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Abstract
Statistical methods play a significant role through out the life-cycle of physics

experiments, being an essential component  of physics analysis. The present project in progress
aims to developan object-oriented software Toolkit for statistical data analysis. The Toolkit
contains a variety of Goodness-of-Fittests, from Chi-squared to Kolmogorov-Smirnov, to less
known, but generally much more powerful tests such as Anderson-Darling, Goodman, Fisz-
Cramer-vonMises, Kuiper. Thanks to the component-baseddesign and the usage of the standard
abstract interfaces for data analysis, this tool can be used by other data analysis systems or
integrated in experimental software frameworks. In this paper we describe the statistical details
of the algorithms and the computational features of the Toolkit. With the aim of showing the
consistency between the code and the mathematical features of the algorithms, we  describe the
results we obtained reproducing by means of the Toolkit a couple of Goodness-of-Fittesting
examples of relevance in statistics literature.
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1 Introduction

Statistical comparison of distributions is an essential section of data analysis in any field

and in particular in high energy physics experiments. In spite of this, only a few basic tools

for statistical analysis were available in the public domain FORTRAN libraries for high

energy physics, such as CERN Libraries (CERNLIB) [1] and PAW [2]. Nowadays the

situation is unchanged even among the libraries for data analysis of the new generation,

such as for istance Anaphe [3], JAS [4], Open Scientist [5] and Root [6].

For these reasons a new project was launched to build an open-source and up-to-date

object-oriented Toolkit for high energy physics experiments and other applications.

In this paper we will focus our attention on a specific component of the statistical Toolkit

that we developed. The Statistical Comparison component of the Toolkit provides some

Goodness-of-Fit (GoF) algorithms for the comparison of data distributions in a variety of

use cases typical for physics experiments, as:

- regression testing (in various phases of the software life-cycle),

- validation of simulation through comparison with experimental data,

- comparison of expected versus reconstructed distributions,

- comparison of data from different sources, such as different sets of experimental

data, or experimental with respect to theoretical distributions.

The GoF Toolkit gathers together some of the most important GoF tests available in

literature. Its aim is to provide a wide set of algorithms in order to test the compatibility

of the distributions of two variables.

2 The Goodness of Fit Statistical Toolkit

The GoF tests measure the compatibility of a random sample with a theoretical proba-

bility distribution function or between the empirical distributions of two different popula-

tions coming from the same theoretical distribution. From a general point of view, the aim

may consist also in testing whether the distributions of two random variables are identical

against the alternative that they differ in some way.

Specifically, consider two real-valued random variables X and Y , and let (x1, . . . , xn) be

a sample of independent and identically distributed observations with cumulative distribu-

tions (cdf ) F (x) = P [X ≤ x], and G(x) = P [Y ≤ x]. If X is a discrete random variable,

then the cdf of X will be discontinuous at the points xi and constant in between, if X is a
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continuous random variable, the cdf of X will be continuous. If we consider that F and

G may be continuous or discrete, the GoF tests consist in testing the null hypothesis

H0 : F = G (1)

against the alternative hypothesis

H1 : F �= G. (2)

Under the assumption H0, the fraction of wrongly rejected experiments is typically fixed

to a few percent. In all the tests presented below, H0 is rejected when a pre-defined test

statistics is large with respect to some conventional value.

The tests are classified in distribution-dependent (parametric tests) and distribution-free

tests (non parametric tests). In the case of weak, very general assumptions, the latter

are in principle preferable, because they can be adapted to arbitrary distributions. Non

parametric tests can be easily performed when the comparison concerns one dimensional

distributions, although some of them can be extended to two or three dimensions.

In most high energy physics experiments, H0 is a non parametric hypothesis, so testing

H0 requires a distribution-free procedure.

In the following section we describe in detail the statistical features of the GoF tests. It

must be pointed out that it is important to have almost all the possible GoF tests together

in the GoF Toolkit, as different physics problems could demand different statistics solu-

tion, depending on the distributions type or shape. In fact, we distinguish between tests

suitable for binned data and binning free tests for unbinned data.

