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A contribution to Earle Lomon’s 90th birthday celebration.

Abstract

The first time one of us (G.P.) encountered Earle was in Summer 1966, when she was di-
rected to study Earle’s papers on radiative corrections to quasi-elastic electron scattering
[ 1, 2]. The suggestion had come from Bruno Touschek [ 3], at the time head of the theo-
retical physics group at the Frascati National Laboratories near Rome. About the same
time, Earle came from MIT to visit University of Rome and Frascati. G.P. was a young
post-graduate, who had studied Earle’s papers and was awed by his already impressive
scientific figure. After almost 40 years had passed, Earle visited Italy with his wife Ruth,
making Frascati their base for an extended visit of almost a month. They were housed in
what was then the laboratory hostel for foreign visitors, a small villa higher up above the
hill, toward the town of Frascati. Since then, we became close friends, a friendship which
included both his family and ours, and which has been very important for us. In memory
of that first visit and in gratitude for the many years of friendship, we will tell here a story
of infrared radiative corrections to charged particle scattering, to which Earle’s papers
gave an important contribution.
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1 The infrared catastrophe

In late 1940’s, one of the problems waiting to be solved in the newly emerging discipline
of Quantum Electro Dynamics was that of the infrared catastrophe, namely the apparent
divergence of quasi-elastic electron scattering appearing when calculated order by order
in perturbation theory. It had been known that this difficulty was arising from the neglect
of more than one soft photon emission [ 4]. In 1949, Schwinger examined quasi-elastic
electron scattering and showed that the divergence arising from the emission of a real
photon in the limit of its energy going to zero, is cancelled in the cross-section by a simi-
larly divergent term arising from virtual photon absorption and emission [ 5]. Schwinger
calculated that emission up to a maximum resolution energy ∆E reduces the measured
cross-section by a factor δ (∆E), namely

σquasi−el = σel−theor[1−δ (∆E)] (1)

This corresponds to the well known feature that the emission of radiation reduces the
cross-section of any scattering process among charged particles.

The problem however was not resolved by Eq. (1), since lim∆E→0 δ (∆E) = ∞ and
the cross-section would become negative. To avoid this highly unpleasant occurrence to
show up in the calculated cross-section, it was found necessary to add the contribution of
more and more soft photons. Schwinger put forward the ansatz that the single soft photon
contribution should be exponentiated, i.e.

σquasi−el → σel−theore−δ (∆E) (2)

The cancellation between real photons, for which kµkµ = 0 and virtual photons for which
kµkµ 6= 0 points to the physical fact that the two types of photons are indistinguishable
in the zero energy-momentum limit, when the apparent divergence in photon emission
arises. Brown and Feynman [ 6] noticed that real and virtual emissions are physically
related through the uncertainty principle: when a measurement is taken in a given small
time interval, the uncertainty introduced in the photon energy would allow the virtual
photon to be detected as a real one.

In [ 1, 2], based on [ 7], the measured cross-section had been written as

σ(∆E,E,θ) = b(∆E,ε,C)σn(ε,E,θ)+O(ε/(E−m))+O[α ln(ε/E)]n+1] (3)

with the infrared correction factor b(∆E), showing the explicit cancellation in the expo-
nentiated photon spectrum, given as [ 7, 8]

b(∆E,ε,C) =
1

2π

∫
∆E

o
dω

′
∫ +∞

−∞

dt e−iω ′t−h(ε;t) (4)

=
1

2π

∫
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ε
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dω

ω
[1−eiωt ] (5)
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where the factor C≡C(E,E ′) is a function of the incoming and outgoing particle momen-
ta. In the exponential at the r.h.s. of Eq. (5), the cancellation between real and virtual soft
photons is evident, with the first term in the square bracket coming from virtual photons,
and the eiωt coming from the summation of real soft photons, each one of energy ω ≤ ε .
The problem of the upper integration limit in the exponential was discussed by Lomon
[ 1]. He was later inspired by Yennie and Suura’s work [ 9] to write in closed form the
expression for the b-factor which modifies the theoretical cross-section as [ 2]

b(∆E;ε;C) = (
2
π
)
(

cos
αCπ

2

)(
∆E
εγ

)αC
× I;

I =
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o
(
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σ1+αC ) sinσ exp
(
(αC) Ci[

ε

∆E
σ ]
)

;

γ is the Euler constant.

