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1 Introduction

Azimuthal asymmetries of remarkable size have been observed in various high energy

inclusive reactions, especially in unpolarized Drell-Yan[1], in singly polarized semi- in-

clusive deep inelastic scattering[2–5] (SIDIS) and in inclusive production of (anti-) hyper-

ons[6] and pions[7] from singly polarized hadronic collisions. The interpretation of such

asymmetries from basic principles of QCD is quite challenging and has stimulated the in-

terest of high energy physicists. In particular, in the present paper we focus our attention

on the SIDIS and Drell-Yan asymmetries, which are somewhat analogous, since the two

reactions are kinematically isomorphic. The theoretical activity about this subject is quite

intense and lively, as witnessed by the numerous articles dedicated to the topic[8-27] in

the last 15 years.

An important element in the interpretation of such effects is the intrinsic transverse

momentum of partons inside a hadron, whose crucial role in high energy reactions has

been widely illustrated in the last years[10,11,28–31]. Indeed, the transverse momentum

is connected to the T-odd quark densities[8,13,17], which provide a quite natural inter-

pretation of the above mentioned asymmetries[13,17,21]. At the same time, the T-odd

fuctions involve predictions of further azimuthal asymmetries in unpolarized and singly

polarized inclusive reactions[15,12].

These functions explain simultaneously[21] the remarkable cos2φ asymmetry and

the negligible cosφ Fourier component exhibited by unpolarized Drell-Yan data[1], where

φ is the usual azimuthal angle adopted in the phenomenological fits[1]. The term cos2φ

may be just interpreted as a signature[21] of the pair of chiral-odd (and T-odd) functions

involved in this picture. However, the current treatment of the T-odd functions does not

reproduce the dependence of this asymmetry on the effective mass of the Drell-Yan lepton

pair. More generally, some doubts have been cast on the Q2 dependence of the transverse

momentum distribution functions[32–34], whereQ is the QCD hard scale. This imposes a

revision of the parametrization of the transverse momentum quark correlator, a fundamen-

tal theoretical tool for cross section calculations at high energies. This quantity - originally

introduced by Ralston and Soper in 1979[35] and successively improved by Mulders and

Tangerman[11,10] (see also the more recent contributions on the subject[16,36]) - con-

sists of a 4 × 4 matrix. Therefore it may be parametrized according to the components of

the Dirac algebra, taking into account the available vectors and hermiticity and Lorentz

and parity invariance. The parametrization - whose coefficients are the quark distribution

functions inside the hadron - includes an undetermined energy scale, µ0[30], usually as-

sumed[35,10,11] equal to the mass of the hadron related to the active quark. We shall

see that this choice is not unique, perhaps not the most appropriate in normalizing some
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”leading twist” functions. Alternatively, we propose µ0 = Q/2, which explains quite nat-

urally theQ2 dependence of the unpolarized Drell-Yan asymmetry. Moreover, concerning

the SIDIS and other Drell-Yan azimuthal asymmetries, we get predictions which contrast

with those given by previous authors, and which could be tested against present[2,4],

forthcoming [5] and future[37–39] data.

Here we shall not study all azimuthal asymmetries considered in the literature[40,

41], we shall limit ourselves to SIDIS of unpolarized or longitudinally polarized lep-

ton beams off unpolarized or transversely polarized targets, and to unpolarized or singly

polarized (with transverse polarization) Drell-Yan; moreover, we shall consider just the

asymmetries usually classified as leading twist[11,13,15].

The paper is organized as follows. In sect. 2 we give the general formulae for

the SIDIS and Drell-Yan cross sections, introducing the formalism of the correlator; in

particular we illustrate in detail the T-odd functions. Sect. 3 is dedicated to the theo-

retical formulae for azimuthal asymmetries. In sect. 4 we determine the parameter µ0,

by comparing the correlator with the density matrix of a free, on-shell quark. Such a

determination leads to predictions on the Q2 dependence of the asymmetries, which we

illustrate in sect. 5. In sect. 6 we compare our results with experimental data, as regards

unpolarized Drell-Yan. Lastly we draw a short conclusion in sect. 7.

2 SIDIS and Drell-Yan Cross Sections

2.1 General formulae

Consider the SIDIS and the Drell-Yan reactions, i. e.,

lhA → l′hBX and hAhB → l+l−X, (1)

where the l’s are charged leptons and the h’s are hadrons. Incidentally, these two reac-

tions are topologically equivalent[9]. At not too high energies one can adopt one-photon

exchange approximation, where the cross sections for such reactions have an expression

of the type
dσ

dΓ
=

(4πα)2

4FQ4
LµνWµν . (2)

Here dΓ is the phase space element, α the fine structure constant and

F =
√

(p1 · p2)2 −m2
1m

2
2 (3)

the flux factor, pi and mi (i = 1, 2) being the 4-momenta and the masses of the initial

particles. Moreover Lµν and W µν are respectively the leptonic and hadronic tensor. In
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particular, we have