We remark that GoF tests are primarily included in classical statistical inferential meth-

ods, because there is no unanimous consensus on the correct approach to Bayesian model

checking. However, GoF tests are closely related to hypothesis testing of models, and

this argument belongs peculiarly to Bayesian statistics since many studies demonstrate

that p-values should better be replaced by a Bayes-factor [7], [8]. Future extensions and

developments of the GoF Toolkit may include some treatment with Bayesian methods.

3 Non parametric tests

3.1 One Sample tests: Comparing data to a theoretical distribution

3.1.1 Chi-squared test

The Chi-squared test verifies the adaptation of the experimental data to a certain theoret-

ical distribution.
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If B represents the number of bins, the test statistics X2
T (T means test) is

X2
T =

B∑
i=1

(oi − ei)
2

σ2
i

(3)

where oi is the i-th observed data, ei the expected value and σ2
i the variance. The expected

value of X2
T is

E(X2
T ) = B. (4)

In the Gaussian approximation, the test statistics follows a χ2 distribution with B degrees

of freedom.

If we have a histogram, where the random variable Ni (count in each class) is a total

of N events distributed according to a multinomial distribution among the B bins with

probabilities pi, we use Pearson’s definition:

X2
T =

B∑
i=1

(Ni −Npi)
2

Npi

(5)

which again follows asymptotically a χ2 distribution, this time with (B − 1) degrees

of freedom. The reduced number of degrees of freedom (ndf ) is due to the constraint∑
iNi = N .

If some parameters of the model (e.g. Binomial, Poisson, Normal, . . .) are estimated from

data, we may simply reduce the ndf.

When Pearson’s χ2 test is applied to unbinned distributions, the analyst must group data

into classes before performing the comparison, but the counting of theoretical frequencies

in each class must be sufficiently large (i.e. Ni ≥ 5).

3.1.2 Tests based on maximum distance

A common alternative to the Chi-squared tests includes tests based on the Empirical Dis-

tribution Function (edf ) definition. Such tests are mostly used for continuous distributions

and are in general more powerful than the Chi-squared test [9], as they do not require re-

grouping.

Consider the order statistics

X(1) < X(2) < . . . < X(n) (6)

and the edf Fn(x) = 1
n

∑n
i=1 I(Xi ≤ x), where I(·) is the indicator function, jumping

from (i−1)
n

to i
n

at the point X(i) and being constant except for the jumps at the order

statistics. Fn(x) must be compared with the distribution F (x), defined in the null hypoth-

esis H0. The maximum positive (negative) deviation of Fn(x) from F (x), Dn+(Dn−),
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can be used as a test statistics. The one sided Kolmogorov [10] test statistics is given by

the maximum difference

Dn+ = supx(|Fn(x) − F (x)|). (7)

Kolmogorovs test is used to determine whether an empirical distribution differs from a

theoretical distribution. The probability distribution of the test statistics (7), given that

the null hypothesis of equality of distributions is true, does not depend on what the hy-

pothesized distribution F is, as long as it is continuous. This is the most interesting case,

dealing with non parametric testing. It must be stressed that the one sample Kolmogorov

test is not very useful in practice because it requires a simple null hypothesis, as the dis-

tribution must be completely specified with all parameters known. In the case that some

parameters are estimated from data, the critical region of test is no longer valid. In fact,

for composite hypothesis, the expression

supx|Fn(x) − F (x, θ)| (8)

is no more a test statistics because it depends on unspecified parameters. When the pa-

rameters are estimated from the data, for the Kolmogorov test we obtain an estimated

D̂n+, whose sampling distribution is different from the one of Dn+. This test is conser-

vative (i.e. tends to privilege the acceptance of the null hypothesis) if we use the usual

critical values. However, from a theoretical point of view, it is possible to approximate

the null distribution of the test statistics by means of bootstrap methods: the idea of using

resampling techniques to obtain critical values for Kolmogorov type statistics has been

used by Romano [12] and Praestgaard [13] among the others. Some limitations of this

test are concerned with the fact that it tends to be more sensitive near the center of the

distribution with respect to the tails.

