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Abstract

In this paper we present a solution to a fractional integral of order 3/2 with the use of
fractional Cauchy-like integral formula. The integral arises during the solution of Biot-
Savart equation to find the exact analytical solution for the magnetic field components
of a solenoid. The integrals are computed by cutting the branch line in order to have an
analytic function inside the integral instead of multi-valued operation.
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1 Introduction

Fractional calculus studies the fractional powers of the differentiation and integration
operators both in real and complex domains. The concept was initially brought to the
literature by Gottfried Wilhelm Leibniz [1] and then developed by Niels Henrik Abel
[2], Riemann-Liouville, Riesz, Caputo (see [3]), Hadamard [4] and Atangana-Baleanu
[5]. The fractional derivatives and integrals appear in mathematics, different branches
of physics and engineering. Physicists usually avoid confronting fractional integrals and
derivatives and they try to find other ways to solve the integrals like using the elliptical
integral. The idea recently was introduced to quantum mechanics by Laskin [6] under
the name ”fractional quantum mechanics” in which the Lèvy-like paths in the Feynman
path integrals are substituted by the Brownian-like quantum paths. The Levy-like paths
corresponds to regular operators and Brownian-like paths are fractional. In this paper we
report some important equations of fractional calculus, then we will investigate their lim-
itations, and finally propose a novel way to solve a fractional integral which appears in
the field of accelerator physics.

It should be noted that the integer derivative of a function f(x) is a local property at
a point x. On the other hand only, the fractional derivative of a function f(x) at the point
x depends only on values of f close to x. This means that the boundary conditions should
be considered by involving information on the function further out.

In the next section we review some fractional derivatives and integrals.

2 Preliminaries: Various forms of Fractional Integrals and Derivatives

In this section we review several known forms of the fractional integrals in mathematics
which arise in some physics and engineering problems.

2.1 Riemann-Liouville Fractional Integral

Definition: Let Re α > 0 and f be piecewise continuous and integrable on (0,∞). Then
we define

z0D
−α
z f(z) =

1

Γ(α)

∫ z

z0

f(τ)

(z − τ)−α+1
dτ (1)

when z = z0, this is called Riemann-Liouville fractional integral of the function f of
order α.

2.2 Weyl fractional derivatives

The Weyl fractional derivatives are used when z in the Eq. (1) takes on a singular value
from −∞ to∞, and it can be expressed as,
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D−αz−∞f(z) =
(−1)−α

Γ(−α)

∫ ∞
z0

f (n)(τ)

(z − τ)−α−1
dτ (2)

and

D−αz+∞f(z) =
1

Γ(−α)

∫ z0

−∞

f (n)(τ)

(z − τ)−α−1
dτ. (3)

where Re α > 0.

2.3 Caputo fractional derivative

The Caputo fractional derivative [7] is used in order to solve the differential equations
without defining the fractional order initial conditions. Caputo’s definition is as follows.

z0D
−α
z f(z) =

1

Γ(n− α)

∫ z

z0

f (n)(τ)

(z − τ)α+1+n
dτ, n− 1 < α < n. (4)

2.4 Hadamard Fractional Integral

The Hadamard fractional integral is introduced by Jacques Hadamard and is given by the
following formula,

aD
−α
t f(z) =

1

Γ(α)

∫ t

a

(log
t

τ
)α−1f(τ)

dτ

τ
t > a (5)

This is based on the generalization of the integral

∫ t

a

dτ1
τ1

∫ τ1

a

dτ2
τ2
...

∫ τα−1

a

dτα
τα

dτα =
1

Γ(α)

∫ t

a

(log
t

τ
)α−1f(τ)

dτ

τ
t > a, α > 0 (6)

to obtain the above equation, the n-fold integral of the form below is used

ρ
aD

α
xf(x) =

∫ x

a

τ ρ1 dτ1

∫ τ1

a

τ ρ2 dτ2...

∫ τn−1

a

τ ρnf(τn)dτn (7)

2.5 Generalized Fractional Integration Operator

The author [8] obtained a generalized fractional integration operator which bounded in
the Lebesgue measurable space. The procedure is as follow:

The Lebesgue measurable functions f on [a, b] in the space Xp
c (a,b) (c ∈ IR, 1 ≤

p ≤ ∞) for which ||fXp
c
|| <∞, where the norm is defined by

||f ||Xp
c

=
1

(
∫ b
a
|tcf(t)|p dt

t
)p
<∞ (c ∈ IR, 1 ≤ p <∞) (8)

and for the case of p when is equal∞ we have
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||f ||X∞c = ess supa≤t≤b[|tcf(t)|] (c ∈ IR) (9)

where “ess sup”denotes for the “essential supremum”of the function f, representing
that value where f is larger or equal than the function values everywhere, when ignoring
what the function does at a set of points of “measure zero”(measure zero is a set of points
capable of being enclosed in intervals whose total length is arbitrarily small).

