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Abstract

An event-by-event study, based on neural network methods, of the mass identification

in high energy cosmic rays was carried out with simulated data, in order to check the

possibility of analyzing real data measured at the Pierre Auger Observatory. Extensive air

showers were simulated with the CORSIKA code, using the hadronic model QGSJET98.

The goodness of the method in recognizing the mass of the primary was tested making

use of the parameters extracted from the simulated longitudinal profiles. We showed that

the designed supervised neural network is able to discriminate, with high identification

efficiency and purity, between proton- and iron-induced showers. We tested our method

also in presence of a four components primary flux (proton, helium, oxygen, and iron).

Typical results for the classification matrix obtained are presented and discussed.
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1 Introduction

Mass composition analysis is a fundamental task to test any theoretical model concern-

ing the origin and the nature of the primary cosmic ray radiation at the highest energies.

Different energy spectra are predicted to be observed at ground by the present theories,

according to the mass of the primary particle, so the knowledge of the energy spectra for

every mass component, or at least for groups of components, is required in order to dis-

criminate among the proposed models.

At lower energies (0.1÷ 100 TeV) the composition of cosmic rays can be measured using

direct detection techniques, such as spectrometers and calorimeters: the experimental data

in this energy range tell us that the radiation is approximately made up of 50% protons,

25% α particles, 13% CNO and iron nuclei [1].

At higher energies, the measurement of the mass is generally performed by indirect tech-

niques, which make use of parameters sensitive to the primary mass, and determined by

the shower development in the atmosphere. Among such parameters, Xmax (the depth at

which the longitudinal shower has its maximum), Nmax (the number of shower particles

at Xmax) and Nmuons (the number of muons at a given distance from the shower axis)

are widely used. In the knee region (1015
÷ 1017 eV) a recent analysis from KASCADE

experiment, based on the deconvolution of a 5-component mass spectra starting from the

experimental Nmax-Xmax scatter plots, shows that the knee is due to a decrease of the light

component with respect to the heavier one, and that the knee position for higher masses

shifts towards higher energy [2]. A clear increase of the mean logarithmic mass as a func-

tion of the primary energy is found in other experiments, such as EASTOP-MACRO [3].

While the experimental results are clearer in this intermediate energy region, the situation

becomes controversial moving to the highest energies (> 1017 eV): the HiRes analysis [4],

based on the elongation rate method, the Yakutsk analysis [5], based on the comparison

of experimental Xmax distributions to QGSJET simulated ones, and the AGASA analysis

[6], based on the comparison of experimental muon number distributions with simulated

ones, suggest a composition dominated by the proton component. Recent re-analyzed

data from Volcano Ranch [7] and Haverah Park [8] experiments, based on the comparison

of the steepness parameter distributions, extracted from the lateral distribution function,

with simulated ones, claim for a composition dominated by the iron component.

Interesting attempts to compare these results are found in [9] and [10]. Measurements

from different experiments are difficult to compare, because the predictions are strongly

dependent upon the hadronic models used in the analysis. These controversial results

suggest that the problem of mass composition at the highest energies is still open and

debated.
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This is indeed one of the main objectives of the Pierre Auger Experiment, which consists

of two observatories of about 3000 km2 each, located at sites in the Southern and North-

ern hemispheres. The Southern Observatory is actually expected to be completed in a

few months and is taking data as the deployment goes on. Two systems of detectors have

been mounted to measure the shower properties: the surface detector (SD) consists of a

grid of Cherenkov water detectors, measuring the particle density at ground level, hence

the lateral distribution of the shower; while the fluorescence detector (FD) measures the

fluorescence light emitted by the shower particles traversing the atmosphere, and the lon-

gitudinal profile of the shower [11].

Two kinds of approaches can be used to perform a composition analysis: the event-by-

event approach uses pattern recognition methods, working with a set of shower parameters

sensitive to the mass, in order to estimate the probability of identifying the mass of every

observed event; methods of unfolding or deconvolution allow to infer the energy spectra

for different mass components, starting from a data set of shower parameters, without any

care regarding the mass of the single event.

It is clear that a mass identification study must be necessarily restricted to limited mass

groups, since the absence of features strongly correlated with the primary mass and the

presence of stochastic shower-to-shower fluctuations in the shower parameters, make a

complete analysis very inefficient. The first approach could become inadequate, even

with a powerful pattern recognition method, especially with a too large number of mass

components. Keeping in mind these difficulties, an event-by-event reconstruction is any-

way necessary if one wants to study possible correlations with other analysis, e.g. if one

wants to correlate the mass of an event with its astrophysical arrival direction.

For these reasons we present in this paper the results of an event-by-event study, per-

formed with parameters extracted from simulated showers and measurable with the FD

detector at the Auger Observatory and with a neural network as identification tool.

