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Abstract

Even at absolute zero, the vacuum is seething with activity and behaves as a fluid in which
moving objects dissipate their kinetic energy. The dynamical Casimir effect foresees that
a metallic mirror put in motion in quantum vacuum gives rise to ”dissipated” energy in
the form of real photons, called the Motion Induced Radiation. The final aim of this study
is to present a solution to the main experimental difficulty, that is to realize the oscillating
motion of the metallic wall at high frequency (109 ÷ 1010 Hz). To obtain a fast moving
wall we propose to switch an effective microwave mirror on and off in very short intervals
of time changing the reflectivity of the semiconductor by shining pulsed laser beam on
its surface. In this way a microwave mirror can be created and disappears at very high
frequency, giving rise to a system equivalent to that of a fast moving metallic slab.
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Introduction

In this report we first make a general theoretical exposition concerning the effects of elec-

tromagnetic field fluctuations, devoting more concern on the dynamical Casimir effect for

what we want to observe with our experiment is in effect the Motion Induced Radiation.

The final aim of this study is to present a solution to the main experimental difficulty,

that is to realize the oscillating motion of the metallic wall at high frequency (109 ÷ 1010

Hz), as purely mechanical excitation has limitations on the admissible velocity of acoustic

waves in materials. To obtain a fast moving wall the idea is to produce an effective mi-

crowave mirror, changing the conductivity of a semiconductor layer, that is set as a wall

of the cavity: with pulsed laser light over a direct semiconductor (GaAs) a microwave

mirror is created and disappears in a very short time.

In the final part of this work the possible sources of noise are analyzed and the num-

ber of equivalent noise photons is estimated. This number has to be compared with the

theoretical predictions of the number of dynamical Casimir effect photons.

Zero point oscillations and the Casimir effect

Let us consider boundaries for the electromagnetic field in free space, i.e. inserting metal-

lic plates or external fields, the electromagnetic field is still fluctuating freely in infinite

space, except for the constraints of vanishing of some components on the metallic plates.

Each constraint by itself imposes restrictions on fluctuations of the field, increasing the

free energy. In the best known configuration, two uncharged parallel plates separated

by a distance a, the result is an attractive force which arises to bring the system back to

minimum energy state:

F (a) = − π2

240

h̄c

a4
S

a is the separation between the plates, S � a2 is their area and h̄ and c are the usual

physical constants [2,3].

In fact, with two plates the space is partitioned into three domains, two with contin-

uous modes and one with discrete modes and the system favours less separation between

the plates so that the restrictive domain is as small as possible.

As the plates are assumed to be neutral, there is no force in classical electrody-

namics, then it is only the vacuum which causes the plates to attract each other. It was

Casimir [2] who was the first to extract the finite force acting between the two parallel

neutral plates; to do this he had subtracted away the infinite vacuum energy of quantized

electromagnetic field in free space from the infinite zero-point energy of the quantized
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electromagnetic field confined in between the plates1. The finite difference between the

infinite vacuum energy densities in the presence of plates and in free space is observable

and gives rise to Casimir force.

This effect has been studied theoretically in several configurations and the results

obtained show the boundary dependence of quantum vacuum. The Casimir force switches

from attractive to repulsive as a function of the size, geometry and topology of the bound-

ary [3], [4].

A variety of measurable consequences of these quantum fluctuations under the influ-

ence of external conditions have been derived during the last decades [5]. If we focus our

attention to the vacuum fluctuations of the electromagnetic field, they exert a mechanical

action on any scatterer in vacuum. The Casimir force described before is a macroscopic

quantum effect, but this zero-point energy has manifestations also with objects belonging

to the microscopic world; with electrons in atoms vacuum oscillations lead to phenomena

like spontaneous emission and the Lamb shift of energy levels for a single atom.

The dynamical Casimir effect

Another vacuum quantum effect, in addition to the Casimir force, is the creation of parti-

cles from vacuum when boundary conditions depend on time. The review of the several

papers published on the dynamical Casimir effect is not one of the aims of the present

report: what follows is to understand how theoretical physicists obtain the expression of

the quantity we want to measure, that is, the number of the photons radiated.

