” scattering
amplitudegy* — ¢'g - where we have denoted lpyandq’ the initial and final quark and
by g a gluon - consists not only of the graph of fig. 4a, encodederfitst order term of
the correlator, but also of the one represented in fig. 4bchvimterferes coherently with
it. This guarantees electromagnetic gauge invarianceénéofitst order graph[94].

Furthermore, convoluting "hard” graphs with the "soft” fars, these two ampli-
tudes give rise, among other objects, to asymmetric Feyrtnakosky graphs (fig. 5),
related to interference terms. These are observables ssadyg gauge invariant - and
therefore assume real values. This procedure, alreadyesteghjin ref. [78], can be gen-
eralized to the three kinds of hadronic tensors considerdtié present article, at any
order ing, so as to obtain sets of graphs corresponding to obsenzaatudherefore gauge

10
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Figure 4: Graphs for "hard” amplitudes interfering cohéhgriirst order correction in the
coupling.

invariant, quantities. We show how to construct them at adgio:, corresponding to the
overall number of gluons exchanged between active quartspectator partons. The
procedure consists in following steps, for a given

- Consider then + 1 possible combinations of gluons occurring in the hadronic
tensor (1), says for hadronA andn — s for hadronB, with s =0, 1 ...n.

- For a givens (n — s), consider all possible correlators, according to the défimi
given in subsect. 2.2: as seen at the end of last sectiorg #msuntte +1 (n—s+1)
correlators equal tb, (I',,_s).

- Add each such correlator all those graphs whose "hard’sparerfere coherently
with it, as shown in fig. 5. In practice, one has to do this fa ¢brrelator whose gluons
are attached to the "left” quark leg and to multiply by the ruemnof gluons of each
correlator.

Then we have, up to QCD corrections at each order of the eigans

Was(a) = Y. W3 (q), (30)
n=0
with
W = ¢ / dp~d’p, / 0, > S TrM ), (31)
r=0s=0

11
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Figure 5: Feynman-Cutkosky graphs corresponding to "hardplitudes of fig. 4. Also
the complex conjugate graphs, which amount to specularesmafjthese two, contribute
to first order corrections.

n

My = Y(s+1D)(n—s+1) [[E005T ] (32)
s=0
l

[t = 3 gma, st (33)

Here we have used the following shorthand notations:

Sm — Sllfr+1,llfr+2 ----- Mm’ (bn,s — q)n75 (34)

r T T Hs 1542550

moreover we have sét” = 1 form = r.

For each term of expansion (30) we have to take into accouveg #inds of effects:

a) gluon radiation by scattered partons;

b) perturbative QCD corrections;

c) higher correlators, such that the active quarks exchglugas with quark-antiquark
pairs or gluon pairs or triplets belonging to spectatorquast

The first two effects may be calculated according to the #lgorsuggested in refs.
[76,77]. As to the contributions c), they can be includedhie basic term of expansion
(30), since they have the same (T-even or T-odd) behaviastl\Lae recall that, unless
we integrate over some final transverse momentum [of themepair in the case of DY,

12



of a final hadron in SIDIS oe™e~ annihilation], the phase space of the final gluons
emitted undergoes a restriction[93], expressed by a ddaobbrithmic form factor; this

IS more and more sizable at increasing energy, resultingamiell-known Sudakov-like
damping[76,95].

4 Zero order term: the QCD parton model

In this section and in the following one we shall be concemét the hadronic tensor
for DY process, but our results may be trivially extendedh® other two deep inelastic
processes, with a slight difference for the fragmentatiorcfion, to be discussed in sect.
6.

Let us consider the hadronic tensor (31) at zero oider,

W =C / &pLdp™Tr [7aT3 (D78 ()] (35)

where the'y’s are given by eq. (15) for = 0 and fulfil the homogeneous Dirac equation
(16). The tensor (35), T-even, corresponds to the Born ajpation considered in the
introduction. As appears from eq. (35), the study of thisteramounts to analyzing the
correlatorl’y, which is itself T-even and gauge invariant at zero ordey.iitn Appendix

B we show that

Lo(p) = %(l" +m) [fl (p) + 158 91L(p) + 75$ih1T(p)} 2pT8(p* —m?). (36)

Here f1(p), g1.(p) andhyr(p) are functions of the four-momentupof the active quark,
which, in this case, is on shey, = (E,p), with £ = |/m? + p®. S| and ST are the
components of the quark PL vector, respectively paralldl@arpendicular to the hadron
momentum. Moreover we have set

1

P=—spin, (37)

having defined the dimensionless, light-like four-vectorsn such a way that
ny-n_=1 (38)

and their spatial components are along (+) or opposite (fhedchadron momentum. It
is important to notice that, if integrated over, the expression obtained for the zero
order correlator turns out to be proportional to the densigtrix of a quark confined
in a finite volume, but free of interactions with other padf@6]. Therefore we fix the
normalization constanV so as to obtain, after integration, just the density matréx,

N = 2P. (39)

13



Lastly, it is convenient to expreﬁ andS? in terms of the components of the PL vector
of the hadron. As shown in Appendix B, one has

A%:A(%>—nl+0@©, S =S1+ A= +0(T).  (40)
Here
ne +n_ Ny +n_
A= —§. —— S =8 - \— 41
\/5 L \/5 ( )
A= =S, p.=(0,0,pL) (43)

andp, is the transverse momentum of the active quark with respettte hadron mo-
mentum.

Equation (36) has important consequences on TMD T-evertiting; as we are
going to illustrate in the two next subsections. To this ereda@mpare that equation
with the naive parameterization of the TMD correlator imterof Dirac components,
without introducing any dynamic conditions[55,56,81]. @iee such a parameterization
in Appendix C, up to and including twist-3 terms. The twistf2even sector, which we
study in subsect. 4.1, corresponds to quark distributiorctions which survive when
interactions with gluons are turned off. As regards theth®ifunctions, we distinguish
among the T-even, the T-odd and the "hybrid” ones, thess thstving contributions both
from T-even and T-odd terms.