The paper is organized as follows: section II describes the data set, built from COR-

SIKA simulations of extensive air showers, and the search for parameters sensitive to the

mass. Section III presents the neural network which was designed and its application to

simulated data. Section IV, finally, shows the obtained results and our conclusions.

2 The simulated data

The present study is based on a sample of simulated showers, which were generated with

CORSIKA 6.002 [12], using QGSJET98 [13] as hadronic interaction model. Simulations

were performed at the Lyon Computer Centre.

The CORSIKA system is one of the widely used codes for EAS simulation currently in
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use. All the relevant particles and interactions are taken into account during the simula-

tions, and a number of observables are recorded; among them, the longitudinal and lateral

profiles of the showers, the arrival time distributions, and detailed lists of particles reach-

ing the ground level.

Two kinds of simulated data set were used, with the following features:

• Set I: 4578 proton and iron showers, generated with an optimum 10−5 thinning,

a power-law energy spectrum (γ = 2) in the range 1018
− 1020 eV, zenith angles

generated according to the distribution dN ∝ sin θ cos θdθ in the range 0◦ − 60◦

degrees;

• Set II: 500 proton, helium, oxygen and iron showers, generated with an optimum

10−6 thinning, at fixed primary energies 1018, 1018.5, 1019, 1019.5, 1020 eV (100

events for each energy) and zenith angle fixed to 0◦. Similar sets are available for

18◦, 26◦, 37◦, 45◦ and 60◦. For proton and iron events, a 53◦ zenith angle set was

also available.

We made use of the amount of information contained in the simulated longitudinal curves,

sampled in 5 g/cm2 bins by CORSIKA, with the only request of limiting the profiles in

the range 200-870 g/cm2, these upper and lower limits being determined respectively by

the maximum observable level and by the fluorescence detector threshold at the beginning

of the cascade development at the Pierre Auger Observatory.

In order to perform a composition study, we need a set of parameters sensitive to the

primary mass: the discrimination among the different components is done using the well

known fact that heavy primary induced showers develop faster in the atmosphere with

respect to light induced ones (e.g. they reach the cascade maximum at smaller atmo-

spheric depths), because of the higher nucleus-air cross section for showers of the same

primary energy and zenith angles. We expected to extract a set of observables from the

longitudinal curves, suitable for showing this behavior, hence introducing the following

parameters:

• Xmax, Nmax: atmospheric depth of shower maximum and number of charged par-

ticles at shower maximum;

• p10, p50, p90: atmospheric depths at which the 10%, 50%, 90% of the whole

integral profile are reached. These are sort of indicators about the “rise time ”of the

longitudinal profiles;

• d10, d50: derivative of the longitudinal profiles sampled at X = p10, X = p50.

These represent observables correlated with the rapidity of the cascade development
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towards its maximum;

• E, θ: primary energy and zenith angle (these are not directly correlated with the

mass).

The numerical values of the first two parameters (Xmax and Nmax) were evaluated by

fitting the simulated profiles Nch(X) for charged particles in the range 200-870 g/cm2

with a standard 6-parameters Gaisser-Hillas function:

Nch(X) = Nmax

X − X0

Xmax − X0

Xmax−X0

a+bX+cX2

exp
(

Xmax − X

a + bX + cX2

)

(1)

The integral I of the whole profile in the above-mentioned range was evaluated by nu-

merically integrating the profile curves, specified at a certain number of points (at least

greater than 4), with a NAG routine, which evaluates the integral using a third-order

finite-difference formula, according to a method due to Gill and Miller [14]. The in-

tegral between successive points is calculated by a four-points finite-difference formula

centered on each interval, except in the case of the first and last intervals, where four-

point forward and backward difference formulae respectively are employed. The values

of the parameters p10, p50, p90 were then determined interpolating with a first-order

polynomial in the interval, inside of which the required 10%I , 50%I , 90%I integrals are

reached. The choice of using such NAG routine is motivated by the fact that it does work

with unequally-spaced points, as the points of the experimental profiles actually are.

The parameters d10 and d50 were determined taking the derivatives of the fit profile

curves at X = p10 and X = p50.

The sensitivity to the primary mass for every chosen parameters was evaluated, using the

simulated SetII, evaluating the following quantity at a given energy and zenith angle:

η =
NFe − N p

√

[RMSFe]2 + [RMSp]2
(2)

where NFe and Np are the mean values of the distributions for every parameter, for fixed

energies and zenith angles, for the proton and iron components, while RMS are the cor-

responding RMS values. η represents an estimate of the separability between the lightest

and the heaviest mass components for different energies and zenith angles; larger η val-

ues correspond to a better discriminating power of the considered parameter. Analysis

performed with SetII show a good discriminating power at all zenith angles, with smaller

values of η at the increase of primary energy, for all the examined parameters.