By using Dirichlet technique for n-fold integral, the fractional integral of ρaD
α
x yields

[8],

ρ
aD

α
xf(x) =

(ρ+ 1)1−α

Γ(α)

∫ x

a

(xρ+1 − τ ρ+1)α−1τ ρf(τ)dτ (10)

where α and ρ 6= −1 are real numbers.
As an additional information, the Dirichlet technique [9] is given:∫ x

a

τ ρ1 dτ1

∫ τ1

a

τ ρf(τ)dτ =

∫ x

a

τ ρf(τ)dτ

∫ x

τ

τ ρ1 dτ (11)

=
1

ρ+ 1

∫ x

a

(xρ+1 − τ ρ+1)τ ρf(τ)dτ (12)

2.6 Fractional Atangana-Baleanu derivative

Atangana and Baleanu proposed a new fractional derivative [5] with non-local and no-
singular kernel using the Mittag-Leffler function. They started with the fractional ordinary
differential equation

dαy

dxα
= ay 0 < α < 1 (13)

after some manipulation and using Caputo-Fabrizio derivative they obtained an expression
and solved the problem of non-locality.

Dα
t f(t) =

N(α)

1− α
Σ∞k=0

(−a)k

Γ(αk + 1)

∫ t

b

df(y)

dy
((t− y))αkdy. (14)

where a = α(1 − α)−1 and N(α) stands for a normalization function obeying
N(0) = N(1)=1.

2.7 Fractional Riesz derivative

The Riesz derivative of function u(x, t) with respect to x is defined by [10]

∂αu(x, t)

∂|x|α
= −1

2
sec(

πα

2
)[RLD

α
−∞,x +RL D

α
X,+∞]u(x, t) (15)

where Dα
−∞,x and RLD

α
X,+∞ are the left and right Riemann-Liouville derivatives.
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2.8 The Cauchy integral theorem

Let D ⊆ C be an open set. We shall say that D has a piecewise C1-boundary if the
boundary of D (in C) is a closed piecewise C1-contour such that each point of the contour
is also a boundary point of C \ D̄.

Let D ⊆ C be a bounded open set with piecewise C1-boundary, let E be a Banach
space, and let f : D̄ → E be a continuous function which is holomorphic in D. Then [11]

f(z0) =
1

2πi

∫
∂D

f(z)

z − z0
dz, z0 ∈ D. (16)

Any holomorphic function with values in a Banach space is infinitely times com-
plexly differentiable. In particular, it is of class C∞. Moreover, if D and f are as in the
above theorem and if we denote by f (n) the n-th complex derivative of f in D, then [11]

f (n)(z0) =
n!

2πi

∫
∂D

f(z)

(z − z0)n+1
dz, z0 ∈ D. (17)

3 Statement of the Problem

Starting from the Biot-Savart law, the axial and radial magnetic field components for a
coil of negligible thickness with a stationary electric current are given by [12]:

Br =
µ0IMz

4
√

2πR

(
ξ

η

)3/2

I2(ξ) (18)

Bz =
µ0I

4
√

2πR

(
ξ

η

)3/2

(I1(ξ)− η I2(ξ)) (19)

where η = r
R

, Mz = z
R

I1(ξ) =

∫ π

0

dψ

[1− ξ cos(ψ)]3/2
(20)

I2(ξ) =

∫ π

0

cos(ψ)

[1− ξ cos(ψ)]3/2
dψ (21)

and

ξ(R, z, η) =
2η

1 + η2 +M2
z

(22)

and we have used the following notation:
Bz is the magnetic field component in the direction of the coil axis.
Br is the radial magnetic field component.
I is the current in the wire.
R is the radius of the current loop.
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z is the distance, on axis, from the center of the current loop to the field measurement
point.

r is the radial distance from the axis of the current loop to the field measurement
point

θ denotes for the angle of the current element
γ stands for the angle of the observer where the magnetic field components are to

be calculated
ψ = γ − θ
As it can be observed the fractional integrals (20) and (21) can not be solved by

Riemann-Liouville Fractional Integral. The reason is that, the denominator in this method
becomes a power of 3/2 when one choose α = −1/2 and this is not allowed by the
theorem which implies α > 0 (see Eq. (1)). On the other hand, our fractional integrals
can not be solved by Weyl fractional theorem ( Eqs. (2, 3)), because the α should be equal
-5/2 to turn the denominator’s power to 3/2 and this is not allowed by the limitation of this
theorem (α > 0). Let us now see if it is possible that the integrals (20) and (21) can be
solved by Caputo fractional theorem. For n = 1, α = −1/2 we can cover the integral’s
denominators (to arrive at power of 3/2) but as n − 1 < α < n and this means α > 0

and this is not allowed either. We face the same limitation considering other theorems
mentioned in the previous section.