4.1 Twist-2, T-even Correlator

If quark-gluon interactions are neglected, the correlstasually parameterized as[97,98]

<I>£ = %{fﬂ/b_;_ + (Ag1L + ALgir) s+ + %th%[ﬁia Tyl

S OB+ ki)l )2 (2 —m?). (44)

Here the Dirac operators considered are purely T-even,rabeahecked; moreover

nL = pL/Mm AL=-5-"n (45)

and ;. is an undetermined energy scale, introduced for dimenki@asons, in such a
way that all functions embodied in the parameterizatio®dfave the dimensions of a
probability density. This scale[97] determines the noinadion of the functions which
depend omy, . In particular, as is well-known, the 6 twist-2 functiondyish appear in the
parameterization (44), are interpreted as TMD probaldégsities:f; is the unpolarized

14



quark densityg, ;, the longitudinally polarized density in a longitudinallglprized (spin
1/2) hadrong;r the longitudinally polarized density in a transverselygsaed hadron,
hi; the transversity in a longitudinally polarized hadron and

Wi = hir + |0} |hig (46)

is the TMD transversity in a transversely polarized hadron.
Now we compare the parameterization (44) with the correl@®). To this end we
consider projections of both matrices over the various®w@mponents, e, for a given

Dirac operatoi’’,

1
o' = —TrI'd, (47)
2

possibly taking into account eqgs. (40).
Firstof all,I" = vyt andysyt; (i = 1, 2) yield, approximately in the limit af. =

01
2

hi ~ _%gm, Gir ~ %hg, hi ~ %hw. (48)
These relations hold up to terms of ordef//Q)?, since, as we have seen, the T-even
Dirac components ab derive contributions only from even powersg¥/ /(). Moreover,
the Politzer theorem implies that the relations are not frextiby renormalization effects,
and therefore hold also taking into account QCD evolution.

In order to determine,,, we observe that the functions involved on both sides of
egs. (48) are independent Bf Therefore we must set, = CyP, C, being a dimen-
sionless numerical constant, independent of momentum.siBoe these functions are
quark densities, they should be normalized adequatelyngét, = 1. Then, neglecting
the quark mass,

1
MOIP:EP‘H—- (49)

This result differs from the treatments of previous autfE$81], who assumg, = M.
By comparing CLAS[26] and HERMESJ[20] results, at not tootiglues ofQ)?

(1.5 to 3GeV) the first relation (48), together with eq. (49), is verified £ < 0.35[96],

discrepancies at largerbeing attributed to higher twist contributions.

4.2 Twist-3, "Hybrid” Correlator

Now we consider a sector of the correlator which, as alreagiaged, has both T-even
and T-odd contributions. In particular, here we focus ort treat of "hybrid” correla-
tor which comes from the so-called "kinematic” twist-3 texnmn Appendix C we find,
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according to the usual notations[55,81],

1
ZM’Z%% 15, p]

+ Lem (e s+ 5Ohe + A ksl k] 127007 — ). (50)

1
of, = {i(fl + AV + ALgFys) L +

2

Comparing the projections of the operators (36) and (50) bve~; (i = 1, 2) yields the
approximate relation

fJ_%fb (51)

which corresponds to the Cahn[53,54] effect and is appratety verified for sufficiently
largeQ? and smalk[45]. Also this equation, like eq. (48), survives QCD evalat As
we shall se in the next section, eq. (51) holds up to termsdgfrgi\//Q, sincef derives
also (T-odd) contributions from one-gluon exchange.

The projections of the same operators dvers~; (i = 1, 2) yield (after integration
overp,)

gr(a) ~ i (@), (52)
where
gr(z) = [ dpigp(e,p?) (53)
and
hi(e) = [ . [har(e,2) + i Ihiz (2, p3)] (54)

as obtained by integrating eq. (46) over transverse momentuthis case the contribu-
tion of the QCD parton model is very smait is negligible foru- andd-quarks, while for
s-quarksh; is presumably small, because the sea is produced mainlyrifiktion of
gluons, whose transversity is zero in a nucleon. Therefaeontribution of quark-gluon
interactions, neglected in the approximation considdbedpmes prevalent in this case,
as well as forl” = 1 and~5v,v_, corresponding respectively toandh;. The effect of
such interactions will be discussed in sect. 5.

4.3 Remarks

To conclude this section, we sketch some consequences tfenretical results.

A) In the expression (46) or (54) for transversity, the sectarm is due to a rela-
tivistic effect. To illustrate this, consider a transvéygmlarized hadron. The longitudinal
polarization of the quark, due in this case to the transvam®entum, is magnified by the
boost from the quark rest frame. This additional polar@atalong the quark momentum,
has again a transverse component with respect to the nutieorentum.
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B) Eq. (54), together with the last two egs. (48), suggestethad for determining
approximately the transversity of a hadron. Indeggd, can be conveniently extracted
from double spin asymmetry[99-101] in SIDIS with a transedy polarized target. This
asymmetry is expressed as a convolution of the unknown ifumetith the usual, well-
known fragmentation function of the pion. Therefore themeétappears complementary
to the one usually proposed[16,102], based on the Collfiest46] in single spin SIDIS
asymmetry; in this latter case one is faced with the conwaytroduct ofh,1 with the
Collins function, which is poorly known[63,64].

C) Eq. (52) establishes a relation between transversityrangverse spin. Indeed,
the two quantities are related to each other. But, unlikestrarsity, the transverse spin
operator is chiral even and does not commute with the freeltwaman of a quark[42]: in
QCD parton model it is proportional to the quark rest massclwbauses chirality flip.