In this effect, some part of the mechanical energy of moving bodies (mirrors) is

transformed into the energy of quanta of electromagnetic (and, in principle, other) fields

due to an interaction between the mirror and virtual particles, or vacuum fluctuations

[6–11]. The back reaction of the emitted quanta results, in turn, in dissipation effects,

because the vacuum behaves as a complex fluid that hinders and influences the bodies

moving through it [12,1]. In an idealized case of a perfectly reflecting mirror moving in

a single space dimension, the dissipative force is proportional to the third time derivative

of the mirror’s position [12,13]:

Fdiss(t) =
h̄

6πc2
q′′′(t). (1)

1Because the electric field must vanish at the boundaries, the normal modes of the cavity between the
mirror are characterized by integer wave vectors ~k = (kx, ky, πn/d), with n integer and d distance between
the plates. Once quantized, these normal modes are harmonic oscillators of frequencies ω(~k) = c|~k|, each

of which in its ground state has energy h̄ω(~k)
2 . The total sum of the ground state energies is formally infinite.
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It is useful to rewrite this formula in the frequency domain:

Fdiss[ω] =
h̄

6πc2
iω3q[ω], (2)

where Fdiss[ω] and q[ω] are the Fourier transforms of the force and the mirror’s displace-

ment. In the three-dimensional case, Fdiss[ω] ∼ ω5q[ω] [14], so that the vacuum friction

force becomes proportional to the fifth-order derivative of the coordinate. No dissipative

force arises for a motion with uniform acceleration.

When a single mirror is oscillating at frequency Ω in vacuum, the number of radiated

photons is [8]:

N =
ΩT

6π

(

v

c

)2

(3)

Expression (3) is a product of two dimensionless factors, the number of mechanical

oscillation periods during the time T, and the square of the ratio β = v
c

between the

maximal velocity v of the mirror and the velocity of light c. The number obtained depends

on Ω3, which characterizes the motional susceptibility of vacuum, according to equation

(2).

Since N scales as β2, it remains very small for any macroscopic motion. In 1010

periods of oscillation and using v as the velocity of sound waves in quartz, we obtain only

one photon.

Instead of a single mirror, the most favorable configuration in order to observe this

motion-induced radiation is to study a cavity oscillating in vacuum. This allows one to

enhance generation of particles by resonance effects, if the boundaries perform harmonic

oscillations at twice the frequency of the cavity [6,7,15,16].

Let us consider a simple one-dimensional model, which roughly corresponds to the

Fabry–Perot cavity with totally reflecting boundaries. Then the spectrum of electromag-

netic modes is equidistant: ωm = m ω1, ω1 = π c/L0 (L0 is the equilibrium distance

between mirrors), and the number of photons created from vacuum in the mth mode, un-

der the condition of the strict parametric resonance Ω = 2ω1 and in the long-time limit

ΩT � 1, can be written as [6,7,9,15,17]

Nm =
v

c

ΩT

π3m
, (4)

provided m is an odd number (whereas no photons are produced in the modes with even

numbers). The total number of photons in all the modes inside the cavity increases with

time quadratically [9,17]:

N =
(

v

c

)2 (ΩT )2

8π4
. (5)
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However, such a growth cannot continue unlimitedly in a real cavity with finite quality

factor Q. The stationary numbers of photons which could be created in a cavity with

weakly transparent mirrors can be evaluated by replacing the product ΩT (the number of

oscillations of the wall) by Q:

N (in)
m ∼ v

c

Q

π3m
, N (in) ∼

(

v

c

)2 Q2

8π4
. (6)

The flux of the photons leaving the cavity in the stationary regime can be evaluated

by multiplying each term of Eq. (6) by the factor Ω/Q:

dN (out)
m

dT
∼ v

c

Ω

π3m
,

dN (out)

dT
∼ Q

(

v

c

)2 Ω

8π4
. (7)

Formulae (7) should be compared with the results of studies [8], according to which,

the number of photons emitted by the cavity at resonance is the product of the number N

from equation (3) corresponding to a single mirror by the quality factor Q:

N (out) = Q
ΩT

6π

(

v

c

)2

. (8)

We see that (7) and (8) differ only by numerical factors. It should be emphasized that

equations (7) and (8) are obtained using quite different schemes of calculations and

for different regimes. The formulae (4) and (5), which lead to (7), were derived in

[6,7,9,15,17], where the transient process of creation of photons from vacuum (and other

possible states of field) in discrete field modes inside the cavity was considered. On the

other hand, in [8] was considered the stationary regime (when all transient processes have

already been finished) of photon emission outside the cavity, for the continuous spectrum

of emitted photons (with sharp peaks corresponding to the resonance field eigenfrequen-

cies). Nonetheless, these different approaches lead to similar results (up to numerical

constants) when their comparison has sense.