Lµν = ℓµℓ̄ν + ℓν ℓ̄µ − gµνℓ · ℓ̄, (4)

where ℓ and ℓ̄ are the four-momenta of the initial and final lepton (in SIDIS) or of the

two final leptons (in Drell-Yan). As regards the hadronic tensor, one often adopts, in the

framework of the factorization theorem[42,9,19], the so-called ”handbag” approximation,

where all information concerning the ”soft” functions of the quark inside the hadrons is

encoded in a parametrization of the quark-quark correlator, according to the various Dirac

components[10,11]. In this approximation the hadronic tensor reads

W µν = c
∑

a

e2a

∫

d2p⊥Tr
[

Φa
A(xa,p⊥)γµΦb

B(xb,q⊥ − p⊥)γν
]

. (5)

Here c is due to color degree of freedom, c = 1 for SIDIS and c = 1/3 for Drell-Yan. ΦA

and ΦB are correlators, relating the active (anti-)quarks to the (initial or final) hadrons hA

and hB . a and b are the flavors of the active partons, with a = u, d, s, ū, d̄, s̄ and b = a in

SIDIS, b = ā in Drell-Yan; ea is the fractional charge of flavor a. In Drell-Yan ΦA and ΦB

encode information on (anti-)quark distributions inside the initial hadrons: the x′s are the

longitudinal fractional momenta of the active quark and antiquark, p⊥ is the transverse

momentum of the activeparton of hA and q⊥ is the transverse momentum of the lepton

pair. In SIDIS ΦB is replaced by the fragmentation correlator ∆[z, z(q⊥−p⊥)], describing

the fragmentation of the struck quark into the final hadron hB (see subsect. 2.4). Here

z is the longitudinal fractional momentum of hB with respect to the fragmenting quark

and zq⊥ is the transverse momentum of hB with respect to the virtual photon momentum.

Approximation (5) holds for the hadronic tensor under the condition[21,18]

q⊥ << Q, (6)

where q⊥ = |q⊥|. Moreover we neglect the Sudakov suppression[43], as can be assumed

at moderate Q2.

2.2 Parametrization of the Correlator

The correlator for a nucleon may be parametrized according to the Dirac algebra, taking

into account hermiticity and Lorentz and parity invariance. It is conveniently split into a

T-even and a T-odd term, i. e.,

Φ = Φe + Φo, (7)

where Φe is even under time reversal and Φo is odd under the same transformation. At

leading twist one has[11,44,36]

Φe ≃ P√
2

{

f1/n+ + (λg1L + λ⊥g1T )γ5/n+ +
1

2
h1Tγ5[/S⊥, /n+]

}
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+
P√
2

(

λh⊥1L + λ⊥h
⊥
1T

)

γ5[/η⊥, /n+], (8)

Φo ≃ P√
2

{

f⊥
1T ǫµνρσγ

µnν
+η

ρ
⊥S

σ
⊥ + ih⊥1

1

2
[/η⊥, /n+]

}

. (9)

In formulae (8) and (9) I have used the notations and the normalization of refs.[11,10] for

the ”soft” functions1. n± are lightlike vectors, such that n+ · n− = 1 and whose space

components are directed along (+) or opposite (-) to the nucleon momentum. Moreover

S = λ
P+

M
n+ − M

2P+
n− + S⊥ (10)

is the Sudakov decomposition of the Pauli-Lubanski vector S of the nucleon, whose four-

momentum is P , with P 2 = M2, P+ = P · n− and S2 = −1. Thirdly,

P =
1√
2
p · n−, λ⊥ = −S · η⊥, (11)

η⊥ = p⊥/µ0, p⊥ = p− (p · n−)n+ − (p · n+)n− (12)

and p is the quark four-momentum. Lastly, the energy scale µ0, encoded in the dimen-

sionless vector η⊥, has been introduced in such a way that all functions involved in the

parametrization of Φ have the dimensions of a probability density. This scale - defined

for the first time in ref.[30], where it was denoted by mD - determines the normalization

of the functions which depend on η⊥; therefore µ0 has to be chosen in such a way that

these functions may be interpreted just as probability densities. We shall see in sect. 4

that taking µ0 equal to the rest mass of the hadron, as usually done[11,35], is not, perhaps,

the most appropriate in this sense. Two observations are in order about µ0. First of all,

it is washed out by integration over p⊥ of the correlator, therefore it does not influence

the common[45] distribution functions. Secondly, we can reasonably assume that this

parameter is independent of the perturbative interactions among partons.

2.3 T-odd functions

As explained in the introduction, the T-odd functions deserve especial attention. In partic-

ular, the two functions introduced in formula (9) may be interpreted as quark densities: h⊥1
corresponds to the quark transversity in an unpolarized (or spinless) hadron, while f⊥

1T is

the density of unpolarized quarks inside a transversely polarized spinning hadron[13,33].

A possible mechanism for generating these effects has been analyzed in detail, from

different points of view, by various authors[18–20,23,24]. In particular, the function f⊥
1T ,

known as the Sivers function, may give rise to a single spin asymmetry, as predicted for

1The correlator (7) has a different normalization than in ref.[11].
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the first time many years ago by Sivers[8] as a consequence of coherence among partons.

Essential ingredients for producing the effect are[18]

a) two amplitudes with different quark helicities and different components (∆Lz =

1) of the orbital angular momentum;

b) a phase difference between such amplitudes, caused, for example, by one gluon

exchange between the spectator partons and the active quark, either before or after the

hard scattering: owing to the different orbital angular momenta, the gluon interaction

causes a different phase shift in the two amplitudes.