In order to solve the integral we use Cauchy’s Integral Formula with some modifi-
cations. Recalling Cauchy’s Integral Formula

Dnf(z) =
Γ(α + 1)

2πi

∮
C

f(z)

(z − z0)n+1
dz (23)

we observe that n is an integer number, and this implies that there is one or more
singularities in the function. On the other hand, when we have n as a non-integer, the
singularity turn to the branch lines and f become a non-local property. It should be noted
that integer derivative of a function f is a local property at a point z. We have already
observed that only for non-integer power derivatives, the fractional derivative of a function
f at the point z depends only on values of f very near z. In order to use this theorem for
non-integer n, one should change the multi-valued operation (function) in Eqs. (20) and
(21) and turn it into the analytic function. This procedure is called Branch Cut. By branch
cut, our multi-valued function becomes an analytic function with a local property and
the branch point turns to be a singularity point. Now we can use the Cauchy’s Integral
Formula for solving the fractional integral. We call this theorem Fractional Cauchy-like
Integral Formula:

γ(z,z+)Dα
z−z0f(z) =

sin(πα) Γ(α + 1)

π

∫ z

z0

f(z)

(z − z0)α+1
dz. (24)

In the next section we will first see how we obtain the above equation and then we
will apply that to solve our fractional integrals.
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4 Fractional Cauchy-like Integral Formula and the Final Solution

It should be noted that this method has been studied by the authors of [13] and [14]. The
procedure is as follows:

Let us recall the Cauchy’s integral formula

Dnf(z) =
Γ(n+ 1)

2πi

∮
C

f(z)

(z − z0)n+1
dz. (25)

Let the contour of integration be γ(z0, z
+). The branch line for (z − z0)−α−1 starts

from the position z and ends at the fixed point z0. The above equation is equivalent to the
Riemann-Liouville fractional integral when Re (α) < 0. We divide the contour γ(z0, z

+)

into three contours (see Fig. 1),

γ(z0, z
+) = γ1(z0 → z) ∪ γ2(O) ∪ γ3(z → z0) (26)

where,
γ1(z → z0) : line segment from z to z0;
γ2(O) : small circle centered at z0;
γ3(z0 → z) : line segment from z0 to z.

Figure 1: contour of integration

Then the Cauchy’s integral formula becomes:

Dnf(z) =
Γ(n+ 1)

2πi

∫
γ(z0,z)

f(z)

(z − z0)n+1
dz = Iγ1 + Iγ2 + Iγ3 (27)
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Iγ1 , Iγ2 , Iγ3 denote the integrals over the mentioned contours γ1, γ2, γ3. Then, the line in
which the branch occurs can be written as

1

(z − z0)α+1
= e(−α−1)(ln|z−z0|+i(θ−π)) on γ1 (28)

1

(z − z0)α+1
= 0 on γ2 (29)

1

(z − z0)α+1
= e(−α−1)(ln|z−z0|+i(θ+π)) on γ3 (30)

It should be noted that the integral tends to zero on γ2 as the contour’s radius r0
goes to zero. Substituting the above equations inside of Eq. (25) we obtain

γ(z,z+)Dα
z−z0f(z)) =

(eiπα + e−iπα)Γ(α + 1)

2πi

∫ z

z0

f(z)

(z − z0)α+1
dz (31)

or

γ(z,z+)Dα
z−z0f(z) =

sin(πα) Γ(α + 1)

π

∫ z

z0

f(z)

(z − z0)α+1
dz. (32)

Notice that above equation is valid for all values of α. By Weierstrass M-test we can
show that an infinite series of functions converges. First we show that f(z)

z−z0 is an infinite
series:

γ(z,z+)Dα
z−z0f(z0) =

sin(πα) Γ(α + 1)

π

∫ z

z0

f(z)

(z − z0)α+1
dz (33)

=
sin(πα) Γ(α + 1)

π

∫ z

z0

f(z)

(z − r0)α
.