However, the rate of photon emission outside the cavity remains very small under

realistic conditions even with account of the factor Q in (8), because the maximal velocity

of material surface cannot exceed a few percent of sound velocity – otherwise the material

will be destroyed due to immense internal deformations [9,18]. In the best case, v/c ∼
10−7, and (8) gives the estimation of the flux outside the Fabry–Perot cavity whose mirrors

oscillate at the frequency Ω/2π ∼ 10 GHz

N (out)/T ≤ 10−4Q
phot

s

in the stationary regime. However, this stationary regime still should be attained.
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It seems preferable to try to detect photons not outside, but inside the cavity, since in

this case we gain an extra factor Q, counting the photons created during the transient pe-

riod according to equation (6). At first glance, the numbers following from this equations

under the same conditions as above, are also small:

N
(in)
1 ∼ 10−8Q, N (in) ∼ 10−16Q2,

so that cavities with the quality factor Q > 108 are necessary to create at least one pho-

ton (note that superconducting cavities satisfying this condition are available for rather

long time already). However, one should have in mind that Eq. (6) holds for the one-

dimensional (Fabry–Perot) cavities. For more realistic three-dimensional cavities, whose

different dimensions have the same order of magnitude, the spectrum is not equidistant.

On the one hand, this fact makes calculations significantly more complicated in the case

of arbitrary law of motion of the boundary. But, on the other hand, it extremely simpli-

fies the treatment of the most interesting case of the parametric resonance, because only

one mode (or, in some specific cases [11,19], two modes) can be in resonance with the

oscillating boundary. In this case, the growth of the number of photons inside the cav-

ity is exponential [7,9–11,18,19]. For the nondegenerate cavity with perfectly reflecting

boundaries the mean number of created photons calculated in [7,9,18] can be expressed

as

N = sinh2 (χβΩT ) , (9)

where χ ∼ 1 is some numerical factor, which depends on the cavity geometry, and β ≡
v/c. For β ∼ 10−7 one needs about 108 of full cycles of oscillations to generate several

thousand of photons. A rigorous account of losses due to nonideality of boundaries is

still an unsolved problem. According to a simplified model considered in [9,20], one can

simply replace the factor χβ in Eq. (9) by χβ− 1/(2Q) (in the long-time limit ΩT � 1).

Therefore, the generation is possible only if the quality factor of the cavity Q exceeds the

value (2χβ)−1. Of course, even in this case the number of photons cannot grow to infinity,

because the solution (9) is valid only under the condition β2ΩT � 1. Nonetheless, it can

be sufficiently high due to the exponential dependence on the parameters given by formula

(9).

1 The boundary conditions and the experimental feasibility of the fast moving wall

As was shown in the Introduction, the critical point for the feasibility of the experimental

verification of the nonstationary (dynamical) Casimir effect is the possibility to realize the

oscillating motion of the boundary at the frequency of 109÷1010 Hz for a sufficiently long

time and with sufficiently high maximal velocity. As a purely mechanical (acoustical)
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excitation is technically difficult and, moreover, has severe limitations on the admissible

value of the ratio v/c < 10−7, we have thought to alternative ways to change the boundary

conditions of the electromagnetic field inside the cavity.

The reflection of microwaves depends on the concentration of electrons, so a good

way to obtain a mirror is to create a high concentration of electrons, instead of moving at

high frequency a macroscopic wall. In fact, this would require a huge amount of energy,

necessary to overcome the inertia of all the nuclei.

1.1 Laser excitation of a semiconductor layer on the metallic wall

The idea is to produce an effective microwave mirror, changing the conductivity of a

semiconductor layer covering one of the cavity walls with the aid of short powerful laser

pulses. In a wide sense, this idea is not quite new, since it was already discussed, e.g., in

Refs. [21,22]. However, a single-time excitation (ionization) of the medium considered in

that papers imitates a monotonous motion of the mirror from one position to another and

cannot result in a large number of photons. Possibilities of simulating the nonstationary

Casimir effect by using time-dependent dielectric media or by instantaneous removing of

a mirror dividing a cavity in two parts were discussed, e.g., in [23,24], but only as some

conceivable ideas and without concrete proposals for experiments.

The principal difference of our idea is that we are planning to realize periodic ex-

citations with many thousand pulses. The most important feature of our proposal is that

the maximal velocity of displacement of an effective mirror is not subjected to strong lim-

itations inherent to the acoustical excitation, since the velocity of the effective mirror is

determined by

• the distance between the plasma layer in the semiconductor and the external metal-

lic wall of the cavity;

• the duration of the laser light pulse

Furthermore, increasing the parameter β by several orders of magnitude immediately

softens the requirements to the quality factor of the cavity, the number of pulses and

admissible detuning from the strict resonance by the same orders. In principle, high (even

relativistic) velocities could be achieved also for effective mirrors made of free electrons

[25], but their creation requires tremendous power and hardly can be performed in the

periodic regime.