D) We note thay 7, hi; andhi; are associated with "twist-2" Dirac operators[42,
43], and yet, in our treatment, they are multiplied by inegpewers ofQ (Q~! for the
first two functions Q)2 for the third one). This would be unacceptable for common dis
tribution functions, but, when transverse momentum islvew, also the orbital angular
momentum plays a role. To illustrate this point, we recalt the quark distribution func-
tions may be regarded as the absorptive parisdiannel quark-hadron amplitudes[44].
For exampleg, 1 corresponds to an amplitude of the type+ | — +), denoting by A\) a
state in which the nucleon and quark helicities are, regpdygt A and\. The amplitudes
corresponding to the functions in question involve a chade= 1 (for g,z andh;;) or
AL = 2 (for hi7) in the orbital angular momentum, therefore they are of yjpe t

A = A(sinf)~L, (55)

wheref = arcsin|p,|/|p| is the angle between the nucleon momentum and the quark
momentum, whileA is weakly energy dependent. Sings is of order@ and|p, | of
orderM, our result can be understobd

5 First Order Correction

The first order correction ip of the hadronic tensor reads [see egs. (31) and (32)]
_ d*k
Wil = —2¢C / dp~d’p, / i T Nes (56)

with

Nag = 2[02 (p, 0, &) (0, k)ysTE(0) + ~ali (D)W, p, K)®RL (0, K)] (B7)

3This observation is the fruit of a stimulating discussiothello Paver.
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and
1

P —m+ie " —m+ e
Moreover the<1>£})’s are given by eq. (21) for = 1 and fulfil the homogeneous Dirac
equation

Rh(p, D' k) = 7a e y Y- (58)

B—#—m)@P(p,k)=0. (59)

In Appendix B we show that, according to the Politzer theqrand adopting, as in the
previous sections, an axial gau@éu})(p, k) is parameterized as

. m?+p?
o0, = 0, 193 (5~ LR (60)
1
Here
p1=p—Kk, with p? = m? (61)
and

1 ) o
Vu(pr, k) = 5+ m)LIC, + AC B + ArCisfl + ArCiasBi].  (62)

Moreover we have

VIR IS1e = €apponin”p?, (63)
“ nh

= ,/z COShQO‘i"YO’YgaSZn L4 , (64)
P1 2p

whereP; = pi /v/2, while p anda are defined in Appendix B. Lastly

C, = p11uCi+ €upent” (CgSﬁpp‘l’l + C3MSTn?), (65)
AC, = ACpiiy, (66)
ATCM = ATCle_/m (67)
ATCL = A7C'pii,. (68)

HereC; (i = 1,2, 3), AC, Ar+C andArC’ are correlation functions, th& being unpolar-
ized, while the others are polarized. More precisal§,andAC, which are, respectively,
longitudinally and transversely polarized, are relatedricoverall nucleon polarization.
On the contraryA+C’ is a transversely polarized correlation function connétbegquark-
gluon interaction, for example, to a spin-orbit couplingf59].

5.1 Approximate Factorization

The second term of eq. (58) is not factorizable, in agreemnvéhtthe observations of var-
ious authors[57-59,103,104], who have shown failures ofersality[103,104] at large
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tranverse momentum. However, for sufficiently laige and adopting an axial gauge,
this term is negligibly small[94] in comparison with the fime, which instead is factor-
izable. In fact, the gluon corresponding to the first term &asaller offshellness than
the one involved in the second term. This approximation jgeeislly acceptable, even
for relatively small@), provided we limit ourselves to small transverse mome®ap?
the initial hadrons with respect to the direction of the mataen of the virtual photon
in the center of mass of the DY pair. However, as already éxgthin sect. 2, also in
the case when factorization is approximately satisfied,THoeld distribution functions
change sign from SIDIS to DY. We shall illustrate phenomegadal implications of this
change of sign in sect. 7.

In this approximation eq. (57) simplifies to

Nog =2 [ dp™dp17all3 ()3T 5 () + Tk 0l () (69)
with . sy
D) = o i ¥ R (70)

Then, in an axial gauge, under the kinematic conditions alo@scribed, the tensWO(élﬁ)
can be written [see egs. (56) and (69)] in a form similalmﬁg), giving thus rise to an ap-
proximate[57] factorization of T-odd functions. Our camsion is quite analogous to the
one drawn by Collins[79] and presents some similarity whid Qiu-Sterman assumption
about the quark-gluon-quark correlation functions[50].

Moreover, eqs. (65) to (68), together with eqs. (40), indiacd’; the following
parameterization, at twist-3 approximation:

2p™ 1

~ - 1L i, v ( O /
Fl(P) ~ 7T(p2 — m2 T ’LE) 27—7—1— [ﬁj_fo + Y Ewapn— (pJ_Sﬁ)gL
+ MnSStgh,) + VBB L. + VBB L+ MspLfL]- (71)
Here N
_ +m
Po = (\p\,pip ) : (72)
p|
Moreover
fol = —/dQ61, gélﬁo - /dQCg, hT7o == _/dQATC7 (73)
W= / dOALC = / d(Cy + rAC), (74)
- &k ppf kpg L
A0 = =) = 75
TGyt o " P LT 7o
i .
1 — le lcoshap + a“;’(p‘p] and &k = 2p7d*pio(p? — m?).  (76)
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The notations for the functions are somewhat similar tog¢hosoduced by refs. [55,81].
The suffix”o” in f;-, g7, andhr, denotes T-odd contribution to these three functions,
classified as "hybrid” in sect. 4, since they have T-even tenparts, see eq. (50). These
functions are normalized coherently with their counteigaindeed, if the quark is on-
shell,

[7(p* —m® +ie)] ™ — —id(p® —m?), (77)

the (—:)-factor being compensated by thefactor in expansion (14). This constrains
also the normalization of the other functions included in @L). Moreover, as already
noticed in connection with correlation functions, the ftio 2’ describes a quark trans-
verse polarization induced by quark-gluon interactiohss polarization, present also in
spinless or unpolarized hadrons, is somewhat similar t@ter-Mulders function[47],
although it is twist-3 and not twist-2.