This equation shows the well known power law for the energy dependence of the correc-
tion factor. The complete formulation of the problem - in all four dimensions - was given
in 1961 by Yennie, Frautschi and Suura (YFS) [ 10]. In the following, we shall show
how to obtain Lomon’s expression, with the explicit power law and normalization factor,
as well as the subsequent 4-dimensional formulation by YFS, through the semi-classical
method developed by Touschek to calculate infrared radiative corrections to electron po-
sitron experiments [ 11, 12]. We shall also discuss Touschek’s method in the context of a
special kind of Abelian gauge theories, and under what conditions it could be extended to
the presently still important problem of soft gluon re-summation in QCD.

2 Touschek resummation procedure

In November 1960, Bruno Touschek prepared a memo for his colleagues at the University
of Rome and Frascati Laboratories, in which he proposed the construction of an electron-
positron storage ring of c.m. energy

√
s = 3.0 GeV, the highest energy then under any

sort of planning. It was a neat number, an energy chosen so as to include production of
a pair of all the particles known to exist at the time, starting from two γ’s up to a pp̄ or
nn̄. Ten months before, the scientific staff of the Frascati Laboratories had approved the
construction of a smaller lower energy collider, AdA, Anello di Accumulazione in Italian,
storage ring in English. By November of the same year 1960, AdA was on the way to start
functioning, the first of such type of machines in the world. Encouraged by this success,
Touschek went on to propose building an electron positron collider of much higher energy
and luminosity, one able to produce interesting physics, which he called ADONE, a better
AdA.

Both AdA and ADONE were electron (against positron) machines, but with a major
difference: at ADONE’s energy, electromagnetic radiation emission called for important
radiative corrections. In 1963, he prepared an internal Laboratory note [ 11], reviewing
the status of the contemporary scientific literature on the subject and laying the basis for
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the subsequent more complete work of [ 12]. In tribute to Lomon’s work, the note says:
‘The theoretical background for the idea here discussed can be found in the works by
Jauch, Rohlich and Lomon’, and then again ‘Applying the ideas of Lomon to the problem
of administering the radiative corrections to the work with ADONE . . . ”.

To calculate the correction factor to the measured e+e−→ AĀ cross-section, Tou-
schek used the Bloch and Nordsieck result about soft photon emission from a classical
source [ 4]. Bloch and Nordsieck showed that the distribution in the number of photons
was given by a Poisson distribution, namely

P({nk}) = Πk
n̄nk

k
nk!

exp[−n̄k] (6)

with nk and n̄k the number of photons emitted with momentum k and their average value.
We notice that Eq. (6) describes a discrete momentum spectrum of the emitted photons,
corresponding to quantization of the electromagnetic field in a finite box. In the following,
we shall first assume that a smooth continuum limit exists. Later, in Sect. 3, we shall
discuss possible subtleties with the continuum limit.

Letting Kµ be the overall four-momentum loss due to photon emission, one can sum
on all values of all the number of emitted photons nk, and write the probability P(K) as

d4P(K) = ∑P({nk})δ4(∑
k

knk−K)d4K (7)

where the four-dimensional δ -function imposes overall energy momentum conservation
and allows to exchange the sum with the product in Eq. (7). One can then write

d4P(K) =
d4K
(2π)4

∫
d4x exp[iK ·x−∑

k
n̄k(1− e−ik·x)] (8)

In this formulation, an important property of the integrand in Eq. (8) is that by its defini-
tion d4P(K) 6= 0 only for K0 = ω ≥ 0.

If one takes the continuum limit, integrating over the three momentum K leads to
the probability of finding an energy loss in the interval dω as

dP(ω) =
dω

2π

∫ +∞

−∞

dt exp[iω t−β

∫
ε

o

dk
k
(1− e−ikt)] =

dω

2π

∫ +∞

−∞

dt exp[iω t−h(t)] (9)

where β is a function of the incoming and outgoing particle momenta, and ε an energy
scale valid for single photon emission, to be determined to the order of precision in the
perturbation treatment of the process under examination. In [ 12] the function β was sho-
wn to be a relativistic invariant, and its expression in terms of the Mandelstam variables
s, t,u can be found in [ 13].

We postpone the implication of taking this continuum limit to Sect. 3, and pass to
evaluate Eq. (9) in closed form for ε/ω > 1. Following the steps taken from Eq. [11]
through Eq. [17] of [ 12], the analiticity properties of h(t) in the lower half of the t-plane
lead to

N(β )dP(ω) = β
dω

ω
(
ω

ε
)β f or ω < ε (10)

4



with the normalization factor given by

N(β ) =

∫
∞

o dP(ω)∫
ε

o dP(ω)
= γ

β
Γ(1+β ) (11)

which one obtains following the procedure outlined in Appendix III of [ 12] and which
corresponds to the results in [ 1, 2, 14]. This approach is based on a separation of soft
from hard processes in the observed cross-section. The application of Touschek’s method
to the scattering amplitudes led to the coherent state approach to infrared effects proposed
by Greco and Rossi [ 15].