1

[1− (z0 − r0)/(z − r0)]α
dz (34)

=
sin(πα) Γ(α + 1)

π

∫ z

z0

f(z)

(z − r0)α
Σ∞n=0(

z0 − r0
z − r0

)n+αdz (35)

= Σ∞n=0

sin(πα) Γ(α + 1)

π

∫ z

z0

(z0 − r0)n+α

(z − r0)n+2α
f(z). (36)

As f(z)
(z−r0)α is bounded on γ, when the contour’s radius goes to zero, by some positive

number M , and | z0−r0
z−r0 | ≤ r < 1, then we have

|(z0 − r0)
n+α

(z − r0)n+2α
f(z)| ≤Mrn (37)

this means that the series converges on γ.
Recalling the Eq. (32)

γ(z,z+)Dα
z−z0f(z0) =

sin(πα) Γ(α + 1)

π

∫ z

z0

f(z)

(z − z0)α+1
dz. (38)

and rearranging that we have
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∫ z

z0

f(z)

(z − z0)α+1
dz =

π

sin(πα) Γ(α + 1)
γ(z,z+)Dα

z−z0f(z0). (39)

By substituting f(x)=1, α = 1/2 and changing the interval to [0, π], the above
integral becomes our fractional integral of Eq. (20). Recalling Eq. (20),∫ 2π

0

1

[1− ξ cos(ψ)]3/2
dψ (40)

and writing the variable cos(ψ) in the complex plane as cosψ = z+z−1

2
, and replac-

ing into the above equation and using the so called modified Cauchy’s residue theorem
for the fractional integrals we obtain

∫ 2π

0

1

[1− ξ cos(ψ)]3/2
dψ =

23/2π

Γ(3/2)
limz→z0D

1/2
z (z − z0)−3/2f(z) (41)

where z01 =
1+
√

1−ξ2
ξ

and z02 =
1−
√

1−ξ2
ξ

are the branch points of the integral in
which the residues should be computed.

We observe that the above equation is similar to the Residue theorem (sometimes
called Cauchy’s residue theorem) which is used in complex analysis but unlike the Cauchy’s
residue theorem, the denominator in our case has the 3/2 power. Therefore, we can not
use directly this theorem. The reason is that, the residue theorem can be used to evaluate
the line integrals of analytic functions over closed curves, but in our case, the integral of
20 and 21 are the line integrals of multi-valued functions. To Cauchy’s residue theorem to
be used for our case, we must ”Branch Cut” in order to change the multi-valued functions
to analytic functions.

As there is a symmetry in the integral, it is not necessary to branch cut both the
branch lines. For this reason we will take the interval [0,π] where one of the branch line
is located,

∫ π

0

1

[1− ξ cos(θ)]3/2
dψ = 25/2 π

Γ(3/2)
[lim

z→ 1−
√

1−ξ2
ξ

D1/2
z (z − z1)3/2f(z)] (42)

= 25/2 π

Γ(3/2)
[D

1/2
z−z1

z1/2

(z − (
1−
√

1−ξ2
ξ

))3/2
] (43)

where D1/2
z is the fractional derivative of the order 1/2. Applying D1/2

z to the function we
obtain,

D1/2
z (

z1/2

(z − z0)3/2
) =

Γ(3/2)

(z − z0)3/2
+

z Γ(5/2)

2(z − z0)5/2
− z2 Γ(7/2)

16(z − z0)7/2
+ ... (44)

Finally substituting the Eq. (44) inside the (42) we obtain:
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∫ π

0

1

[1− ξ cos(θ)]3/2
dθ = 25/2 π

Γ(3/2)
[

Γ(3/2)

(z − z0)3/2
+

z Γ(5/2)

2(z − z0)5/2
− z2 Γ(7/2)

16(z − z0)7/2
+ ...]

(45)

=
π

Γ(3/2)
[

Γ(3/2)

(1− ξ2)3/4
+

(1−
√

1− ξ2) Γ(5/2)

4(1− ξ2)5/4
− (1−

√
1− ξ2)2 Γ(7/2)

64(1− ξ2)7/4
+ ...] (46)

Where the integral’s solution is a hypergeometric function and it can be written in a
compact form as

I1(ξ) =

∫ π

0

dψ

[1− ξ cos(ψ)]3/2
=

π

(1 + ξ)3/2
2F1(

1

2
,
3

2
; 1;

2ξ

1 + ξ
). (47)

By performing the same process using the so called Cauchy-like integral formula,
Eq. (21), we solved the integral (21)

I2(ξ) =

∫ π

0

cos(ψ)

[1− ξ cos(ψ)]3/2
dψ =

π

(1 + ξ)3/2
[ 2F1(

3

2
,
3

2
; 2;

2ξ

1 + ξ
)− 2F1(

1

2
,
3

2
; 1;

2ξ

1 + ξ
)].

(48)

Conclusions

In this paper, we used the Branch Cut method to change the non-local property of the
fractional derivative to a local property in order to be used the Cauchy’s integral formula.
The new method can be called the Cauchy-like integral formula for fractional integrals.
By Weierstrass M-test we have shown that the integral converges. This method helps to
solve important problems in which there is branch line. We applied the method to solved
the axial and radial magnetic field components for a coil of negligible thickness with a
stationary electric current. At the end, we have shown that the solutions can be expressed
by means of the hypergeometric functions 2F1(a, b; c; z).
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