In Kuipers test we use the maximum deviation above and below of the two distri-

bution functions

Vn = Dn+ +Dn− (9)

as a test statistics. Kuipers test is useful for unbinned cyclic observations as well as for

cyclic transformation of the independent variable because the value of Vn does not depend

on the choice of origin [14]. Thanks to its definition, the test is as sensitive to the tails as

to the median of the distributions [15].
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3.1.3 Tests based on quadratic distance

The Anderson-Darling family of tests measures the integrated quadratic deviation of the

two edfs suitably weighted by a weighting function ψ(F (x)):

Qn = n
∫ ∞

−∞
[F (x) − Fn(x)]2ψ(F (x))dF (x). (10)

With

ψCvM(F (x)) = 1 (11)

we get the Cramer-von Mises test, that can be performed on unbinned data and is satis-

factory for symmetric and right-skewed distributions [16], [17].

If in equation (10) we use:

ψAD(F (x)) = [F (x)(1 − F (x))]−1 (12)

we obtain the Anderson-Darling [AD] statisticsA2 [18]. This test can be performed both

on binned and unbinned data and it gives more weight to the tails than Kolmogorovs test.

As Kuipers test, the AD test provides equal sensitivity at the tails as at the median, but

it does not guarantee cyclic invariance. A recent paper by Aksenov and Savageau [19]

states that this test is suitable for any kind of distribution, independently on its particular

skewness. However, the one sample AD test is only available for a few specific theoretical

distributions.

3.2 Multi sample tests: Comparing two distributions

3.2.1 Tests based on maximum distance

The Kolmogorov-Smirnov [KS] test derives from Kolmogorovs test and represents an

extension of the test statistics (7). This test was introduced by Smirnov [20], [21] and

uses the test statistics

Dn,m = supx|Fn(x) −Gm(x)| (13)

where Fn(x) and Gm(x) are two usual edfs associated with the X and Y random vari-

ables, respectively. This test is used to determine whether two data-samples edfs coming

from the same theoretical distribution are different. Note that as for Kolmogorovs test

it is not specified which is the common distribution, so KS is distribution-free under H0

when the observations are independent and identically distributed with a continuous dis-

tribution. KS exact and limiting distribution is not standard (i.e. this test does not have

usual limiting distribution) and tables for the exact distributions are only available for a

limited number of sample sizes [22]; thus, this test is usually performed with the help of
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tables based on asymptotic distributions. It must be noticed that the KS test is no longer

distribution-free when Fn and Gm are discrete distributions.

Goodman [23] test statistics derives from KS test, representing the same test in a Chi-

squared approximation. Under Goodmans approximation, the KS exact test statistics

Dn,m can be approximated with a Chi-squared test statistics, which follows a χ2 dis-

tribution with 2 degrees of freedom

χ2 = 4D2
n,m

nm

(n+m)
. (14)

Kuipers statistics is still valid also when the comparison involves two samples; again its

test statistics Vn,m involves the signed deviations between the two edfs

Vn,m = supx[Fn(x) −Gm(x)] + supx[Gm(x) − Fn(x)]. (15)

3.2.2 Tests based on quadratic distance

The two sample Fisz-Cramer-von Mises [FCM] [27] test derives from (10) with the

condition (11). The test statistics is defined as

tn,m =
nm

(n+m)2

n∑
i=1

[Fn(xi) −Gm(xi)]
2. (16)

The FCM test is based on the assumption that the edfs Fn and Gm are unbinned. In case

of binned distributions, this test is likely to be conservative. In both cases, the test can

be applied on both symmetric and right-skewed distributions. The test is distribution-free

under H0 with Fn and Gm continuous. Again, the exact and limiting null distributions of

FCM are not standard. The Anderson [24] and Burr [25] tables can be used for the exact

distribution in the case of small sample sizes (n + m ≤ 17). Otherwise, a table of the

asymptotic distribution is available from Anderson and Darling [26], in their paper con-

cerning the Cramer-von Mises statistics; this one has been included in the GoF Toolkit.

Finally, we have the k-sample Anderson-Darling’s test [28], deriving from (10) under the

condition (12), which is an approximation for the case of k samples. The specific case of

AD two-samples test statistics A2
n,m is contained in the GoF Toolkit. The AD test solves

some of the limitation of the KS test. In addition, the AD test is more powerful than the

KS one since it makes specific use of the underlying cumulative distribution.