In Fig. 1 we show a possible scheme for the resonant cavity. To clarify the idea and

introduce the physical magnitudes to be used for describing the phenomenon, in the next

section 1.1.1 we discuss how to obtain free charge carriers in semiconductors by laser
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irradiation and in section 1.1.2 we show how this increase in the number of electrons

makes it possible to obtain a reflecting wall for microwaves, as if it were a metallic surface.

lens

laser beam

semiconductor wall

a
b

d

Figure 1: Laser excitation of a semiconductor layer: a laser beam enters the cavity through a lens
(optical fiber) and incides on the wall covered by a semiconductor layer, thus producing a mirror
for microwaves.

1.1.1 Optical Absorption

It is possible to enhance the concentration of free carriers in a semiconductor illuminating

it with a laser beam, having a photon energy greater than the energy gap.

The light penetrates a distance into the semiconductor depending on the photon fre-

quency and on the type of semiconductor: the thickness of the plasma formed is related

to the frequency of the incident photon through the absorption coefficient α. In this para-

graph are also inserted some figures showing α measured for Si and GaAs, that will be

used in section 1.1.2 to calculate the concentration of free carriers in table 3.

If a light beam of intensity I(0) enters into a semiconductor at z = 0, the intensity

of the beam decreases with z according to [26]

I(x) = I(0) exp(−αz) (10)

The constant α (in cm−1) is called the absorption coefficient.

Measured values of α for silicon and GaAs are shown in figures 2, 3, 4, and in Tab.1.

Table 1: Optical absorption for three wavelengths in Si at room temperature.
λ (nm) hν (eV) α (cm−1) p = α−1 (µm)
1064 1.17 2.5 · 103 400
750 1.65 2 · 103 50
532 2.34 104 1
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Figure 2: Dependence of absorption constant on photon energy for silicon at some values of
temperature [27].

1.1.2 Conductivity and Skin Depth

The absorption of an optical pulse gives rise to an increase in free carrier density, which in-

fluences the reflection and transmission properties for electromagnetic waves in the semi-

conductor. To evaluate this change we will first study the semiconductor conductivity,

related to the number of free charges. The conductivity in semiconductors is expressed in

the following form:

σ = e(µen + µhp) (11)

where µe and µh are the mobility of electrons and holes and n, p are the electron and hole

concentration.

Table 2: Mobility of electrons and holes at 300 K e 77 K in Si.[29]
µe (cm2/V · s) µh (cm2/V · s)

300 K 1350 480
77 K 2.1×104 1.1×104

The conductivity is involved in Maxwell equations, which describe the propagation

of electromagnetic waves with generic frequency ω in the semiconductor:

∇× E = −iwµH (12)

∇×H = (σ + iwε)E (13)

∇ · E =
ρ

ε
(14)

∇ ·H = 0 (15)
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Figure 3: Upper portion of the GaAs intrinsic absorption edge, measured on a 6.5-µm-thick
semi-insulating polished slice [28].

where ε is the dielectric constant, µ permeability, and ρ is the charge density. Solving

the equations (12-15) for the magnetic field, we arrive at the Helmholtz equation for the

monochromatic components of the electric field

∇2E = γ2E (16)

where γ =
√

iwµ(σ + iwε) = α + iβ is called the intrinsic propagation constant; α the

attenuation constant; β the phase constant.

A time-dependent inhomogeneous plane wave solution resulting from equation (16)

is as follows:

E = E0e
−αz cos(wt− βz) (17)

Lossy media are characterized by non-zero conductivity (σ 6= 0). There are three

types of lossy media: good conductor, poor conductor and lossy dielectric; the presence

of a loss in the medium introduces wave dispersion by conductivity.

A medium is a good conductor when σ � wε, so that the conduction current is much

larger than the displacement current. The energy carried by the wave traveling through

the medium will decrease continuously as the wave propagates because ohmic losses are

present.

The propagation constant γ, expressed as

γ = iw
√

µε

√

1− i
σ

wε

becomes, for σ
wε
� 1,

γ = (1 + i)
√

πfµσ
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Figure 4: The intrinsic absorption edge in semi-insulating GaAs at five temperatures. The upper
parts of these curves are shown (with a linear ordinate scale) in Fig. 3. [28]

and thus α = β =
√

πfµσ, with f = w/2π.

Recalling the solution of the electric wave equation (17), we define δ as the distance

which corresponds to a reduction of the amplitude of the wave of a factor e.