The question of the scale ε in resummation procedures acquires a particular rele-
vance when the matrix element of the hard scattering process has a strong dependence on
energy. In such case a straightforward separation of the soft photon factor from the cross-
section cannot be done. Lomon considered this possibility in [ 1], when he proposed the
use of an expression such as

M =
∫

B(K)Q(p−K)dK (12)

where B(K) is the matrix element for the soft radiation component with total momentum
K. Not so relevant phenomenologically in 1955 (when Lomon submitted his paper, from
the Institut of Theoretish Fysik in Copenhagen), the extension of the radiative correction
calculation with Eq. (12) to processes in which a narrow resonance is produced, was
considered in [ 11, 16] and became essential in 1974 with the discovery [ 17, 18, 19] of
a very narrow resonance, to be called J/Ψ, a bound state of a new type of quarks, the
charm [ 20]. In [ 21] the application of the methods inspired by Lomon’s expression of
Eq. (12) led to what was, at the time, the most precise determination of the J/Ψ width. In
this paper, it was found that for very narrow resonances the scale which controls radiative
effects is not the experimental resolution ∆E [ 22], but, most importantly, the resonance
width Γ≤ ∆E.

3 The zero momentum mode of abelian gauge fields

In this section we return to Eq. (8) and discuss the separation of the zero momentum
mode from the continuum in Abelian gauge theories in the presence of different boundary
conditions [ 23].

Up to Eq. (8), the method developed to obtain the energy-momentum distribution
Kµ is a classical statistical mechanics exercise. Going further requires to input an expres-
sion for the average number of photons of momentum k and the choice of the boundary
conditions imposed upon the field. To take the continuum limit, let the quantization vo-
lume be V = L3, and introduce µ , a fictitious photon mass. We must eventually take the
limit L→ ∞ and µ → 0. Separating the zero momentum mode of energy ω0 from all the
other modes, we write

h(t) = n0(t)[1− e−iω0t ]+ h̄(t) = n0(t)[1− e−iω0t ]+β

∫ E

0

dk
k
[1− e−ikt ] (13)
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with the photon mass now safely taken to be zero in the integral and

β =
α

(2π)2

∫
d2n∑

ê
|∑

i

(pi · ê)εi

(pi · n̂− p0i)
|2 (14)

where pi and ê are the 4-momenta and polarization of the incoming and outgoing par-
ticles, εi = ±1, for incoming particles or antiparticles; E the maximum single photon
energy characterizing the process, to be determined through the inclusion of higher order
corrections and the theoretical precision required for the calculation.

For the zero mode, the µ → 0 limit is more delicate. One has

n0(t)[1− e−iω0t ]≈ iW0t (15)

with W0 =
2πe2

L3µ2 |∑i εivi|2. In general, one can then write

dP(K0) =
1

N(β )
β

dK0

2π

∫
dtei(K0−W0)t−h̄(t) =

1
N(β )

β
dK0

(K0−W0)
(
K0−W0

E
)β

Θ(K0−W0)

(16)
If one takes first the limit L→ ∞, W0 = 0 and the zero mode gives zero contribution, as
in the case of vanishing boundary conditions. The case W0 6= 0 on the other hand might
be present in theories with a different infrared regularization scheme. One cannot exclude
the zero mode to be relevant in the discussion of the still unknown infrared behaviour of
QCD, or in cosmology.

4 Conclusions and Acknowlegments

We have shown how Earle Lomon’s work of the 1950’s about infrared radiative correc-
tions [ 1, 2] took the way of Frascati, where ADONE, a 3 GeV c.m. electron-positron
collider, was being built. The need to ‘administer’ such corrections in order to extract
meaningful physics from future experimental measurements, was keenly felt by Bruno
Touschek, who had proposed and built the first electron-positron collider, AdA [ 24, 25].
Through the 1960’s, Earle’s work influenced Bruno Touschek to develop a method for
infrared photon resummation, a legacy which Touschek passed on to the young theo-
rists of the Frascati theory group, and which, along the years, can still be found in many
extensions to QCD [ 26, 27].

We are indebted to Earle Lomon for advice and suggestions through the years we
have known each other. One of us in particular, G.P., is grateful to Earle for very many en-
lightening physics conversations held together at the CTP, the MIT Center for Theoretical
Physics, spanning several years.

G.P. gratefully acknowledges the hospitality at MIT CTP for current and past re-
search, and for kind administrative support.
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