3.3 Power of the statistical tests

We would like to remark that a test is considered powerful if the probability for accepting

H0 when H0 is wrong is low. Actually, it must be stressed that with a non parametrical
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set of tests a proper evaluation of their power cannot be quantified without specifying

the alternatives. In general, the Chi-squared test is the least powerful one because of

information loss due to data grouping (binning). On the other hand, all the tests based on

the maximum statistics are more powerful than the Chi-squared one, focusing only on the

maximum deviation between the two edfs. The most powerful tests are undoubtedly the

ones containing a weighting function, as the comparison is made all along the range of x,

rather than looking for a marked difference at one point.

4 The Design of the GoF Toolkit

The GoF Toolkit matches a sophisticated statistical data treatment with the most advanced

computing techniques, such as object-oriented technology with the use of design patterns

and generic programming. The system has been developed following a rigorous soft-

ware process (Unified Software Development Process [29]), mapped onto the ISO 15504
guidelines [30]. According to such an approach, the life-cycle of the software itself is

iterative-incremental, every iteration representing an evolution, an improvement, an ex-

tension in comparison with the previous one. It must be underlined that this iterative

software development allows an increasing understanding of the problem domain through

successive refinements. The code of the GoF Toolkit has been implemented in C++.

4.1 Core Comparison Component

The project adopts a solid architectural approach, its design specifying the roles and the

responsibilities of each component. The solid architecture permits at the same time both

maintainability over a large time and extensibility, accommodating in this way future evo-

lutions of the user requirements.

The architectural approach adopted is component-based: in this way it facilitates the re-

use of the GoF Toolkit as well as its integration in other data analysis frameworks. The

design makes use of both object-oriented techniques and of generic programming.

Fig. 1 represents the core component of the GoF Toolkit. Its main features can be sum-

marised in two points:

◦ the Toolkit distinguishes input distributions on the basis of their type, as binned and

unbinned data must be treated in different ways from a statistical point of view,

◦ the whole comparison process is managed by one object (ComparatorEngine),

which is templated on the distribution type and on the test algorithm.

The comparison returns to the user a statistics comparison result object, giving access to

the computed value of the test statistics, the number of degrees of freedom and the quality
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of the comparison (p-value, that is the probability that the test statistic has a value at least

as extreme as that observed, assuming the null hypothesis is true).

Fig. 2 details all the algorithms implemented up to now: it must be noticed that every al-

gorithm is specialised for only one kind of distribution (binned or unbinned). Algorithms

implemented for binned distributions are the Chi-squared, FCM and AD tests. Algorithms

for unbinned data are Goodmans, Kolmogorovs, FCM, AD and Kuipers tests. The class

ComparisonAlgorithm is templated on the specific distribution (binned or unbinned); its

responsibility is the computation of the deviation, i.e. the distance, between two distribu-

tions, on the basis of the statistical test selected by the user.

The p-value computation is instead performed through an abstract class StatisticsQual-

ityChecker. Thanks to the adoption of a Strategy Pattern [31], the algorithms are en-

capsulated into objects and thus made interchangeable. The ComparisonAlgorithm class

maintains a reference to a StatisticsQualityChecker. When the user selects an algorithm to

perform a specific GoF test, the ComparisonAlgorithm class forwards this responsibility

to its StatisticsQualityChecker object.

Moreover, the object-oriented design allows for an easy extension of the GoF Toolkit to

new algorithms. New statistical tests can be inserted in the GoF Toolkit without interfer-

ing with the existing code.

4.2 User Layer Component

The object-oriented techniques adopted together with the AIDA (Abstract Interfaces for

Data Analysis) [32], that are recognised as a standard in high energy physics software

domain, are able to shield the user from the complexity of both the design of the core

component and the computational aspects of the mathematical algorithms implemented.

All the user has to do is to choose the most appropriate algorithm and to run the com-

parison. In practice he/she activates the statistical test he/she wants to perform writing

only one line of code, as evidenced in Fig. 3 in the specific case of a Chi-squared test.

This implies that the user does not need to know the statistical details of any algorithm.

He/She also does not have to know the exact mathematical formulation of the distance,

nor of the asymptotic probability distribution he/she is computing. Therefore the user can

concentrate on the choice of the algorithm relevant for his/her data.

Moreover, the user is somehow guided in his analysis as this specific design of the GoF
Toolkit prevents him/her from applying a wrong test to his/her distributions. As an exam-

ple, if the user tries to apply the CVM algorithm to binned data, the GoF will not run the

comparison, as the class CramerVonMisesUnbinnedComparisonAlgorithm is defined to

work only on unbinned distributions. Thanks to this architecture, the user can access only
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those algorithms whose applicability conditions fit the kind of distribution he/she deals

with.