The electromagnetic wave gets into this distance, called skin depth:

δ =

√

1

πfµσ
=

1

α
=

1

β
(18)

For a typical microwave frequency (f ' 1010 Hz), the approximation σ
wε
� 1 is

valid for conductivities greater than 10 [Ωm]−1. 2 We observe that δ, even if it is defined

with an approximation, is valid in general to estimate the penetration of the wave inside a

medium, but the exponential attenuation is not valid any more.

In Tab.3 are shown some values of skin depth for Si and GaAs3 in normal conditions

compared with copper.

The reflection coefficients for real photons at normal incidence do not depend on polar-

ization and are

Γ =

∣

∣

∣

∣

∣

√
ε− 1√
ε + 1

∣

∣

∣

∣

∣

(19)

2This approximation is called low frequency approximation and it applies when the electric field of the
incident wave does not have rapid spatial variations within the distance of the mean free path l of electrons.
For metals the relaxation time τ is typically 10−14 to 10−15 s and the average electronic speed v0 is of the
order 108 cm/s at room temperature, and hence a mean free path l = v0τ of 1 to 10 nm.

3values for AXT and Wafer Technology: % ≥ 5×107 Ω cm and µ ≥ 5000 cm2/V·s.
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Table 3: Skin depth in Si and copper for 10 GHz microwaves.
n (cm−3) σ [Ωm]−1 δ

Si pure 4.6×1011 2×10−2 20 cm
Si n-type 4.6×1014 20 6.3 mm
Cu 8.5×1022 5.76×107 7 µm

where ε = ε0 + i4π σ(ω)
ω

, ε0 is the dielectric permettivity at zero frequency, and σ(ω)

describes the frequency-dependent conductivity.

If the conductivity is rather large, that is |ε| � 1, the reflection coefficient can be written

as

Γ =

∣

∣

∣

∣

∣

∣

1− 1√
ε

1 + 1√
ε

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1− η

1 + η

∣

∣

∣

∣

∣

≈ 1− 2Reη (20)

η is the surface impedance. This is valid for frequencies ω � ωp =
√

4πne2

m∗
, where ωp is

the plasma frequency, n the density of conducting particles, m∗ is their effective mass.

If ω � ω2
p

4πσ0
, where σ0 is the conductivity defined in (11),

Γ ≈ 1−
√

ω

2πσ0
= 1− c1√

n
(21)

c1 is a constant.

If the inequality ω > γ holds, there are two different cases:

1. ω <
√

2h̄ωp

c2m∗
ωp in this case Γ = 1− c2√

n
,

c2 constant.

2. ω >
√

2h̄ωp

c2m∗
ωp here Γ = 1− c

(1)
3√
n
− c

(2)
3 − c

(3)
3

n
,

c
(1)
3 , c

(2)
3 , c

(3)
3 are connected, respectively, with the processes of scattering of free

carriers at the defects and impurities, with surface effects and interparticle colli-

sions.

In both cases, the expressions obtained show how with increasing concentrations of

free electrons the reflection coefficient Γ approximates unity.

1.1.3 Microwave Measurements

In Fig. 5 is shown a possible experimental setup to verify if the plasma produced by the

laser inside the semiconductor is a good mirror for microwaves.
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     Nd YAG-laser

ch 1 ch 2

ch 3

f = 10 GHz

1064 nm , 532 nm, 266 nm

10-20 ns

waveguide

WIDEBAND
COUPLER

semiconductor

Fast photodiode
transmission

detector for 
reflection

detector for 

OSCILLOSCOPE

Figure 5: Experimental setup to measure the times involved and reflection coefficients.

The silicon wafer is inserted inside a waveguide and the reflected and transmitted

power under laser illumination are measured by means of two antennas coupled to diode

detectors.

When the wafer is illuminated a transient in the transmitted and reflected power is

observed as shown in Fig.6 and 7. The figures display single-shot measurements (λ =

1064 nm) with some values of laser power: the value that is displayed for each curve in

volts is proportional to the number of free carriers created (see Tab.4).

Figure 6: Measured reflection power in mV versus time in µs. When the laser is turned on, 200
µs after the RF power source (t = 0), the reflected power goes from zero to the measured value
reflected by copper (square wave).

As soon as the laser is turned on the reflected power goes to the maximum value (the

same reflected by the copper slab) and the transmission is zero. Subsequently the curves

in Fig.6 and 7 show the transient during recombination of carriers for the reflected and

transmitted power: the reflected power goes back to zero while the transmitted increases

13



Figure 7: Measured transmission power in mV versus time in µs.

to the value without illumination.

Table 4: Values of the magnitudes describing the mirror created with an incident energy of 100
µJ/cm2.