Incidentally, a ∆Lz = 1 is connected to the anomalous magnetic moment of the

nucleon[18,24]; however, the difference in quark helicities could be attributed, in part,

also to spontaneous chiral symmetry breaking[19]. In this connection, we think that the

correct origin and the basic mechanisms for producing the Sivers asymmetry should be

investigated more deeply.

The initial and final state interactions may be described by the so-called link op-

erator, introduced in the definition of bilocal functions in order to assure gauge invari-

ance[11,19,20]. Moreover they cause also a nonvanishing h⊥1 [23]: in a scalar diquark

model, this function is equal to f⊥
1T [21] (see also last ref. [23]). In the mechanism which

generates quark transversity in an unpolarized nucleon, angular momentum conservation

implies a change by one or two units of orbital angular momentum of the quark; this

change can be connected to a pseudovector particle exchange, while the above mentioned

initial or final state interactions are interpreted as Regge (or absorptive) cuts[23].

From the above discussion it follows that quark-gluon interactions are essential for

producing T-odd functions. Indeed, if such interactions are turned off, T-odd functions are

forbidden by time reversal invariance[9] in transverse momentum space. On the contrary,

they are allowed in the impact parameter space[24]: the Sivers asymmetry can be viewed

as a left-right asymmetry with respect to the nucleon spin in that space, where final state

interactions produce a chromodynamic lensing for the struck quark[24].

T-odd functions can be related[46,34] to the Qiu-Sterman[47] effect, which takes

into account quark-gluon-quark correlations. For instance, in singly polarized Drell-Yan,

these functions produce an asymmetry similar to the one described by gluon exchange

between the spectator partons of the initial hadron hA and the active parton of the hadron

hB, or vice-versa[48,49] [see reaction (1)]. Incidentally, analogous gluon exchanges may

be used for describing, for example, the azimuthal asymmetries in unpolarized Drell-Yan

(see sect. 6) and in singly polarized SIDIS. T-odd functions can be approximately fac-

torized[19] - up to a sign, according as to whether the functions are involved in SIDIS or

in Drell-Yan[19,46] - if condition (6) is fulfilled[21]; otherwise one is faced with serious

difficulties as regards universality of the effect[50].
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2.4 Fragmentation Correlator

The fragmentation correlator can be parametrized analogously to Φ, see subsect. 2.2. We

have, in the case of quark fragmentation into a pion,

∆ = ∆e + ∆o, (13)

where, at leading twist, the T-even part is given by

∆e ≃
1

2
k · n′

+D/n′
− (14)

and the T-odd part reads

∆o ≃
1

4µπ
0

H⊥
1 [/k⊥, /n

′
−]. (15)

Here k is the four-momentum of the quark, k⊥ = k− (k ·n′
−)n′

+ − (k ·n′
+)n′

− and n′
± are

a pair of lightlike vectors, defined analogously to n±, but such that the space component

of n′
− is along the pion momentum. µπ

0 is an energy scale analogous to µ0. Lastly D and

H⊥
1 are fragmentation functions, D is the usual one, chiral even, while H⊥

1 - the Collins

function[9] - is chiral odd. It is important to notice that the latter function is interaction

dependent, as well as the T-odd distribution functions: indeed, it has been shown[51] that

this function would vanish in absence of interactions among partons.

3 SIDIS and Drell-Yan Asymmetries

Now we deduce the expressions of the asymmetries involved in the two reactions con-

sidered, according to the formalism introduced in the previous section (see also, e. g.,

refs.[11,15,52,53] for SIDIS and ref. [54] for Drell-Yan). As regards SIDIS, the initial

lepton may be either unpolarized or longitudinally polarized, while the nucleon target may

be either unpolarized or tranversely polarized. On the other hand, concerning Drell-Yan,

we consider the cases where at most one of the two initial hadrons (typically a proton)

is transversely polarized. For our aims, the most relevant kinematic variables are two

azimuthal angles, denoted as φ and φS . In the case of Drell-Yan they are the azimuthal

angles, respectively, of the momentum of the positive lepton and of the spin of the initial

polarized hadron, in the Collins-Soper (CS) frame[55]. This is defined as the center-of-

mass frame of the final lepton pair, such that the z-axis is along the bisector of the beam

momentum and of the direction opposite to the target momentum, while the x-axis is

along q⊥. As for SIDIS, φ and φS are respectively the azimuthal angles - defined in the

Breit frame where the proton momentum is opposite to the photon momentum - of the

final hadron momentum and of the target spin vector with respect to the production plane.
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3.1 SIDIS Asymmetries

The doubly polarized SIDIS cross section, with a longitudinally polarized lepton and a

tranversely polarized nucleon, may be written as a sum of 4 terms, i. e.,

(

dσ

dΓ

)

=

(

dσ

dΓ

)

UU

+

(

dσ

dΓ

)

UT

+

(

dσ

dΓ

)

LU

+

(

dσ

dΓ

)

LT

. (16)

Here we have singled out the unpolarized (UU), the singly polarized - either with a trans-

versely polarized target, (UT ), or with a longitudinally polarized beam, (LU) - and the

doubly polarized (LT ) contributions. According to the formalism introduced in sect. 2,

we get, in leading twist approximation,

(

dσ

dΓ

)

UU

≃
∑

a

e2a[U
a
0 + Ua

1 cos2φ], (17)

(

dσ

dΓ

)