5 Code validation

On the basis of the rigorous software process that the project adopted, the GoF Toolkit

code has undergone a test process. Unit tests covered each class of the design, such as the

verification of all the distance and probability calculations.

Testing was also performed on every complete statistics algorithm included in the GoF
Toolkit, with the aim of validating the whole GoF statistics process of comparison.

In this paper we show only a couple of examples that were extracted from two reference

statistics books [33], [34]. This validation is simply intended to demonstrate that the

code is consistent with the mathematics of the algorithms comparing the numerical results

obtained by means of the GoF Toolkit with the ones published by the authors. It must not

be considered as an intrinsic comparison among the specific algorithms.

5.1 Validation of GoF Tests for Binned Distributions

The first example of code validation comes from Piccolo’s book [33] and concerns a

sample consisting of 294 people. Every subject’s birth and death day has been recorded.

The aim of the study is to test whether the birth distribution X is the same as the death Y

one. The hypothesis we are going to test is the following:

H0 : FX(ω) = GY (ω) (17)

for every ω, against the alternative:

H1 : FX(ω) �= GY (ω) (18)

for at least one ω. Fig. 4 shows the X and Y original distributions.

Piccolo himself states that these two variables are continuous, but he performs the com-

parison after binning the data, grouping births and deaths in months. In spite of this

manipulation, he applies to this example the KS test, according to the justification that in

practice it is better to group data if one has to make the comparison by hand.

The KS test statistics he computes according to equation (13) is Dref = 0.08163. He

compares it with the KS critical value (Dcrit(0.05) = 0.11201 if n = 294 and m = 294).

According to this result he concludes that there is no evidence for rejecting the null hy-

pothesis and, for this reason, the two distributions are identical from a statistical point of

view.
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Test Distance p-value

Chi-squared χ2 = 15.8 p = 0.20

Anderson-Darling A2 = 0.09 p > 0.05

Fisz-Cramer-von Mises t = 2.54 p > 0.05

Kolmogorov-Smirnov∗ D = 0.082 p = 1

Goodman∗ χ2 = 3.91 p = 0.14

Table 1: Statistical results for binned distributions tests code validation: the example
comes from Piccolo’s book [33]. Those tests evidenced with ∗ have been included in
the comparison only to compare their numerical result with Piccolo’s solution. All the
algorithms lead exactly to the results computed by Piccolo.

The statistical comparisons we performed running this example with the GoF Toolkit are

shown in Table 5.1 for the Chi-squared, FCM and AD tests. Of course, the binned na-

ture of data led us to run it with Chi-squared, FCM and AD tests. Only with the aim

of checking if we could reproduce the same numerical result of Piccolo, we applied an

ad hoc procedure to force the application of the KS test to binned data. The Goodman

approximation of the KS test was performed as well.

In any test we obtain the same result of Piccolo and, in particular, the GoF Toolkit

reproduces exactly the numerical result of the test statistics computed by the author

(DToolkit = 0.0816327).

5.2 Validation of GoF Tests for Unbinned Distributions

The second example is specific for unbinned data and comes from Landenna’s book [34],

but deals with a physiology experiment. A collective made up by 20 subjects has been

studied by Delse and Feather [35], with the aim of evaluating if a subject is able to control

his own salivation process while he tries to increase or reduce it. Subjects were divided

into two equal groups. The subjects of the first group had to try to modify their own

salivation flux according to the direction (right or left) of a light source, while the subjects

of the second one had to make the same things without any light stimulus. The aim of the

study was to verify if the salivary flux distribution X of the sample subjected to the light

stimulus (S) is different from the Y one coming from the group with no light stimulus

(NS).

Again, the hypothesis we are going to test is the following:

H0 : FX(ω) = GY (ω) (19)
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Test Distance p-value

Goodman χ2 = 7.2 p = 0.03

Kolmogorov-Smirnov D = 0.6 p = 0.03

Fisz-Cramer-von Mises t = 0.485 p < 0.05

Anderson-Darling A2 = 37.9 p < 0.05

Table 2: Statistical results of the unbinned distributions tests code validation: the example
comes from Landenna’s book [34] and it explains Delse and Feather’s [35] physiology
experiment. All the algorithms lead to the same results computed by Landenna.

for every ω, against the alternative:

H1 : FX(ω) �= GY (ω) (20)

for at least one ω.