5.2 Twist-3, T-odd correlator

Now we compare the parameterization (71) with the naiverpaterization of the twist-3,
interaction dependent correlator. This reads, accordifgppendix C,

' = &Y + D, (78)

whered!) is given by eq. (50), substituting(p? — m?) by [r(p*> — m? + i¢)]~!. On the
other hand
D, = L{ei»Si (PLer + M~ fr) + €S pleq +vs(xMeph
o) D% —m? + ie iR \PLer iR 1P1er
+ erpy - Si+erpr - S1) +egupL(fE A+ frAl + s97)

- 1 _
+ P LR + 575[%” y-lpL - Sih L}- (79)

Comparison between parameterization (78) and result €dbyponent by component,
yields the following approximate relations:

g- ~ fr. fimar. fregh., (80)
e N —er & hfo ~ hro, (81)
ey ~ —ef ~ Wt o= W, (82)
e ~ ff o~ gi,{o ~ e, ~ hp,~0. (83)

Also these equations survive QCD evolution, like eqgs. (48) @1).
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5.3 Remarks

A) From most of the above relations one can see that a unigquetidun represents both
unpolarized { ore) and polarizedd or i) distribution functions, independently of the fact
that the nucleon is polarized or not. This is a consequenteeagpin-orbit coupling[57]
in gluon-quark interactions. For the same reason, the peteammation ofcI>§}> includes
5 independent functions and not only 3, despite the factitHalfils the homogeneous
Dirac equation likd",.

B) Among eqgs. (80) to (83), those which concern only T-oddcfioms hold up
to terms of ordefg)M/Q)?. On the contrary, those which involve "hybrid” functions -
including eq. (51) - hold up to terms of ordei//(). Analogous approximate relations
of this latter type have been found in ref. [105].

C) By integrating the correlator (71) over the transverseraotum of the quark, we
obtain interesting results as regards twist-3 common fanst First of all, the fourth eq.
(83) implies that(z) derives just T-even contributions, and therefore, apamfihe (neg-
ligible) term illustrated in the previous section, it is es8ally of order(gM/Q)?. On the
contrary, the main contributions tg- andh are of ordery M /() and are T-odd, therefore
they change sign according as to whether they are involvBdSror DY reaction. These
last predictions could be tested by confronting the DIS d®@pin asymmetry[4,5,10]
with the DY one[106,107]. In the case of DY one has to integjoater the transverse mo-
mentum of the virtual photon; moreover, if possible, it ma&yrbore promising to detect
717~ pairs, whose polarization is perhaps less problematicterane[108].

D) Lastly, it is worth noting that, unlike previous authefg[56,81], we find that
the functions related to longitudinal and transverse [md#ion are associated to the same
inverse power of). For exampleg® andh’ describe, respectively, the longitudinal quark
polarization in an unpolarized nucleon. Similarfy, and f are unpolarized quark densi-
ties in a longitudinally and transversely polarized nunleGonversely, the twist-2 T-odd
functionsh;, corresponding to transverse polarization in an unpadrinicleon, and the
unpolarized distribution functiolfii;.[47] in a tranversely polarized nucleon find no place
in parameterization (71).

5.4 Consequences oy and g,

Now we examine some consequences of our results on the RiSwe functiongy, (x)
and g»(z), whose properties have been studied by various autho8§a%9]. To this
end, here, and only in this subsection, we re-introduce gweiflindices, dropped out in
formula (1), in order to recover the usual definitions of #nsnctions. Recalling that

gr(x) = gi(x) + g3(x)  (a=wu,d,s), (84)
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and setting

g(r) = Leloi) +gi@)] (=1.2) (85)
gro(@) = Y [ Ll (e.08) + 5 (e, 93], (86)

eq. (52) implies a
91(x) + g2(2) = gre(x) + gro(w) + O(M?/Q?), (87)

where [cfr. eq. (52)]

gTe Z 2

Since, as discussed in subsect. @T’_fe is negllglbly small for a nucleon, result (87) is in
contrast with the Burkhardt-Cottigham[80] (BC) sum rules.,

/01 g2(x)dx = 0. (89)

Indeed, integrating both sides of eq. (87) between 0 andd aasuming relation (89),
implies

z) + hi(z)]. (88)

1 1
/ g1(x)dz ~ / gro(2)dz, (90)
0 0
which is impossible, since, (z) is a T-even function, whiler, is, by definition, T-odd.
Furthermore eq. (89) implies, together with the operatodpct expansion[65],
1d
9(2) +02() = [ “Ln(0) + o8 (1)

whereg!? is the twist-3 contribution tg+[65], to be identified, according to our results,
with gr,. Then eq. (87) would yield

/1 dy _ 27112
i ?gl(y) = gre(z) + O(M*/Q%), (92)

which appears in contrast with data@fz)[1,2,9], enforcing arguments against the BC
rule (See ref. [65] and articles cited therein). An expentakconfirmation of the viola-
tion of the BC rule was found years ago in a precision measemewf g, (x)[10]. Also
the Efremov-Leader-Teryaev (ELT)[65] sum ruiee.,

/01 dxxz[gi(z) + 2g2(x)] = 0, (93)

is in contrast with our result. Indeed, it gives rise, togetith eq. (87), to the approxi-
mate relation

/ dazgi(a / da2agr (), (94)

which, again, relates a T-even function to a T-odd one.
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6 Fragmentation Correlator

The fragmentation correlator (4) can be made gauge invaieaiogously to the distribu-
tion correlatorj. e, for a quark,

Dylpi P.8) = 2P [ S50 OL@EHO0)a(P.S)a (P S)()0) (99)

(2
whereL(z) is given by eq. (6). Object (95) may be treated analogoudlyadalistribution
correlator, according to the previous sections. Indeext il this case, for an antiquark
one has to change the four-momentum freto —p and to put a minus sign in front of the
correlator. Moreover one has to choose the patHor quark fragmentation from* e~
annihilation, whereas the path refers to fragmentation in SIDIS. The only important
difference with the distribution correlator is that one hadake into account also the
nonperturbative interactions among the final hadrons medluHowever, as we shall see
in a moment, this does not involve any change in the parainaten.