The parameter space built in this way is therefore suitable for the neural network method

application.
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3 Neural network application to simulated data

This section presents the application of a neural network technique to the identification

problem, describing the design of the network used, and the steps followed to perform the

analysis.

3.1 The network design

A feed forward neural network (NN) is structured in parallel layers of neurons, connected

to neurons in adjacent layers by weighted connections, indicating the strength of the neu-

ron link. The input layer is connected to the input data vector and an indefinite number of

hidden layers process the signal towards the output layer which returns the final response

of the network to the presented input data. Figure 1 shows a typical architecture of a NN,

deduced from our analysis, the design of which will be discussed.

Figure 1: A typical neural network architecture, designed with the feature set discussed

in section II as input parameter vector. The lines represent the neuron weights: larger line

sizes indicate greater weight values.

Figure 2: A single neuron from Figure 1 of index i: the input vector components xi, the

weights wij (j=1,...m), the biases bi, the transfer function f and the output signal f(zi) are

showed.
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The basic processing unit in the network is the neuron: the input signals xi (i=1,m)

coming from each input channel are linearly transformed by applying a multiplicative

weight wij and an additive bias bi to form the net neuron input zi:

zi =
m

∑

j=1

wijxj + bi (3)

The neuron output is obtained by applying a transfer function f(zi) to the net input (see

Figure 2). Common forms of such activation functions are the simple linear function

f(zi) = αzi + β, or the sigmoidal form functions, as well as the logistic function f(zi) =
1

1+exp(−αzi)
and the hyperbolic tangent function f(zi) = exp(zi)−exp(−zi)

exp(zi)+exp(−zi)
.

After testing several network architectures, we obtained good results using a net with an

input vector of dimension 9, 3 hidden layers, each one with 12 neurons, and an output

layer with one neuron. The activation functions are logistic sigmoid in the hidden layers

and linear in the output layer.

Next step is the choice of the training algorithm. The training data is a set of N events

(xi, yi) i = 1, ...N , defined by the 9-dim input vector xi ≡(Xmax, Nmax, E, θ, p10, p50,

p90, d10, d50)i and by the desired output vector (the mass identity of the event) yi. The

supervised training algorithm minimizes the difference between the desired output yi and

the network computed output ti, by adjusting iteratively the weights and biases of the net

in order to minimize a given error function E. The error function used for the present

analysis is the standard square error function:

E =
1

2

N
∑

i=1

[yi(x, w) − ti]
2 (4)

Some backpropagation training algorithms have been tested (steepest descent, conjugated

gradient and quasi-Newton algorithms). We achieved better identification performances

with quasi-Newton methods, since other algorithms often return bad or local minima

of the error function. We used a quasi-Newton algorithm with the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) error minimization formula [15].

Next subsection will describe the identification procedure we followed.

3.2 The identification method

The identification analysis proceeds as follows:

• Pattern selection: we divided SetI in two subsets in order to use them as network

training set and testing data set. We stopped the network learning phase and eval-

uated the network performances using the latter set. To be more specific, a cross
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validation set should be used to stop the training phase, and a further independent

data set should be used to test the network efficiency. This will be done in a future

analysis, as soon as a larger simulated data set will be available;

• Feature pre-processing: we normalized the features in the range [-1,1] to avoid

large dynamics among the network inputs;

• Training phase: we trained the network to return a value of 0 or 1 in presence of a

proton or iron event, respectively. The learning phase was stopped at a given epoch

when the network began to show a clear overtraining behavior, corresponding to

a loss of generality in the identification procedure, e.g. when the network error

calculated over the test sample stopped to fall down and began to increase (see

Figure 3).

Figure 3: Example of network error trend as a function of the number of iterations per-

formed during the learning phase, for the training sample (solid blue line) and for the test

sample (solid red line).

• Evaluation of the results: we evaluated the performances of the method by means

of the identification efficiency ε and purity P for a given mass class i of primaries :

ε(i) =
N

(i)
right

N
(i)
true

(5)

P (i) =
N

(i)
right

N
(i)
right +

∑

j 6=i

N (j)
wrong

(6)
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where Ntrue, Nright and Nwrong represent the true number of events for the given

mass class, the number of correctly identified events and the number of misclassi-

fied events. Nright was evaluated through a cut over the network output: events with

an output smaller than 0.5 were recognized as protons, otherwise as iron nuclei.

4 Results

In this section we report the results of the classification analysis, in terms of identification

efficiency and purity achieved.