λ (nm) p (µm) n (cm−3) σ (Ωm)−1 δ (m)
1064 400 1.33×1016 5.74×102 1.17×10−3

532 1 2.67×1018 1.1×105 8.5×10−5

Note: The second column shows the calculated carrier concentration n = E
Eph·V

× 0.5, where
Eph is the value of the optical transition and the laser intensity E in electronvolts, V volume of a
1 cm2 mirror of thickness p. We have assumed that the conversion photons-electrons efficiency is
0.5. The conductivity σ has been estimated inserting these concentrations in the formula (11) and
the depletion depth δ is obtained with definition (18).

2 The cavity

In the introduction to this report we underlined the fact that the dynamical Casimir effect

can be better measured inside a cavity, instead of using only one mirror, because the effect

is amplified if observed inside such a structure. If the cavity is rectangular, the permitted

modes can be found through Maxwell equations. Each solution of the field equations in-

side the cavity is called a cavity mode. We choose the simplest TE (or transverse electric)

mode, called TE101 and shown in Fig. 8; in this way the expected photons from vacuum

are present in the form of an electromagnetic wave, and the lines of the associated electric

field are just the ones in Fig. 8.

For each one of the experimental solutions we discussed in section 1, the properties

of the cavity will be different. To characterize the cavity, we will use the quality factor

Q. The measurement requires a value for Q as much high as possible, so we will give an

estimate of it when one of the walls is not a perfect conductor.
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Figure 8: The electric field in the cavity at some value z.

2.1 The Q-factor of a cavity

We restrict our study to cavities made of copper at room temperature. We saw in section

1.1.2 that the electromagnetic field penetrates into the cavity wall by the skin depth δ. At

10 GHz this skin depth for copper, and in general for good conductors, is about 7 µm.

The losses per unit surface area PS produced in this thin layer can be expressed as [32]:

PS =
1

2
RSH2

S

where HS is the magnetic surface field and RS is the surface resistance, which in a normal

conducting cavity is given by:

RS =
(

µω

2σ

)1/2

=
1

σδ

This gives at 10 GHz a surface resistance of 2.5 mΩ. It is immediately evident that

a semiconductor wall becomes critical as it adds a series resistance considerably higher.

For example with n−type silicon we get 20 Ω. (see Tab.3).

In general to obtain the power dissipated in the walls it is necessary to get the currents

that flow on the surfaces, through the tangent components of the magnetic field. So, the

losses for conduction are:

Pc =
∫ ∫

1

2σδ
|n×H|2dA (22)

The quality factor of a cavity is directly related to its surface resistance. Q is defined as

the ratio between the average stored energy U and the energy lost in a period T= 2 π/ω0:

Q =
ω0U

WL
(23)
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where ω0 is the natural frequency of the cavity, and WL the mean power loss.

For a resonant cavity the total energy is converted from the electric field to the

magnetic field and viceversa, so it is possible to obtain the total energy stored using the

maximum amplitude of the electric field. If we take the rectangular cavity and the field as

in Fig.9, we obtain:

a

db

y

x

z

Figure 9: A rectangular cavity in which there is a standing wave such that the length d corresponds
exactly to λ/2.

(UE)max =
ε

2

∫ d

0

∫ b

0

∫ a

0
|Ey|2 dx dy dz =

ε

2

∫ d

0

∫ b

0

∫ a

0
E2

0 sin2 πx

a
sin2 πz

d
dx dy dz

U =
εabd

8
E2

0 (24)

where we used the field shown in Fig.9, E = Ey = E0 sin πx
a

sin πz
d

(vertically polarized).

The general expression for the energy in the volume V ,

W =
∫ ∫ ∫

V

E ·D + H ·B
2

d3V =
1

2
ε0εr

∫ ∫ ∫

|E|2d3V +
1

2
µ0µr

∫ ∫ ∫

|H|2d3V (25)

where

E = electric field intensity

D = electric flux density

H = magnetic field intensity

B = magnetic flux density

with the constitutive relations:

D = εE

B = µH

where ε = εrε0 is the dielectric permettivity of the medium and µ = µrµ0 the magnetic

susceptibility.
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If instead of vacuum inside the cavity there is a medium of charactersitics

ε = ε
′

+ iε
′′

µ = µ
′

+ iµ
′′

the power dissipated by the medium results to be:

Pt =
∫ ∫ ∫

(

ε0ε
′′|E|2
2

+
µ0µ

′′ |H|2
2

)

dV (26)

For a rectangular cavity, of sizes 3×4×5 cm3, computer simulations give a Q= 1.35×104

for the fundamental frequency fc = 3.903 GHz. If one of the walls is made of silicon with

σSi = 2.52 × 10−4Ω−1m−1, the frequency shifts to 3.313 GHz and the Q is reduced to

3500, thereupon the necessity of cooling down. In fact, if the semiconductor is cooled

to a value of temperature such that there are no more free carriers (in Si the freeze-out is

obtained at 77 K), inside the cavity it does not dissipate any more because it is an insulator.