Delse and Feather edfs are shown in Fig. 5. Landenna performs the statistical comparison

between S and NS with two different algorithms: KS and FCM tests. The result of the

KS test is that the maximum deviation between the S and NS distributions is Dref = 0.6.

Landenna compares this test statistics with the KS critical values available on statistical

tables and he finds that, in the case of n = 10 and m = 10, Dcrit(0.05) = 0.6. So there

is evidence for rejecting the null hypothesis and this means that the two distributions are

significantly different.

The FCM test leads the author to the same statistical result, the test statistics being equal

to tref = 0.485, while the critical values come again from the tables included in his book:

tcrit(0.05) = 0.475 if n = 10 and m = 10. Again, the test statistics falls in the null

hypothesis rejection area and the author concludes that also this test states that the two

distributions are significantly different.

The comparisons we produced by means of the GoF Toolkit involve the algorithms spe-

cialised for unbinned distributions: Goodman, KS, FCM and AD tests. GoF Toolkit

statistics testing results are shown in Table 5.2. In all cases we obtain the same results as

reported by Landenna and, in particular, with both KS and FCM tests we could reproduce

exactly the same numerical results reported by the author.

6 Conclusion

The GoF Toolkit is an easy to use, up-to-date and versatile tool for data comparison in

physics analysis. It is the first statistical software system providing such a variety of so-

phisticated and powerful algorithms in high energy physics.
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The component-based design uses object-oriented techniques together with generic pro-

gramming. The adoption of AIDA for the user layer decouples the usage of the GoF
Toolkit from any concrete analysis system the user may have adopted in his/her analysis.

The code is open-source and can be downloaded from the web together with user and

software process documentation [36].

As it was underlined in the section describing the power of the GoF tests, none of the tests

included in the system is optimum for every case. The user has the freedom to choose the

GoF test most appropriate for his/her comparison among those available in the Toolkit.

He/She is guided in this selection by the design of the Toolkit itself, that prevents the use

of an incompatible type of GoF test for a given distribution.

Thanks to the great variety of its sophisticated and powerful statistical tests, the GoF
Toolkit has been adopted by various projects, involving the comparison of distributions

of specific physical quantities. The three examples that follow have as a common denom-

inator the essential need for an accurate validation of the simulations versus experimental

data-sets. Their fields of application are the following:

1. General Purpose Software: GEANT4 [37] adopts the GoF Toolkit for the micro-

scopic validation of its physics models [38].

2. Astrophysics: The Bepi Colombo mission of the European Space Agency uses it

for comparisons of experimental data from a test beam with simulations for the

study of the detector design [39].

3. Medical physics: The CATANA project, treating patients affected by uveal melanoma

with hadrontherapy, uses the GoF Toolkit in order to make the comparison of phys-

ical quantities of interest (as the Bragg peak or isodose distributions) for the opti-

misation of the design of the treatment beam line [40].

For all the features described, the GoF Toolkit represents a step forward in the quality

of data analysis in high energy physics and could be easily used by other experimental

software frameworks.
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summary)”, Matematicesǩii Sbornik N.S., vol.6, pp. 3-26, 1939.

[21] N.V. Smirnov, “Table for estimating the Goodness-of-Fit of empirical distributions”,

Annals of Matemathical Statistics, vol.19, pp. 279-281, 1948.

[22] D.A. Darling, “The Kolmogorov-Smirnov, Cramer-von Mises tests”, Annals of

Mathematical Statistics, vol. 28, pp. 823-838, 1957.

[23] L.A. Goodman, “Kolmogorov-Smirnov tests for psychological research”, Psycho-

logical Bullettin, vol. 51, pp. 160-168, 1954.

[24] T.W. Anderson, “On the distribution of the two-sample Cramer-von Mises criterion”,

Annals of Mathematical Statistics, vol. 33, pp. 1148-1159, 1962.

[25] E.J. Burr, “Distribution of two-sample Cramer-von Mises criterion for small equal

sample”, Annals of Mathematical Statistics, vol. 33, pp. 95-101, 1963.