UT

≃
∑

a

e2a[S
a
1sin(φ+ φS) + Sa

2sin(φ− φS)

+ Sa
3sin(3φ− φS) + Sa

4sin2φ], (18)
(

dσ

dΓ

)

LU

≃ 0, (19)

(

dσ

dΓ

)

LT

≃
∑

a

e2a[D
a
1 +Da

2cos(φ− φS)]. (20)

Here we have expressed the cross section in units α2xz2s/Q4, where s is the overall c.m.

energy squared. Moreover, omitting the flavor indices of the functions involved, we have

U0 = A(y)F [wU0
, f1, D], (21)

U1 = −C(y)
q2
⊥

µ0µπ
0

F [wU1
, h⊥1 , H

⊥
1 ], (22)

S1 = C(y)|S⊥|
q⊥
µπ

0

F [wS1
, h1T , H

⊥
1 ], (23)

S2 = A(y)|S⊥|
q⊥
µ0

F [wS2
, f⊥

1T , D], (24)

S3 = C(y)|S⊥|
q3
⊥

µ2
0µ

π
0

F [wS3
, h⊥1T , H

⊥
1 ], (25)

S4 = λC(y)
q2
⊥

µ0µ
π
0

F [wS4
, h⊥1L, H

⊥
1 ], (26)

D1 = λλℓ
1

2
E(y)F [wD1

, g1L, D], (27)

D2 = λℓ
1

2
E(y)

q⊥
µπ

0

F [wD2
, g1T , D]. (28)
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We have denoted by λℓ and S⊥ respectively the helicity of the initial lepton and the trans-

verse component of the nucleon spin vector, with |S⊥| = sinφs and λ = cosφs. Moreover

A(y) = 1 − y + 1/2y2, C(y) = 1 − y, E(y) = y(2 − y), (29)

where y ≃ q−/ℓ− and q is the four-momentum of the virtual photon, such that |q2| = Q2.

Lastly, F is a functional[15],

F [w, f,D] =
∫

d2p⊥w(p⊥,q⊥)f(p⊥)D[z, z(q⊥ − p⊥)], (30)

w, f and D being, respectively, a weight function, a distribution function and a fragmen-

tation function. As to the weight functions, we have

wU0
= wD1

= 1, (31)

wU1
= wS4

= 2û · p̂⊥û · k̂⊥ − k̂⊥ · p̂⊥, (32)

wS1
= û · k̂⊥, wS2

= wD2
= û · p̂⊥, (33)

wS3
= 4(û · p̂⊥)2û · k̂⊥ − 2û · p̂⊥k̂⊥ · p̂⊥ − û · k̂⊥p̂2

⊥. (34)

Here we have set û = q⊥/q⊥, p̂⊥ = p⊥/q⊥ and k̂⊥ = (q⊥ − p⊥)/q⊥. Notice that the

first two terms of the cross section (18) correspond respectively to the Collins and Sivers

asymmetry[9,8].

3.2 Weighted Asymmetries in SIDIS

The weighted asymmetries are defined as

AW =
〈W 〉
〈1〉 . (35)

Here brackets denote integration of the weighted cross section over q⊥ and over the az-

imuthal angles defined above. W is the weight function, consisting of the Fourier com-

ponent we want to pick up [see eqs. (17) to (20)], times (q⊥/mN)na(q⊥/mπ)nb , where

na and nb are respectively the powers with which p̂⊥ and k̂⊥ appear in the functions w

[see eqs. (31) to (34)]. For instance, the weight function corresponding to the Collins

asymmetry is WS1
= (q⊥/mπ)sin(φ+ φS).

3.3 Drell-Yan Asymmetries

In the case of singly polarized Drell-Yan with a transversely polarized proton, we have

(see also ref.[54])
(

dσ

dΓ′

)

UU

=
∑

a

e2a[U
′a
0 + U

′a
1 cos2φ], (36)
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(

dσ

dΓ′

)

UT

=
∑

a

e2a[S
′a
1 sin(φ+ φS) + S

′a
2 sin(φ− φS)

+ S
′a
3 sin(3φ− φS)]. (37)

Here we have adopted the same approximation as before and have expressed the cross

section in units α2/3Q2. Moreover

U ′
0 = A′(y)F [w′

U0
, f1, f̄1], (38)

U ′
1 = C ′(y)

q2
⊥

µ0µ′
0

F [w′
U2
, h⊥1 , h̄

⊥
1 ], (39)

S ′
1 = −C ′(y)

q⊥
µ′

0

F [w′
S1
, h1T , h̄

⊥
1 ], (40)

S ′
2 = A′(y)

q⊥
µ0

F [w′
S2
, f⊥

1T , f̄1], (41)

S ′
3 = −C ′(y)

q3
⊥

µ2
0µ

′
0

F [w′
S3
, h⊥1T , h̄

⊥
1 ], (42)

A′(y) = 1/2 − y + y2, C ′(y) = y(1 − y) (43)

and

y = 1/2(1 + cosθ), (44)

θ being the polar angle of the positive lepton in the CS frame. µ0 and µ′
0 are energy

scales relative to the two initial hadrons in the Drell-Yan process. The functions w′ are

defined like the w’s [see eqs. (31) to (34)], but now p⊥ and k⊥ denote, respectively, the

transverse momenta of the active quark and antiquark in the two initial hadrons. The

change of sign of the T-odd functions with respect to SIDIS has been taken into account

in the coefficients S ′
1, S ′

2 and S ′
3, as already discussed at the end of subsect. 2.3.