Besides, the semiconductor slab does not alter the Q value if positioned where the electric

field is nearly zero (eq. (26) and Fig.9), as designed in this feasibility study.

3 Detecting motion-induced radiation and Noise sources

In the introduction we saw that due to excitation of quantum vacuum it is possible to

obtain several thousand of photons inside the cavity; it will be necessary to discriminate

this motion-induced radiation from photons coming from stray effects. In this section are

analyzed possible sources of noise.

3.1 Black body radiation

One of the possible sources of noise in this measure is not connected to the measure

instruments. Consider a cavity with metallic walls at uniform temperature T; the walls

emit electromagnetic radiation in the thermal range of frequencies. This radiation inside

the cavity exists in the form of standing waves of frequency νi with nodes at the metallic

surfaces. The number N of such waves in a given frequency interval times the average

energy of the waves E(ν), divided by the volume of the cavity V, gives the average energy

content per unit volume in the frequency interval [ν, ν + dν]. This is the energy density

%T (ν). The formula that Planck obtained for the energy density in the blackbody spectrum

is:

%T (ν)dν =
8πν2

c3

hν

ehν/kT − 1
dν (27)
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To estimate the number of thermal photons it is better to introduce the exitance,

defined as the amount of power per unit area that leaves a surface of a source of radiation.

In the case of a cavity source, the expression for the exitance is obtained with the following

thought experiment [36].

x

xv dt
y

dA

Figure 10: Source area from an infinite conducting box full of photons.

Consider the box in Fig.10 full of photons, moving at the speed of light, c in all

directions. If there is a small hole of area dA in the wall, some photons will escape; the

number of photons Qq that will escape in a time dt is equal to half of the photons in the

volume dA vxdt (only the photons with positive velocities have a chance to escape):

Qq =
1

2
NdAvxdt

with vx = c/2 and N =
∫ 8π

c3
ν2

ehν/kT−1
dν the number of photons per unity cavity

volume. Combining these results, we find for the photon exitance Mq

Mq =
Qq

dA dt
=

ν2dν

c2(ehν/kT − 1)

[

photons

cm2s

]

(28)

To get the total exitance from a source over a finite spectral region, an integration is

required:

Mq =
∫ ν2

ν1

Mq,ν(ν, T )dλ =
1

c2

∫ ν2

ν1

ν2dν

ehν/kT − 1

[

photons

cm2s

]

(29)

If we consider a cavity with frequency f = 109 Hz and Q = f
∆f

= 104, a bandwidth

of 1 MHz is set and the integration is carried out between ν1 =(1 GHz - 0.5 MHz) and

ν2 =(1 GHz + 0.5 MHz). With numerical integration we obtain, at 4 K, Mq ' 92× 103

photons/cm2 s.

If we reduce the bandwidth to 1 kHz, as it is possible if the quality factor of the

cavity is enhanced to 106, the integration in equation (29) gives out 92 photons/cm2 s.

During τ = 2Q/f = 2 ms the photons emitted are 18.4×10−2 photons/cm2.
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The number of thermal photons during the time of observation ∆t is 92 photons/cm2

s ×∆t(s) multiplied by the cavity emisssion surface of 94 cm2 (if we will take a cavity

with sizes 3× 4× 5 cm3).

3.2 Generation/Recombination noise

The plasma that is formed on the surface of the semiconductor when illuminated can be

considered, to all practical purposes, a radiatior inside the cavity: the collisions between

the free electrons and the ions of the lattice give rise to bremsstrahlung that can add noise

to our measure.

The radiated power for one electron accelerated in the field of the charge Q is in

good approximation is given by [30,31]

Pbrems =
nee

4Q2v

48ε3
0mec3h

[watt/ion] (30)

with e, ε0, me and h physical constants and Q charge of the ion, v and ne respec-

tively velocity and concentration of electrons.

Substituting the values for e, ε0, me and h in eq.(30) we obtain the form

Pbrems = 1.85× 10−38neni

√
E [watt/m3] (31)

with E = Eph−Ebg excess kinetic energy of electrons in eV. The ionic charge Q in

eq. (30) is here the charge of each silicon atom which has lost one electron during laser

irradiation, so the concentration of ions is ni = ne.