We treat only the case of pions, adopting for T-odd terms gomegmation anal-
ogous to the one discussed in subsection 5.1, valid for dnaalverse momenta of the
final hadron with respect to the fragmenting quark. Undes ¢oindition, we have

Alp) = 2p{AP(p)s(p* —m?) + AD(p)[r(p* — m® +ie)] "'}, (96)
AOp) = S5+ m)D, o7)
AD(p) = y_y [p.DF +pLH']. (98)

Here D, is the common fragmentation function of the pidn. is defined as in ref. [55]
and H' assumes the role of the Collins[46] function, describirggasymmetry of a pion
fragmented from a transversely polarized quark.

Final state interactions give rise to terms - for instanderference terms - which
decrease as inverse powerghfindependent of the nature of the interactions themselves.
To show this, we observe that these interactions may prodon@zimuthal asymmetry
in a pion fragmented from a transversely polarized quari[4@]. Analogously to the
distribution functions illustrated in remark D at subsektB, such an asymmetry may be
regarded as the absorptive part of an amplitude of the type ), where+ denotes the
helicity of the fragmenting quark. This kind of amplitude tygical helicity flip one -
behaves as

(+|—) = Bsin#, (99)

where B is a given function, weakly dependent on the quark momentiua,to pertur-
bative QCD corrections. Analogously to eq. (55), we coneltitht interference terms
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decrease at least 85!, just like the second term in eq (98). Our result agrees wi¢h t
approach by Collins and Soper[76], who do not include "shiftél state interaction in the
leading term of (almost) back-to-back fragmentatioaa— annihilation.

7 Asymmetries

In this section we consider some important azimuthal arglsgpin asymmetries, which,
as is well known, may be produced by coupling two chiral-exetwo chiral-odd TMD
distribution or fragmentation functions. More precisehg terms of the hadronic tensor
which give rise to asymmetries are written as convolutiwpcts of two "soft” functions
and depend on some azimuthal angleelative to the final hadron (for SIDIS and e~
annihilation), or to the final muon pair (for DY). Some of tee@symmetries arise from
the first order correction of the hadronic tensor, while ath®elong to the second order
one, whose complete parameterization is not considerdusmpaper.

A) Cahn effect

This effect, pointed out for the first time by Cahn[53], hagsiexhibited by ref.
[45] examining some SIDIS data[13-15] (see also ref. [L1AB consider the asymmetry
corresponding to the "product”

Ac o f*® Dy + f1 ® DX (100)

This asymmetry is proportional tas¢ and decreases lik9~!. To the extent thaf~
and D} can be approximated bff and D, respectively, one speaks properly of Cahn ef-
fect[45]: this amounts to neglecting quark-gluon inteiats, see eq. (51) for distribution
functions, an analogous equation holding for unpolarizagrhentation functions. This
approximation is acceptable for relatively lar@eand at small:, as shown by ref. [45].
However, one has to observe that bgthand D+ are "hybrid” functions and in general
their T-odd contributions cannot be neglected.

It is worth considering also the "product”

Acy o f+®@ Dy, (101)

which generates aos2¢ asymmetry decreasing lik9—2, hardly distinguishable from
another one, arising from the "product” of two chiral-odahétions, as we shall see in
a moment. Under the approximation just discussed, we gradiort of "second order”
Cahn effect.

B) Qiu-Sterman effect

An important transverse single spin asymmetry is the ondigied by Qiu and
Sterman[50-52] (QS) (see also refs. [75,112,113,82]).s Thn be observed both in
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SIDIS and in DY, where one integrates over the transverse entum, respectively, of
the final hadron detected and of the final pair. This is deedrliy the "products”

Aps < gy @ Dy (in SIDIS) and o ¢ ® fi +c.c.  (in DY), (102)

the "bar” indicating the antiquark function amrd:. "charge conjugated”. A similar effect
could be observed iei" e~ annihilation, if one of the the hadrons observed were spmni
This asymmetry decreases like!. Moreover, sincey;. is prevalently T-odd, whilef,
fi and D, are T-even, the asymmetry is expected to assume an oppiggittnsSIDIS
and DY.

C) Sivers effect

According to our treatment, the Sivers asymmetry[48,4€giscribed by the "prod-

uct
Asry < ¢ ® D= (in SIDIS) and o g5 ® f+ +c.c. (in DY). (103)

Therefore this asymmetry - detected by HERMES[20,21] and/€8SS[23] ex-
periments - is described a bit differently than in curretgriture[47,64,45]; in particular
it results to decrease &5 2 *. Moreover, comparing eq. (103) with eq. (102) shows a re-
lation between the Sivers asymmetry and the QS asymmetayressly noticed by other
authors[82,114-117]. This relation is especially closené& adopts the approximation
f+ ~ fi, or DX ~ D, according to the Cahn effect[53,54]. In this approximatoe
would observe the already predicted change of sign[79r6#je asymmetry, similar to
the QS effect; but if quark-gluon interactions - and therefé-odd components of such
functions - are not negligible, the prediction is not true.

D) Collins effect and Boer-Mulders effect

In the framework of chiral-odd functions, an important $engpin asymmetry is
produced by combination of two transversities. In paracusingle transverse polariza-
tion gives rise to an asymmetry described by the "product”

ACOL X th@Hl (1n SIDIS), or (104)
Ay o hip @K +ce. (in DY). (105)

This asymmetry - exhibited by HERMES[20,21] data - is prestido decrease lik@!.
We have also theos2¢ asymmetries

Acrs o« W @H' (in SIDIS), or (106)

“We obtained a different result in a previous paper[61],siwe had started from a parameterization
which is usually assumed for the correlator, but which isin@greement with the results of the present
paper.
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Apys o< W ®h (in DY), or (107)
Acrs o« H' ® H' (in ete” annihilation), (108)

which decrease lik€)~2. Also the asymmetries (104) to (108) - of whiehs,» has
been detected experimentally[27—29] - are describedrdiitéy than in other articles[47,
63,118]. As regards th®? dependence of the Boer-Mulders asymmetry, our predic-
tion is supported[61] by DY data[27—-29]. On the other hahe,@? dependence of the
Collins and Sivers asymmetries might be tested in new plwmxgeriments at higher
energies[38].