[26] T.W. Anderson, D.A. Darling, “Asymptotic theory of certain Goodness of fit criteria

based on stochastic processes”, Annals of Mathematical Statistics, vol. 23, pp. 193-

212, 1952.

15



[27] M. Fisz, “On a result by M.Rosenblatt concerning the von Mises-Smirnov test”,

Annals of Mathematical Statistics, vol. 31, pp. 427-429, 1960.

[28] A. Heckert (2003, April 4). NIST, Available:

http://www.itl.nist.gov/div898/software/dataplot/refman1/

[29] I. Jacobson, G. Booch, J. Rumbaugh, “The Unified Software Development Process”,

1st ed., Ed. Addison-Wesley, 1999.

[30] ISO/IEC Joint Technical Committee 1 (JTC1), “ISO/IEC DTR 15504-5 Part 5: an

assessment model and indicator guidance”, Ed. Jean Martin Simon.

[31] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Patterns”, 1st ed., Ed. Addi-

son Wesley Professional Computing Series, 1994.

[32] G. Barrand, P. Binko, M. Donszelmann, A. Johnson, A. Pfeiffer, “Abstract Interfaces

for Data Analysis - Component Architecture for Data Analysis Tools”, proceesings

of CHEP, Beijing, September 2001, Science Press, pp. 215-218.

[33] D. Piccolo, “Statistica”, 1st ed., Ed. Il Mulino, Bologna Italy, 1998, pp. 711-712.

[34] G. Landenna, D. Marasini, “Metodi statistici non parametrici”, 1st ed., Ed. Il Mulino,

Bologna Italy, 1990, pp. 318-337.

[35] F.C. Delse, B.W. Feather, “The effect of augmented sensory feedback on the control

of salivation”, PsychoPhysiology, vol. 5, 1968, pp. 15-21.

[36] http://www.ge.infn.it/geant4/analysis/HEPstatistics/index.html

[37] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, et al.,

“GEANT4a simulation toolkit”, NIM - Section A, vol. 506 (3), 2003, pp. 250-303.

[38] G.A.P. Cirrone, G. Cuttone, S. Donadio, V. Grischine, S. Guatelli, P. Gumplinger, et

al., “Precision Validation of Geant4 Electromagnetic Physics”, Proceedings of IEEE

Nuclear Science Symposium, Portland, Oregon, October 2003.

[39] A. Mantero, B. Bavdaz, A. Owens, T. Peacock, M.G. Pia, “Simulation of X-ray Flu-

orescence and Application to Planetary Astrophysics”, Proceedings of IEEE Nuclear

Science Symposium, Portland, Oregon, October 2003.

[40] G.A.P. Cirrone, G. Cuttone, S. Guatelli, S. Lo Nigro, B. Mascialino, M.G. Pia, et

al., “Implementation of a New Monte Carlo Simulation Tool for the Development

16



of a Proton Therapy Beam Line and Verification of the Related Dose Distributions”,

Proceedings of IEEE Nuclear Science Symposium, Portland, Oregon, October 2003.

17



            

Figure 1: Design of the core component of the statistical Toolkit: the ComparatorEngine
is responsible of the whole statistical comparison process.

            

Figure 2: Detail of the statistical Toolkit design: algorithms implemented for
binned (Chi-squared, Fisz-Cramer-von Mises and Anderson-Darling tests) and unbinned
(Kolmogorov-Smirnov, Goodman-Kolmogorov-Smirnov, Cramer-von Mises, Anderson-
Darling and Kuiper tests) distributions.
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Figure 3: User layer of the GoF Toolkit: dealing with AIDA objects, the user is com-
pletely shielded from the complexity of both design and statistics. He has only to extract
the algorithm he wants to use and to run the comparison. In the specific case shown, the
user is running the Chi-squared algorithm.
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Figure 4: Example from Piccolo’s book [33]: the author wants to compare birth against
death monthly distributions in a sample of 294 people. Statistical comparisons lead to the
same result computed by Piccolo.
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Figure 5: Example from Landenna’s book [34]: the author wants to compare the results
of a physiology experiment performed by Delse and Feather [35] onto two groups made
up by 10 people each. Statistical comparisons lead to the same results computed by
Landenna.
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