For example, if the concentration of electrons due to the laser is ne = 1.33 × 1022

e−/m3 (as in Tab. 4) and E ' 50 meV, it turns out that the plasma formed on a 1 cm2

silicon illuminated surface (λ = 1.064 µm, p = 400 µm) will radiate away approximately

10 mW.

The spectrum of the radiated power is flat, that is, the intensity of the radiation

at each frequency up to νmax is roughly constant and then drops to zero for frequencies

ν > νmax.

The maximum value νmax can be obtained estimating the collision time 1
ν

= τ ≈
b/v, where v is the speed of the electron and b the distance over which the accelerating

force is large. The distance b is found with the equation e2

4πε0

1
b

= E, and comes out

2.88×10−8 m 4; v is 1.32 ×105 m/s, so ν = 1
τ
' 4.6 THz.

With the relation E = hν we obtain ν = 12 THz.
4b + rat ∼= b, in fact b� rat (the atomic radius for silicon is rat = 100 pm)
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The bremsstrahlung intensity in the photo-generated plasma is proportional to n2
e

(see eq. (31)), so it can be considerably reduced decreasing the laser intensity to the

minimum value of carriers that is necessary to reflect microwaves. Besides, this model

overestimates the power radiated by the plasma formed on the semiconductor: in fact, it

relies on the hypothesis that the excess energy is entirely expended in radiative processes.

3.3 Antenna and Minimum detectable signal

Recalling the definition (23) of the quality factor, we write WL = ω0

Q
U . In a closed cavity,

the power loss WL will be equal to the rate of change of the stored energy U ,

WL = −dU

dt
(32)

so that the decay of the stored energy will be

WL = W0e
−t/τW

where τW = Q
ω 0

is the decay time of the stored energy.

Since U ∝ E2, the field will decay as

E(t) = E0e
− t

2τW eiωt

and the decay time of the field is two times the decay time of the stored energy.

The limit of detectability of radiofrequency photons is set by the noise associated to

the antenna itself and the measurement system.

To optimize detection inside the cavity the antenna should be positioned where the

electric field is maximum, and parallel to the field lines. The incident wave induces an

electromagnetic field that gives rise to a distribution of currents on the antenna. These

induced currents feed a load (usually through a transmission line or a waveguide): in this

way power is conveyed to the load impedance ZL and the signal can be detected.

The smallest number of detectable photons is related to Johnson noise in this re-

sistance. This noise is expressed in terms of the voltage fluctuation which appears at the

ends of a resistor R. Physically this noise is gaussian, white up to frequencies 1013 Hz and

its spectral density is

V 2
n (ν) = 4RkT (33)

where k=1.38×10−23 J/K is the Boltzmann constant and T is the temperature in

Kelvin. In the interval ∆ν

V 2
n,∆ν =

∫ ∆ν

0
V 2

n (ν)dν = 4RkT∆ν
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At 4 K, with an amplifier of bandwidth 1 kHz the number of equivalent electron noise is

nearly 6.

This thermal noise can be described in a more practical way with electronic magnitudes:

if we call B the effective noise bandwidth the mean square noise voltage is e2

e2 = 4kTRB (34)

The quantity kTB is defined as the maximum available noise power for conjugate

matching. In Tab.5 we give some values for kTB for increasing bandwidths, expressed in

dBm5.

Table 5: Values for kTB at 4 K and 290 K.
B kTB (dBm) at 4 K kTB (dBm) at 290 K

1 Hz -174 -114
10 Hz -164 -104

100 Hz -154 -94
1 kHz -144 -84

10 kHz -134 -74
100 kHz -124 -64
1 MHz -114 -54

For example, if the noise level of the amplifier (coupled to the cavity) measured

with an oscilloscope is -135 dBm, the noise power density is V 2/f = 10−17 W/Hz and

the number of noise photons is:

nRF =
V 2/f

Eph ·G
= 2500[ph/Hz]

where Eph is the energy of an RF photon and G is the gain of the amplifier. With a

10 kHz bandwidth cavity (Q = 105, w0 = 2 GHz) and the noise photons integrated by the

cavity are 2.5×107. This is a number that can be reduced using ultra-low-noise microwave

receiver, such as the most recent cryogenic amplifiers used by radioastronomers [37].
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5dBm is dB referred to 10−3W. We remind that dB= 10 log P2

P1

= 20 log V2

V1

; the following relation

is useful to convert dBW (dB referred to watt) to power in watts: dbW= 10 log P
1W

, that implies P =

log−1 dBW
10
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M. Cirone, K. Rza̧źewski and J. Mostowski, Photon generation by time-dependent

dielectric: A soluble model, Phys. Rev. A 55, 62 (1997).
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