8 Summary

In the present paper we have studied the gauge invariank-gquiark correlator, which
we have expanded in powers of the coupling and split into &aER@nd a T-odd part.
Working in an axial gauge, the Politzer theorem on EOM hasmadtl us to interpret each
term of the expansion in terms of Feynman-Cutkosky graptwelving higher correla-
tors and corresponding to powers @f//). We have also elaborated an algorithm for
writing a gauge invariant sector of the hadronic tensor iepdimelastic processes, like
SIDIS, DY ande™ e annihilation. This gives rise to a rather long and compéeatm of
terms. However, in the gauge considered, and especialigat sansverse momenta, the
factorizable terms prevail over the remaining ones, as we Baown explicitly for first
order correction iy M /Q).

The zero order term and the first order correction of the esijparhave been ex-
amined in detail. In both cases the Politzer theorem praglaceonsiderable reduction
of independent functions with respect to the naive paramzetéon in terms of Dirac
components, giving rise to approximate (up to powerg/df/ Q) relations among "soft”
functions. These relations survive QCD evolution. One setition has been approx-
imately verified against experimental data[26,20], anothree suggests a method for
determining approximately transversity, while otherslddoe checked in next experi-
ments[34,35,37,15]. Also an energy scale, introduced ennthive parameterization for
dimensional reasons, has been determined in our appraacting to predictions o?
dependence of various azimuthal asymmetries. One suclcpoadinds confirmation in
unpolarized DY data[27-29]. The hierarchy of TMD functianserms of inverse powers
of ) is established taking into account not only the Dirac omgsatas in the case of com-
mon functions[42,43], but also the dependence, since in this case the orbital angular
momentum plays a role as well as spin.

Moreover a relation is found among-, the QS asymmetry and the Sivers asym-
metry; in particular, botly; and the QS asymmetry are found to change sign according
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as to whether they are observed in SIDIS or in DY. Some doubtsast, instead, on the
predicted analogous change in the Sivers effect. We drasvsaime conclusions about
the structure functiog,(z), in particular against the BC and the ELT sum rules.

Quark fragmentation involves "soft” interactions amongfihadrons, but this does
not imply a substantial difference with the distributionrredator. Rather, a caveat should
be kept in mind for timelike photons, in DY anrd e~ annihilation, when) approaches
the energy of a vector boson resonance, likeYher the Z°. Since such a resonance
interferes with the photon, one has to take into accountfithellness, quite different
than?. A particular attention has to be paid also to the case whemdtive quark (or
antiquark) comes from gluon annihilation, as occurs, faregle, in DY from proton-
proton collisions. In this case the antiquarks come necgsé@m the sea, which may
sensibly change th@? dependence of the coefficients of the T-odd functions. These
situations deserve a separate treatment.

As a conclusion, we stress that, although other authoradrproposed, years ago,
a decomposition of the hadronic tensor in terms of Feynmaikd&3ky graphs[72,73,75,
78], our deduction, based on EOM, leads to strong conssraimthe parametrization of
the "soft” parts of the graphs.
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A Appendix A

We deduce a recursion formula for the terms of the expansidheocorrelator. Our
starting point is the Politzer theorem[71], which implies

(P, S[t;(0)L(x)(ip— m)at(x)| P, S) = 0. (109)

Here| P, S) denotes the state of a hadron (for instance, but not nedgsaarucleon) with
four-momentumP and PL four-vectosS. ¢ is the quark field, of which we omit the color
and flavor indexD, = 0, —igA,, is the covariant derivative, adopting for the gluon field
the shorthand notatioA , for A7 \,. For the sake of simplicity, color and flavor indices
of the quark field have been omitted. Moreover

[e.e]

L(z) = _(ig)"An(z), (110)

n=0
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whereg is the strong coupling, whildq(xz) = 1. Forn > 1, in an axial gaugeA™ =
A~ =0, we have, according to the notations and definitions of &ct.

_ / gz / T / T A A () Ay () A ()] . (111)

It is worth observing that
@An = A“(l’g)An_l. (112)

Substituting expansion (110) into eq. (109), we get

[e.9]

> (ig)" {85 (0) A (@) (i@ — m)athi(w) — ith; (0) A (@) i &) athn(w) | =0, (113)
with
Ai(z) =0 and Ay(z)=1. (114)

Eq. (113) is an operator equation, to be intended in weakesénisolds when calculated
between hadronic states. All equations of this Appendikivalof this type from now on.

Looking for a perturbative solution for the correlator inygrs ofg, we set each
term of the series (113) equal to zeroe,,

(i) — m)On(2) = ik(2)Op_1 (), (115)
where
[On(@)]ij = 3 (0)An(2)thi(2). (116)
By Fourier transforming both sides of eq. (115), and reagltielation (112), we get
R 4
(P —m)Oy(p) = i, %e’px [A*(22)Op—1(x) + Op_1(z)A¥ ()], (117)
where e
Oulp) = [ 55¢™ Oula). (118)

Eq. (117) can be rewritten as

~ 4 ~ ~ ~ A~
06— m)Oup) = i [ S5 [AKRO,alp— ) + Oualp — WA*(R)] . (119)
where
. dir
Ar(k) = 5 T AP (1), (120)
Ar(k) = (k") Jim / dre "M A (kK k). (121)
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Eq. (119) is a recursion formula f(@n(p), egs. (114) constituting the first steps. This
formula implies egs. (16) (fon = 0) and (17) (forn > 1) in the text. In particular, as
regards eq. (17), the quantiky, results in

where N is a normalization constant. The operafdy(p) in eq. (119) corresponds to a
graph endowed with gluons, such that the-th gluon leg is attached to the quark leg on
the left side of the graph (see figs. 2a and 3a).

Taking into account the hermitian characterAsf(k)k and the relation®, (p)]! =

705 (p)70, €d. (119) implies

R

Ou(p)(p — m) = —i 51 On1(p = k)A¥ (k) + AM(k)Op 1 (p — )]y, (123)

In this caseO, (p) corresponds again to a graph withgluons, but such that the-th
gluon is attached to the quark leg on the right side of thelgrdphis last result implies
thatI',, represents any graph withgluons, each gluon leg being attached to the left or
right quark leg.