Figure 4 shows the outputs computed by the net in presence of the training data set (on

the left) and the test set (on the right). The blue histograms correspond to the true proton

Figure 4: Output computed by the net in presence of the training data set (on the left) and

the test set (on the right). The blue histograms correspond to the true proton events, while

the red ones are the true iron events. The dashed line shows a cut at 0.5 in the net outputs

to separate the two mass classes.

events, while the red ones are the true iron events. As we can clearly see, the net is able to

associate the proton and iron events to the desired outputs with very little misclassifica-

tions. The identification efficiency and purity, relative to the chosen cut at 0.5, are shown

in Table 1 for the proton and iron mass classes. We test the designed network also using

SetII, which is a data set formed with fixed energy and zenith angles events with a better
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Table 1: Identification efficiency, eq. (5), and purity, eq. (6), for the training and the test

samples.

LEARN TEST

Efficiency Purity Efficiency Purity

p 99.33% 99.69% 97.63% 98.56%

Fe 99.69% 99.34% 98.57% 97.64%

Table 2: Identification efficiency, eq. (5), and purity, eq. (6), for the training, TESTI and

TESTII samples.

LEARN TEST I TEST II

Efficiency Purity Efficiency Purity Efficiency Purity

p 98.89% 99.46% 98.24% 98.58% 96.74% 98.20%

Fe 99.47% 98.90% 98.57% 98.23% 98.23% 96.79%

thinning level. In this case we noticed that the obtained performances degraded with re-

spect to the ones showed in Table 1: the net seems to be unable to face off the intrinsic

shower-to-shower fluctuations at a given primary energy and zenith angle.

The misclassifications are stronger at smaller zenith angles, because of a lack of

statistics in the used training sample, due to the simulated zenith angle distribution of

SetI. The net performances can be restored by including in the training sample a subset

of SetII and re-executing the learning phase. The results, showed in Table 2, demonstrate

that the efficiency and purity for the SetI and SetII events (denoted with TEST I and

TESTII in Table 2) are basically the same.

We tested our method also in presence of a four components primary flux (proton, helium,

oxygen, and iron) using the simulated sample SetII and assigning a desired net output of

0, 1, 2, 3, respectively, to the four classes. Results are showed in Figure 5. By cutting at

0.5, 1.5, 2.5 we separated the four classes, obtaining the classification matrix showed in

Table 3.

The diagonal values are the identification efficiency of the four classes, while the

non-diagonal elements give information about the misclassification of a class with re-

spect to the others. Results show that the lightest and heavier components are better

reconstructed, while a stronger contamination is found in the intermediate components.

10



Figure 5: Output computed by the net in presence of the training data set (on the left) and

the test set (on the right). The blue and red histograms correspond to the true proton and

iron events, while the green and orange ones are the true helium and oxygen events.

5 Conclusion and future perspectives

We proposed and tested the neural network approach to the mass identification problem

of high energy cosmic rays.

We studied mass discrimination in the case of CORSIKA simulated showers with a 2-

components (proton and iron nuclei) and 4-components (proton and helium, oxygen, iron

nuclei) mass flux, making use of parameters from the longitudinal profiles. In the first

case we obtain excellent performances, with very small misidentification probabilities, of

the order of 2%.

In the second case we found misclassification probabilities of 26%, 33%, 33% and 14%

for the above mass classes, but these are obtained using fixed energy and zenith angle

events.

The obtained results indicate that a better analysis should be performed using higher

statistics and homogeneous data samples in the energy and zenith angles variables, since

the network performances have been found to strongly depend from the used training

data sets. We plan to perform a more accurate analysis, especially in the multi-component

case, using CONEX [16][17] as shower simulation code and the latest version of QGSJET

hadronic model, and to develop a general method able to determine also the mean com-
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Table 3: Classification matrix and identification for the training and test samples.

LEARN

Classification PCi→Cj
Purity

Cj = p Cj = He Cj = O Cj = Fe
Ci = p 76.29% 21.20% 2.23% 0.29% 87.25%

Ci = He 12.40% 68.47% 18.87% 0.27% 57.06%

Ci = O 0.53% 26.47% 67.93% 5.07% 66.91%

Ci = Fe 0.06% 0.29% 10.40% 89.26% 94.84%

TEST

Classification PCi→Cj
Purity

Cj = p Cj = He Cj = O Cj = Fe
Ci = p 74.74% 21.60% 3.03% 0.63% 86.79%

Ci = He 12.53% 67.40% 19.53% 0.53% 55.86%

Ci = O 0.47% 26.87% 67.13% 5.53% 64.39%

Ci = Fe 0.23% 1.03% 12.06% 86.69% 93.70%

position or the energy spectra for the single mass components. CONEX uses a hybrid

approach, based on the Montecarlo standard method and on the numerical integration of

the cascade equations, making possible to produce simulated showers with smaller CPU

times. A library of simulated showers for five mass components (proton and helium, oxy-

gen, silicon, iron nuclei) is already available.

As future perspective, we plan to take into account the response of the FD detector at the

Pierre Auger Observatory, evaluating the effects introduced by the detector over the used

shower parameters, and to study the performances obtained with other hadronic interac-

tion models, such as Sibyll or Nexus.
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