4 Determining µ0

Here we derive the appropriate value of the parameter µ0, by comparing the correlator

with the density matrix, to which Φ reduces for non-interacting, on-shell quarks. Indeed,

in appendix we show that, in the limit of g → 0 (g being the strong coupling constant),

the correlator tends to the density matrix of a free, on-shell[56] quark. In particular, in the

case of a transversely polarized nucleon, one has[57,58]

Φ → ρ =
∑

T=±1/2

qT (x,p2
⊥)

1

2
(/p+m)(1 + 2Tγ5/Sq). (45)

Herem is the rest mass of the quark, such that p2 =m2. 2TSq is the quark Pauli-Lubanski

vector, where Sq is defined so as to coincide with S in the quark rest frame. The functions
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qT (x,p2
⊥) may be viewed as the probability densities of finding, in an infinite momentum

frame, a quark with its spin aligned with (T = 1/2) or opposite to (T = -1/2) the proton

spin. The density matrix can be conveniently rewritten as

ρ =
1

2
(/p+m)[f1(x,p

2
⊥) + γ5/Sqh1T (x,p2

⊥)], (46)

where we have set, according to the definitions of the density functions,

f1 =
∑

T=±1/2

qT (x,p2
⊥), h1T =

∑

T=±1/2

2TqT (x,p2
⊥). (47)

We get, after some steps illustrated in appendix,

ρ =
1

2
f1(x,p

2
⊥)(/p+m)

+
1

2
h1T (x,p2

⊥)γ5

{

1

2
[/S, /p] + /pλ̄⊥ − C1 +mC2

}

+O(P−1). (48)

Here P is defined by the first eq. (11), moreover

C1 = P 1

2
[/n′

+, /n
′
−]λ̄⊥, (49)

C2 = /S +
1√
2

{

/n′
−

(

1 − m

P

)

− /n′
+ +

1√
2
[/n′

+, /n
′
−]

}

λ̄⊥ (50)

and

λ̄⊥ = −p⊥ · S/P (51)

is the light cone helicity of a quark in a transversely polarized nucleon.

Now we compare the various Dirac components of the density matrix (48) with

those of the T-even correlator (8), taking into account the relation

p =
√

2Pn+ + p⊥ +O
(

P−1
)

. (52)

As a result we get the following relations for a free, on-shell quark[58]:

λ⊥h
⊥
1T = (1 − ǫ1)λ̄⊥h1T , (53)

λ⊥g1T = (1 − ǫ2)λ̄⊥h1T . (54)

Here ǫ1 ≃ m/P and ǫ2 ≃ m/2P are the correction terms due to the quark mass, which is

small for light flavors. The terms of order O [(m2 + p2
⊥)/P2] have been neglected.

In order to determine µ0, we observe that the functions g1T , h1T and h⊥1T , involved in

formulae (53) and (54), are twist 2, therefore they may be interpreted as quark densities.

For example, g1T is the helicity density of a quark in a tranversely polarized nucleon.
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Therefore it is natural to fix µ0 in such a way that g1T and h⊥1T are normalized like h1T .

This implies, neglecting the quark mass,

λ⊥ = λ̄⊥, (55)

and, according to eq. (51) and to eqs. (11),

µ0 = P =
1√
2
p · n−. (56)

Now we take the space component of n− along the direction of one of the two initial

hadrons for Drell-Yan and along the direction of the virtual photon for SIDIS. In both

cases we get P ≃ Q/2. Therefore we assume

µ0 =
Q

2
, (57)

the result being trivially extended to µ′
0.

Two remarks are in order.

a) It is worth comparing our approach to Kotzinian’s[30], who starts from the ap-

proximate expression of the density matrix for a free ultrarelativistic fermion and adapts it

to the case of a quark in the nucleon. He parametrizes the density matrix with the 6 twist-

2, T-even functions that appear in the parametrization (8). Similar results are obtained by

Tangerman and Mulders[10]. The difference with our approach is that those authors do

not consider explicitly the limit for g → 0, where relations of the type (53) and (54) hold.

b) Although deduced in the limiting case of noninteracting partons - where one has

to do just with T-even functions -, result (57) cannot be significantly modified by the per-

turbative interactions among partons and is reasonably extended to the T-odd functions.

Of course, µ0 is modified by nonperturbative interactions: for example, in the case of the

already cited quark-diquark model[18,23] (see subsect. 2.3), the interference term scales

withQ2, in agreement with the assumption µ0 = M[35,11]. However, the virtuality of the

gluon exchanged between the active parton and the spectator partons is of the order of Q;

therefore, in the scaling region, the gluon ”sees” the single partons rather than the diquark

as a whole, in which case µ0 has to be identified with Q/2, as for noninteracting quarks.

To summarize, if we take into account the intrinsic transverse momentum of quarks, we

are faced with the normalization scale µ0, which, for large Q, has to be identified with

Q/2, while for smaller Q (such that nonperturbative interactions are not negligible) it is

of the order of the hadron mass, in accord with a phase space restriction.

As regards the fragmentation correlator, we adapt our previous line of reasoning to

the case of a quark fragmenting into a transversely polarized spin-1/2 particle, say a Λ.