B Appendix B

Here we deduce the parameterizations of the quark-quarklator at zero order and of
the quark-gluon-quark correlation, arising from first arderrection.

B.1 The Zero Order Quark-Quark Correlator
The matrixI'y(p), defind by
(ol = N | e (P, 510, 0)6(2)1P.5), (124)
)
fulfils the homogeneous Dirac equation
(# —m)lo(p) = 0, (125)

wherem is the rest mass of the quark. As shown in Appendix A, this isrssequence of
the Politzer theorem, which implies, at zero order in theptiog,

(9 — m)(z) = 0. (126)
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Therefore, in the approximation considered, the quark aardated as if it were on
shell (see also ref. [119]). Then, initially, we considee tRourier expansion of the
unrenormalized field of an on-shell quarke.,

By 1
_ —ipz 127
v@) = [ Gy g S uslple ). (127)
wheres = +1/2 is the spin component of the quark along a given directiohéncuark
rest framey its four-spinor,c the destruction operator for the flavor considered and

2 2
dp=d'p s <p- - %) , P=pt/V2. (128)

As regards the normalization af andc,, we assume
Usus =2m, (P, S|cl(p))es(p)|P,S) = (2m)** (D' — P)as(p),  (129)

where
f) = (p+7 PJ_) (130)

and ¢;(p) is the probability density to find a quark with spin componerdand four-
momentump = (p—, p), with p— = (m? + p%)/2p*. For an antiquark the definition
is analogous, except that, in the Fourier expansion (12&)have to substitute the de-
struction operators, with the creation operator§ andp with —p in the exponential.

Choosing the quantization axis along the hadron momerfuim the laboratory
frame, and substituting eq. (127) into eq. (124), we get

Cs(0) = 55 3 [ G P SIEL@es I S)
< LG (o - P, 1)

But owing to the second eq. (129) we have

Fals) = 130) + 1800 (5 "2 ). (122)

where
T3) = 55 SRS )P, S ()i, (133
D) = g5 LAP S o) p)IP. Sy )i (o), (134
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Firstly we elaboraté'}. We have

ua(p)ia(p) = 55+ m)(1+ 2575). (135)

Here St is a four-vector such that, in the quark rest frarfig= (0, \/|\[P), A =S - P,
P = P/|P| andS is the unit spin vector of the hadron in its rest frame. Thmmef

N1

L5(p) = 555 +m) LA1(p) + Aa(p)rsfi] (136)
where
fi(p) = > _(P, S|cl(p)es(p)| P, S) (137)
is the unpolarized transverse momentum distribution ofjtrerk, while
Nq(p) =D 25(P, S|cl(p)es(p)| P. S). (138)

According to transformation properties of one-particktess under rotations, one has
|P,S) = cosg\P, +) +1i| P, —>8ing, (139)

where+ denotes the (positive or negative) helicity of the hadrashéatihe angle between
P andS. Substituting eq. (139) into eq. (138), and taking into actgarity conserva-
tion, we get

A'q(p) = cosbgir(p). (140)

Here
g1(p) = > 25(P,+|cl(p)es(p) [P, +) = 228 ,—lel(p)es(p)IP, ). (141)

is the longitudinally polarized TMD distribution of the glathe last equality following
from parity conservation.
Now we considef. Eq. (139) yields, fof) = /2,

1 :
[ T() = E(Iﬂ +il-)), (142)

where|+) and| 1 (])) denote quark states with spin components, respectivelgga?
and along
S, =S—)\P. (143)

Substituting eqs. (139) and (142) into eq. (134), and takmg account again parity
conservation, we get

Th(p) = 55 gsimbhar (p)(| 1T | = | 1)L ), (144)
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where

hnr(p) = (P, =|ck.(p)e_(p)|P, +) = (P, +|cL(p)ey (p)| P, -) (145)
is the TMD transversity of the quark. Returning to the Diratation, we have
1 1
[T =50+ m) (1+81) . [T = 5@ +m) (1-81). (146)
wheresS? is such thats} = (0,1n) in the quark rest frame and
.Sy
= ——. 147
B=1g] (147)

Then eq. (144) goes over into

N 1
Lo(p; P, S) = ﬁésm@ATQ( p)(# +m)sf (148)
Substituting egs. (136), (140) and (148) into eq. (132)dgel
N1 . m2+p?
Ly = 2P 2(35 +m) {fl + glL%ﬁq + h1T75$ﬂ (p T T L) ; (149)

having setSq = Sfcost and S = St sinf. Eq. (149) is a solution to eq. (125),
which is a consequence of the Politzer theorem at zero ondgr Since this equation
survives renormalization - which generally implies only aak()-dependence[70,93] -
the structure of’ is not changed by QCD evolution.

Lastly we deduce the expressions of the four-vecﬂﬁrandSi in the frame where
the quark momentum ig. In the quark rest frame we have

S? = (0, \P), S =(0,8,). (150)

In view of the Lorentz boost, it is convenient to further degmse\P andS into com-
ponents parallel and perpendicular to the quark momentuenhaVe

~

AP = JAcosap + X, )= cosaﬁ + sin*aP, (151)
S, = Ap+Z., | =[S, |cosB(cosBn — sinfk), (152)
where
p o= o k=nx 222 (153)
p| [P x 1
a = arccos(P-p) and 3 =arcsin(i-p). (154)

The boost which transforms the four-momentum of the quarkffm, 0) to (£, p), with
E = /mZ + p?, changes only the components algngf AP and ofS . In particular,
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the boost transforms the four-vector, p) to p/m, with p = (|p|, Ep). Therefore, since
aandg areO(|p.|/|p|) and|p|/P = O(1), egs. (150) go over into

S1=A (£ =) + o) S1=Si+A-+OR),  (155)
q
wheresj, =p,/Pand\, = -5 -7,.
B.2 The Quark-Gluon-Quark Correlator

Now we deduce a parameterization for the quark-gluon-qoanielator, defined by
oW k)| =N [ -EE o0 p 51 (0)[ AL k) + A, (k P,S). (156
2B, =N [ GRS O Ah) + AuE]()IP.S). (156)