12



For g → 0 one has

∆ → ρ′ =
1

2
(/k +M ′)(D +H1γ5/S ′). (58)

Here M ′ and S ′ are, respectively, the mass and the Pauli-Lubanski vector of the final

hadron, whereas H1 is the transversely polarized fragmentation function; the other sym-

bols have been introduced in subsect. 2.4. By comparing this limiting expression with a

parametrization of ∆ - analogous to eq. (8) as regards twist-2 terms - , we get µπ
0 = Q/2.

5 Q2 Dependence of Asymmetries

As a consequence of the results deduced in the previous section, we conclude that the

azimuthal asymmetries illustrated in sect. 3 decrease with Q2. In particular, as regards

SIDIS, we predict

S1, S2, D2 ∝ ρ, U1 ∝ ρ2, S3 ∝ ρ3 (59)

and

D2 ∝
M

Q
, S4 ∝

ρ2M

Q
, (60)

where

ρ = q⊥/Q. (61)

Results (60) are consequences of the fact that λ [see eq. (10)] is proportional to Q−1 for

a transversely polarized nucleon. Such predictions might be checked by comparing data

of experiments which have been realized (HERMES[2] and COMPASS[4]) with those

planned (CLAS[5]), which operate in different ranges of Q2. A strategy could be, for

instance, to isolate the various Fourier components in the cross section [see eqs. (21) to

(28)] by means of the weighted asymmetries and to study their Q2 dependence. A par-

ticular remark is in order as regards the unpolarized SIDIS asymmetry, which we predict

to decrease as 1/Q2, just like the twist-4 cos2φ asymmetry arising as a consequence of

the quark transverse momentum[59,30]. This makes the two asymmetries hardly distin-

guishable, but the last asymmetry can be parametrized, as well as the cosφ asymmetry

(the Cahn effect[60]), by means of the unpolarized quark density.

Concerning Drell-Yan, the predictions are

S ′
1, S

′
2 ∝ ρ, U ′

1 ∝ ρ2, S ′
3 ∝ ρ3. (62)

As regards U ′
1, the result will be checked against unpolarized Drell-Yan data in the next

section; the other three predictions could be verified, in principle, by comparison with data

from experiments planned at various facilities, like RHIC[37], GSI[38] and FNAL[39].

13



We conclude this section with some important remarks. Although commonly clas-

sified as twist 2, the asymmetries considered result to decrease with Q. As regards those

asymmetries which involve one or more T-odd distribution or fragmentation functions, we

stress once more that these functions depend crucially on interactions among partons and

therefore on quark-gluon correlations. Therefore our result is not so surprising. In this

connection it is worth recalling that the Drell-Yan single spin asymmetry, which accord-

ing to our formalism could be attributed to the effects of T-odd functions (see the second

term of eq. (37) and refs. [61,54]), was interpreted some years ago by means of a twist

3 correlation function and it was predicted to decrease as Q−1[62,48,63,49,64] (see also

refs. [47,65,66]). Moreover, also in the parametrization (8) of the T-even correlator, the

function g1T , twist 2, is multiplied by the factor λ⊥ = λ̄⊥ [see eq. (51)], therefore the

second term of the cross section (20) decreases as Q−1, although involving just twist 2

operators[12]. In this case the peculiar behavior of the asymmetry has a purely kinemat-

ical origin: indeed, λ̄⊥g1T is the average light cone helicity of a quark in a transversely

polarized nucleon and therefore, according to the above mentioned equations, it decreases

as Q−1. All that casts some doubts on the correlation between the twist of an operator and

theQ2 dependence of the corresponding coefficient[32], as regards transverse momentum

distributions. Indeed, unlike the case of common distribution functions, the quark is not

collinear to the nucleon, therefore some Dirac operators, although commuting with the

Hamiltonian[45] of free quarks, are proportional to the transverse momentum and there-

fore are suppressed in the infinite momentum frame.

6 Azimuthal Asymmetry in Unpolarized Drell-Yan

As is well-known, unpolarized Drell-Yan presents an azimuthal asymmetry. This has been

seen, for example, in reactions of the type[1]

π−N → µ+µ−X, (63)

whereN is an unpolarized tungsten or deuterium target, which scatters off a negative pion

beam. The Drell-Yan angular differential cross section is conventionally expressed as

1

σ

dσ

dΩ
=

3

4π

1

λ+ 3

(

1 + λcos2θ + µsin2θcosφ+
1

2
νsin2θcos2φ

)

. (64)

Here Ω = (θ, φ), θ and φ being respectively the polar and azimuthal angle of the µ+

momentum in the CS frame. Moreover λ, µ and ν are parameters, which are functions of

the overall center-of-mass energy squared s, of q2
⊥, of Q and of the Feynman longitudinal

fractional momentum xF of the muon pair with respect to the initial beam. On the left-

hand-side of eq. (64), dσ/dΩ is a shorthand notation for dσ/dΩdQ2dxFd
2q⊥.
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Figure 1: Behavior of the asymmetry parameter ν vs the dimensionless parameter ρ. Data

are taken from the first two refs.[1]: circles correspond to
√
s = 16.2 GeV, squares to

√
s

= 19.1 GeV and triangles to
√
s = 23.2 GeV. The best fit is made with formula (65), A0 =

2.34.

In the naive Drell-Yan model, where the parton transverse momentum and QCD

corrections are neglected, one has λ = 1, µ = ν = 0. Therefore deviations of such pa-

rameters from the above predictions - observed experimentally both for λ and ν, while

µ is consistent with 0[1] - can be attributed to transverse momentum or gluon effects, as

illustrated in the first ref. [1]. We shall comment on λ in a moment. As regards µ and ν,

their features are interpreted in terms of of T-odd functions[21]. Indeed, in the formalism

of the correlator introduced in the previous sections, comparison of eq. (36) with eq. (64)

yields µ = 0 and

ν = A0
q2
⊥
Q2

= A0ρ
2, (65)

A0 being a proportionality constant. Here eqs. (38), (39), (43) and the second eq. (62)

have been taken into account.

We fit formula (65) to the experimental results of ν at different energies, both as

a function of ρ (fig. 1) and as a function of Q at fixed q⊥ (fig. 2), assuming A0 as a

free parameter. In particular, fig. 1 exhibits an approximate scaling law (see the first ref.

[1]) for ν versus ρ, reproduced by our theoretical prediction. This behavior cannot be

accounted for if we make the assumption µ0 = M[35,10,11], which would provide also a

poor approximation to data of ν versus Q at fixed q⊥, as can be seen from fig. 2.
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Figure 2: Behavior of the asymmetry parameter ν vs the effective mass Q of the final

lepton pair at fixed q⊥.
√
s = 23.2 GeV Data from 2nd ref. [1] and fitted with formula

(65), A0 · q2
⊥ = 2.52 GeV 2.

At this point it is worth recalling that the Drell-Yan cross section is very sensitive

to higher order perturbative QCD corrections[67] and to power corrections[68,69] (see

also ref.[70]). In particular, a λ 6= 1 is obtained by assuming for reaction (63) a simple

model of initial state interactions[69], somewhat similar to the quark-gluon-quark corre-

lations[47]. Here the Drell-Yan unpolarized cross section is of the type

dσ ∝ |f0 + f1|2, (66)

where f0 is the naive Drell-Yan amplitude and f1 consists of two terms (due to gauge

invariance), describing one gluon exchange between the spectator quark of the meson

and each active parton. It results[69] |f0|2 ∝ (1 − x)2(1 + cos2θ), |f1|2 ∝ ρ2cos2θ and

2ℜf0f
∗
1 ∝ (1−x)ρsin2θcosφcosψ0, where ψ0 is the relative phase of the two amplitudes.

This implies λ − 1 ∝ ρ2/(1 − x)2, in good agreement with data[1]. However µ depends

crucially on ψ0, moreover the third term of eq. (64) is absent. This could be recovered

by inserting in eq. (66) a third amplitude, say f ′
1, describing one gluon exchange between

each active parton and the spectator partons of the nucleon: the missing asymmetry is

reproduced by the interference term 2ℜf ′
1f

∗
1 , as sketched at the end of subsect. 2.3.
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7 Conclusion

We have studied the parametrization of the transverse momentum dependent quark cor-

relator, both for distributions inside the hadron and for fragmentation processes. We are

faced with the energy scale µ0, introduced in the parametrization for dimensional reasons,

and determining the normalization of some of the quark densities (or fragmentation func-

tions) involved. Comparison of the parametrization with the limiting expression of the

correlator for noninteracting quarks yields µ0 = Q/2, contrary to the usual[35,10,11,21]

assumption, µ0 = M , which appears more appropriate for situations where nonpertur-

bative interactions among partons are present. The two different assumptions lead to

different predictions on theQ2 dependence of azimuthal asymmetries in SIDIS and Drell-

Yan. Our result agrees with previous approaches to azimuthal asymmetries, in particular

with the Q2 dependence of quark-quark-gluon correlations[47], and also with data of

azimuthal asymmetry in unpolarized Drell-Yan. These could not be explained with the

usual assumption about µ0. Further challenges to the two different theoretical predictions

could come from future Drell-Yan experiments[37–39] and from comparison between

present[2,4] and incoming[5] SIDIS data.
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Appendix

Here we derive formulae (45) and (48) for the quark density matrix in the limit of

g → 0, g being the coupling. To this end, we recall the definition of the correlator in

quantum field theory, i. e.[11],

Φ =
∫

Φ′(p;P, S)dp−, (A. 1)

where the matrix elements of Φ′(p;P, S) are defined as

Φ′
ij(p;P, S) =

∫

d4x

(2π)4
eipx〈P, S|ψ̄j(0)L(x)ψi(x)|P, S〉. (A. 2)

Here ψ is the quark field and |P, S〉 is a state of a nucleon with a given four-momentum

P and Pauli-Lubanski four-vector S, while p is the quark four-momentum. Moreover

L(x) = Pexp [−igΛP(x)] , with ΛP(x) =
∫ x

0
λaA

a
µ(z)dzµ, (A. 3)

is the gauge link operator. Here ”P” denotes the path-ordered product along the integration

contour P , λa andAa
µ being respectively the Gell-Mann matrices and the gluon fields. The

link operator depends on the choice of P , which has to be fixed so as to make a physical

sense. However, for our aims we can neglect the details of the contour. Indeed, in the

limit for g → 0, that is, for noninteracting quarks, L(x) tends to 1. Moreover, in that

limit, the quark is on shell, as shown by Qiu[56] via equations of motion. Let us consider,

for any flavor, the quark and antiquark field separately. The Fourier expansion of the field

of a free, on-shell quark reads

ψ(x) =
∫

d4p

(2π)3/2

√

m

p+
δ



p− −
√

m2 + p2
⊥

2p+



 e−ipx
∑

s

us(p)cs(p), (A. 4)

where m is the rest mass of the quark, s = ±1/2 its spin component along a given

direction, u its four-spinor and c the destruction operator for the flavor considered. For an

antiquark the definition is quite analogous. Substituting eq. (A. 4) into the definitions (A.