As shown in Appendix A, the Politzer theorem implies, at ortlén the coupling,

=¥ —m)eV(p,k) =0, (157)

which holds also after renormalization. Therefore our bheeasoning is the same as for
Iy, that is, we start from unrenormalized fields and we takehailguarks, whose field
satisfies expansion (127). Substituting this expansianeqt (156), we get

(158)

. m?+p}
(I)/(})(]% k) = ‘;[],u,<p7 ]{7)(5 (pl - )

2pf

d*p' 1 , _
\I’u(l%k’) = N/WW §A578’7M(p7k)us(pl)us’(p)' (159)

Hered3p’ andP’ are defined analogously to egs. (128),
p1=p—k, PL=pf/V2 (160)

and
Acwru(0' k) = (P, S|l () [A (k) + Au(k)]ew (p1)| P, S). (161)

Moreover the matrix element (161) fulfils a relation of thpey
As,s’,;L(p/u k) = (27)3Cs,sf,u(p/7 k)53(1~)/ - 151 - f{)u (162)

whereC; o ,(p', k) is a quark-gluon correlator arsl, p; andk are defined by eq. (130).
Then eq. (159) yields

U, (p, k) = w% > Cotp ks o) (163)
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and

2 2
_ . _ pl1t+tm
Do = (pO 7p)7 by = BT (164)
We rewrite eq. (163) as
W, (p, k) = N (T 4+ ) (165)
p\D; - 9 ,—Plp w wl
where
U = 3 Copupr, k)us(p1) s (po), (166)
\Ijz = ZCSv_Svu(plak)us(pl)ﬂ—s(pO)- (167)

Taking into account the appropriate Lorentz transfornmetifr the spinors involved, we
have

us(pl)ﬂs<p0) = %(]él + m)U(pbPO)(l + 2875%”)7 (168)
ualp)ioa(p) = 51+ U pos(cosx i + i), (169)
Here ]

Up. o) = eap |5 (6101 = dobo) - ] (170)
o = mPtel b= PL (171)

m ‘P1|

1

P = (piL, E(Pf -p1)), Ey =/pi+m?, (172)

analogous definitions holding fgg andp,. MoreoverSgH andS{, refer to the PL vector
of a quark with four-momentum,, directly connected with nucleon polarization; they
can be related to the nucleon longitudinal and transverseeetors, using the formulae
elaborated at the end of sect. Bl refers to the spin caused by spin-orbit coupling,

VIPELS 10 = €agponinlpf, . (173)

Lastly, x is a real parameter.
We assumd),, ), << 1, wheref, andf, are, respectively, the angle betwegen
andP and the one betwegm andP. Then

1 .
U(p1, po) = coshyp + %%(%a + ;' )sinhep, (174)
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with

¢ = 56007+ Bougn, 0= 0,0, (179

1
a = ¢1— ¢ — —(¢19% - ¢098)7 r, = ﬂpu - ﬂpm, (176)
2 |p1\ \P0|

ThenV , results in

Vo1, k)~ 50+ mILC, + ACsH] + ArCosl + ArClasSll. (77)

where N 1 |
L= 2\/731_P[cosh<p + %’Yo(’}/ga + ;1" ) sinhy] (178)

and

Culpr, k) = XS:C&S,M(ph k), (179)
AC,(p1 k) = Z 25Cs o u(p1, ), (180)
ArC,(pr, k) = ;cosxcs,_w(pl, k), (181)
ArCl(p1,k) = Z sinXCs,—s,u (D1, k) (182)

are correlation functions. We parameterize these funstwith the available transverse
four-vectors, since we operate within an axial gauge:

C, = Cipiiy+ €upen” (CgSﬁ)pf{L +C3MSTnT), (183)
AC, = ACpii, (184)
ArC, = ArCpiiy, (185)
ArC, = ArC'pii,. (186)

HereCy, Cs, C3, AC, ArC andArC’ are "soft” functions ofp andk. The parameterization
of ®{V) is obtained by inserting egs. (177) and (183) to (186) into(@§8). Again, as
in the case of'y, the Politzer theorem, of which eq. (157) is a consequenugjes that

renormalization effects preserve the structure of thadpaterization.

C Appendix C

Here we consider the parameterization of the correlatoeims of the Dirac compo-
nents, up to and including twist-3 terms. This parametédnras similar to the usual
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ones[47,81], also as regards notations, except for an gsealey,, which we leave un-
determined here, and for the twist-2, T-odd sector, whiclomé because it has no place
in our procedure. The scalg, usually set equal to the rest mass of the hadron[47,81], is
determined in the sects. 4 and 5.

The parameterization reads

1

m(p? —m? +ie

O = 2p* (W + U)o (p* — m?) + (U, + ) )|, (187)

where

vl = %{fﬁh + (AgiL + ALgir) vty + %th%[ﬁiv hel

1
+ §(>\hﬁ + ALhip) s, it ]} (188)
1 1
Uy = 5{(fl + AL Vs + ALgTs) Pl + Ehh%%[ﬁum
1

oM (e gsfi+ 5y + Auhrshi ) (189)

2
i 2p* — ; —_—
Oy = m{EijSﬂpleT + M~ fr)+ €5 P eq +ys(xMepA
+ €TpJ_~SJ_‘|‘€/TpJ_~S'J_)+€ij’yipﬂ_(f£‘)\+f1{-)\J_+,y5gJ_)

= 1 —
+ P pLh + 575[%”7—]2% -SiLh l}- (190)

Here ¥ denotes the "hybrid” term, both interaction frekj,i(, T-even) and interaction
dependent¥’;, T-odd): the two terms have the same parameterization,dhe quite
differently. For the "soft” functions we have adopted naias similar to those employed
in ref. [81]. Note, however, that in the expressionigf the functionsfr, e;, e/, ' and
h'+ do not appear in the parameterization proposed by ref. {8lihe contrary, we have
not taken into account the functiohsand /-, defined in that reference.
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