1) and (A. 2), we get

Φ′
ij(p̃;P, S) =

∑

s,s′

∫

d3p̃′

(2π)3
〈P, S|c†s(p̃)cs′(p̃

′)|P, S〉[us′(p̃
′)]i[ūs(p̃)]j, (A. 5)

where p̃ ≡ (p+,p⊥). But the matrix element in (A. 5) vanishes, unless s′ = s and p̃′ = p̃.

Then

Φ′
ij(p̃;P, S) =

∑

s

〈P, S|c†s(p̃)cs(p̃)|P, S〉[us(p̃)]i[ūs(p̃)]j . (A. 6)

18



But [us(p̃)]i[ūs(p̃)]j is nothing but the generic matrix element ρij of the density matrix of

the quark. In particular, if the nucleon is transversely polarized, we get

ρ =
∑

s

qs(x,p
2
⊥)

1

2
(/p+m)(1 + 2sγ5/Sq), (A. 7)

which corresponds to formula (45) in the text. Here qs(x,p
2
⊥) = 〈P, S|c†s(p̃)cs(p̃)|P, S〉

and 2sSq is the Pauli-Lubanski vector of the quark in a transversely polarized nucleon.

Eq. (A. 7) can be conveniently rewritten as

ρ =
1

2
(/p+m)[f1(x,p

2
⊥) + γ5/Sqh1T (x,p2

⊥)], (A. 8)

where we have set, according to the definitions of the density functions,

f1 =
∑

s=±1/2

qs, h1T =
∑

s=±1/2

2sqs. (A. 9)

Now we express Sq as a function of S. To this end we define a quark rest frame, whose y-

and z-axes are taken, respectively, along the spin and along the momentum of the nucleon.

In this frame the Pauli-Lubanski vector of the quark results to be S(0)
q = S ≡ (0, 0, 1, 0).

Decomposing S(0)
q into a transverse and a longitudinal component with respect to the

quark momentum, we get

S(0)
q = Σ⊥cosθ

′ + νsinθ′. (A. 10)

Here we have, in the frame just defined,

sinθ′ = sinθcosϕ, sinθ =
|p⊥|
|p| , cosϕ =

−p⊥ · S
|p⊥|

, (A. 11)

p ≡ [p⊥, p ·
√

2(n+ − n−)], ν ≡ (0, t), Σ⊥ ≡ (0,n), (A. 12)

t ≡ (sinθsinϕ, sinθcosϕ, cosθ), p⊥ ≡ (0,p⊥, 0) (A. 13)

and n ≡ (cosθsinϕ, cosθcosϕ,−sinθ).
Here p denotes the momentum of the quark and n± are a pair of lightlike vectors,

such that n+ · n− = 1 and whose space direction is the one of the nucleon momentum. In

order to find the expression of Sq as a function of S, we perform a boost along the quark

momentum. This boost leaves Σ⊥ invariant and transforms ν into p̄/m, where

p̄ ≡ (|p|, Eqt) , Eq =
√

m2 + p2. (A. 14)

As a result we get

Sq = S +
[

p

m
− (δ + ν)

]

sinθcosϕ, (A. 15)
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where

δ =
m√
2|p|

n′
−

[

1 +O(|p|−2)
]

(A. 16)

and n′
− is defined analogously to n−, but with the space direction opposite to the quark

momentum. But we observe that

|p| = P +O(p2
⊥/P2), (A. 17)

where P = 1√
2
p · n−. Therefore

sinθcosϕ = λ̄⊥ +O(p2
⊥/P2) λ̄⊥ = −p⊥ · S/P (A. 18)

and

Sq = S + λ̄⊥

[

p

m
− (δ + ν)

]

+O(p2
⊥/P2). (A. 19)

Now we substitute eq. (A. 19) into eq. (A. 7), taking into account the definitions (A. 12)

and (A. 16) of ν and δ, and exploiting the relations −/p/S = 1/2[/S, /p]− p · S, p · S = p⊥ · S
and ν = 1√

2
(n′

+ − n′
−). As a result we get

ρ =
1

2
f1(x,p

2
⊥)(/p+m)

+
1

2
h1T (x,p⊥)γ5

{

1

2
[/S, /p] + /pλ̄⊥ − C1 +mC2

}

+O(P−1), (A. 20)

with

C1 = P 1

2
[/n′

+, /n
′
−]λ̄⊥, (A. 21)

C2 = /S +
1√
2

{

/n′
−

(

1 − m

P

)

− /n′
+ +

1√
2
[/n′

+, /n
′
−]

}

λ̄⊥. (A. 22)

Eq. (A. 20) corresponds to eq. (48) in the text.
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